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Abstract

Hybrid systems combine discrete state dynamics which model mode switching, with con-

tinuous state dynamics which model physical processes. Hybrid systems can be controlled by

affecting both their discrete mode logic and continuous dynamics: in many systems, such as

commercial aircraft, these can be controlled both automatically and using manual control. A

human interacting with a hybrid system is often presented, through information displays, with

a simplified representation of the underlying system. This user interface should not overwhelm

the human with unnecessary information, and thus usually contains only a subset of information

about the true system model, yet, if properly designed, represents an abstraction of the true

system which the human is able to use to safely interact with the system. In safety-critical

systems, correct and succinct interfaces are paramount: interfaces must provide adequate infor-

mation and must not confuse the user. We present an invariance-preserving abstraction which

generates a discrete event system that can be used to analyze, verify, or design user-interfaces
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for hybrid human-automation systems. This abstraction is based on hybrid system reachability

analysis, in which, through the use of a recently developed computational tool, we find con-

trolled invariant regions satisfying a priori safety constraints for each mode, and the controller

that must be applied on the boundaries of the computed sets to render the sets invariant. By

assigning a discrete state to each computed invariant set, we create a discrete event system

representation which reflects the safety properties of the hybrid system. This abstraction, along

with the formulation of an interface model as a discrete event system, allows the use of discrete

techniques for interface analysis, including existing interface verification and design methods.

We apply the abstraction method to two examples: a car traveling through a yellow light at an

intersection, and an aircraft autopilot in a landing/go-around maneuver.

1 Introduction

Human-automation interaction is pervasive, occurring in consumer products (alarm clocks, VCRs,

cellular phones), transportation systems (automobiles, commercial aircraft, air traffic control),

scientific research platforms (unmanned ocean- and aerial-vehicles), and military systems (fleets of

semi-autonomous and autonomous aircraft), among others. Often complicated by the underlying

dynamics of the physical system, human-automation interaction in aviation has been a controversial

topic since the advent of computers and their integration into the cockpit [1, 2, 3]. The aviation

industry has experienced many incidents and some accidents in which the pilot became confused

about the current mode or could not anticipate the next mode in the automation [4, 5, 6, 7]. This

potentially dangerous problem has been loosely termed mode confusion, and is often addressed in

flight when the pilot has the time to devote attention to it, and resolved later with ad-hoc “fixes”.

However, mode confusion may occur at critical times of flight: In 1994, all seven people on-board

died during a test flight of the A-330 in Toulouse, France [8, 9]. The pilot had attempted to

complete a go-around with a simulated engine failure, but an unanticipated combination of aircraft

and engine dynamics, flight envelope protection schemes, and confusing interface indications led

to the aircraft’s stall. The accident involved the aircraft’s software, aerodynamics, as well as the

pilot’s interaction with the combined system.

We focus specifically on an aspect of this problem which we can quantify: the information

content presented in the interface. While graphical design of the interface is key in determining

how the user processes and interacts with information in the interface, we assume that the user

can and does process all information displayed. In human-automation systems, the interface allows

observation of information regarding the underlying system dynamics and processes, as well as

control over specific behaviors through input devices in the interface. Too much information can
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overwhelm the user; with too little information the user may not understand the system’s behavior

or may not be able to perform the desired task. A key part of the problem of interface design and

verification involves the appropriate selection of information from the underlying human-automation

system which should be displayed to the human controlling the system.

Although the engineering psychology community has historically dominated research on human-

automation interaction, there have recently been efforts by the formal methods community [10,

11, 12, 6, 13] as well as systems and control communities [14, 15] to address these safety-critical

problems. Using model checkers, researchers in formal methods have evaluated such interfaces to

identify design problems [10, 11, 16] for discrete state models. In [12, 17, 18], the authors were not

only able to verify interfaces for a given task, but additionally formally determine the minimum set

of information that must be displayed in the cockpit interface in order to safely complete a given

maneuver. We believe that the continuous dynamics plays a crucial role in understanding and

designing interfaces, and that it is necessary to introduce both a continuous dynamic component to

represent the physical dynamics of the underlying system, and a control component, into previously

proposed methodologies to make them sound techniques for physical systems.

We model complex human-automation systems as hybrid systems over which a human shares

control with automation. In this framework, which establishes a new way of modeling human

interaction with automation, we determine how to abstract, from the hybrid system, a reduced

representation of the underlying system. This representation can then be used in existing discrete

interface verification or design algorithms. The particular representation which we construct ad-

dresses the problem of system safety, in which we consider a system to be safe if it fulfills a certain

mathematical property which can be encoded as a condition on the system’s reachable set of states.

In aircraft, for example, a safe system is one which remains within its aerodynamic flight envelope.

This contribution differs from existing work in hybrid system verification in our treatment of the

user’s interactions with the hybrid system.

One of the key enabling technologies human-automation systems is verification, which allows

for heightened confidence that the system will perform as desired. Verification is defined simply as

the process of developing and executing a mathematical proof that a system model satisfies a given

specification. Methods and tools to verify systems have become very important as the complexity

of automated systems has grown; it is no longer possible to rely on intuition and simulation to

test that a system satisfies its specification. Verification tools can aid in drastically reducing time

spent on design and validation, but are also crucial in ensuring that safety properties are upheld.

In safety-critical, expensive, or high-risk applications such as airbag deployment circuitry, aircraft

autopilots, and medical devices, guarantees of safe operation are paramount.
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Hybrid reachability analysis and controller synthesis address the problem of guaranteeing system

safety. Many problems of interest may be posed as reachability specifications. For example, in the

problem of verifying system safety, the safety specification is first represented as a desired subset

of the state-space in which the system should remain, and then the following reachability question

is posed: Do all trajectories of the system remain within this set of desired states? The process of

verifying safety then involves computing the subset of the state-space which is backwards reachable

from this “safe set” of states. If this backwards reachable set intersects any states outside the

desired region, then the system is deemed unsafe. Controller synthesis for safety is a procedure

through which one attempts, by restricting the behavior of the system through a controller, to

prune away system trajectories which lead to unsafe states.

In the past several years, methods and tools have been developed for computing reachable sets

for continuous and hybrid systems [19, 20, 21, 22, 23]. Many of these approximate the continuous

dynamics and use an over-approximative set representation in order to maintain computational

tractability for high dimensional systems. In this paper, we use a time-dependent Hamilton-Jacobi

formulation [24] for specifying the reachable set, and the corresponding numerical toolbox based

on level set methods [25, 26, 27] for computing the reachable set. This technique works for general

nonlinear dynamics and set representation. Previous work in analyzing hybrid system safety, for

example [28], has focused on applications of hybrid system theory to fully automated systems,

assuming that the controller itself is an automaton. Here we consider the problem of controlling

human-automation systems, in which the automaton and a human controller share authority over

the control of the system [7]. The user interacts with the underlying system through an interface,

a reduced description of the behavior of the system. In particular, we consider the problem of

verification of an interface between a semi-automated hybrid system and a human controller, and

we pose the question: Is the information displayed to the human controller about the hybrid system

evolution sufficient for the human controller to act in such a way that the system remains safe?

In previous work [15] we focused on one particular example in which verification that an interface

correctly represented the underlying hybrid system was paramount: the automatic landing of a large

civil jet aircraft. Here, we generalize the abstraction technique which allowed us to make use of

discrete interface verification tools. We analyze the user-interface of a hybrid human-automation

system based on well-developed tools in the realm of hybrid system reachability analysis. These tools

assume a hybrid model of the human-automation system (which includes how the user interacts

with the system). We create a discrete representation of the hybrid model based on the hybrid

system reachability result, from which we can then design an appropriate interface for the hybrid

system. In cases in which we are given an interface which can be represented as a discrete system,
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the task, then, is to verify the safety of the discrete interface using the discrete representation of

the hybrid human-automation system.

The paper is organized as follows: We first introduce the modeling formalism, and describe the

particular way in which we model human interaction with a hybrid system. We then describe a

method to create the discrete invariance-preserving abstraction, and apply it to two examples, in

which correct interface design requires information drawn from the underlying hybrid dynamics. We

first present an everyday example: driving on an expressway through a yellow light, and show how,

with this method, an interface can be constructed based on the reachability result of the underlying

hybrid system. After discussing the abstraction method, we present a more complicated example:

the automatic landing of a civil jet aircraft, without the simplifications taken advantage of in [15].

Lastly we offer some conclusions and directions for future work.

2 Problem Description

2.1 Problem Formulation

Consider a hybrid system H = (Q,X , R, f,Σ,U) defined by:

• the set of discrete modes Q,

• the domain of continuous states X ,

• the transition function R : Q× Σ ×X → Q×X ,

• the functions fq(x, u) : Q×X × U → X ,

• the set of discrete inputs, or events Σ = Σu ∪ Σh ∪ Σd,

• and the set of continuous inputs U ,

We assume that discrete controlled inputs σu ∈ Σu are initiated by an automated controller (e.g. an

automatic transition based on the continuous state), discrete human-initiated events σh ∈ Σh are

initiated by the human (e.g. pushing a button, toggling a lever), and discrete disturbance inputs

σd ∈ Σd are initiated by something external to the system (e.g. a fault, caused neither by the

automatic controller nor the human). We index the continuous dynamics by the current discrete

mode, so that ẋ = fq(x, u), with x ∈ X ⊆ R
n and u ∈ U ⊆ R

m in mode q ∈ Q. We assume that the

continuous input is controlled automatically. While we anticipate that the method presented in this

paper can be extended to treat systems with continuous disturbances or continuous human inputs,

these issues are not addressed here. Additionally, the initial set is (Q0,X0) and the constraint set

is C = (Q,W0) ⊆ Q × X . The constraint set represents the desired subset of the state-space in

which the system should remain. We index the continuous constraint set in mode q by W0(q), i.e.

(q,W0(q)) ⊆ C.
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Let us also consider a discrete event system Ĝ = (Q̂, Σ̂, R̂), defined by

• the set of discrete modes Q̂,

• the transition relation R̂ : Q̂× Σ̂ → 2Q̂, and

• the set of events Σ̂ = Σ̂u ∪ Σ̂h ∪ Σ̂d.

The event set contains controlled, human-initiated, and disturbance events. The set of initial modes

is Q̂0, and the constraint set is Ĉ ⊆ Q̂.

Definition 1 A hybrid system H, defined as above, for which Σh 6= ∅, is called a hybrid human-

automation system.

Definition 2 For a trajectory to be invariant with respect to a constraint set C, it must begin within,

and always remain within C.

Definition 3 For a trajectory to be user-invariant with respect to a constraint set C, it must begin

within C, and may exit C only under human inputs.

Definition 4 A discrete event system Ĝ is invariance-preserving with respect to the constraint set

C if it accepts only trajectories of Ĝ that are invariant or user-invariant.

Definition 5 An invariance-preserving abstraction Ĝ is a discrete event system representation of

a hybrid system H with constraint set C, for which discrete event system Ĝ is invariance-preserving.

Problem 1 Given a hybrid human-automation system H, and a constraint set C, find an invariance-

preserving abstraction Ĝ of H.

The invariance-preserving abstraction Ĝ can be compared to an existing discrete interface through

a discrete verification procedure; or it can be used to synthesize a discrete interface Ĝinterface, a

reduced version of Ĝ which a user can use to safely interact with the underlying system H. The

majority of work on abstractions (see, for example, [29, 30, 31, 32, 33, 34, 35]) makes use of discrete

abstractions to aid in continuous or hybrid verification, often by exploiting certain properties of

the system (for example, polynomial or bounded continuous dynamics). The invariance-preserving

abstraction we propose here can take place after reachability analysis has been used to determine

sets of initial conditions which produce invariant trajectories. Rather than aiding in the verification

process, this is a post-processing step in which a discrete automaton is formed based on the verified

system.

In our formulation of a hybrid human-automation system, human-initiated input occurs through

discrete inputs. The human may influence the hybrid system trajectory, but does not have to. For
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example, consider (qk+1, x) = R(qk, x, σh), in which the human may initiate a transition σh which

switches the mode from qk to qk+1. The human controls not only when, but if the transition occurs

at all. If the human does not initiate σh, then the system will remain in qk unless other state-

based or disturbance transitions exist which will allow the system to exit mode qk. This nicely

models applications such as flight management systems, in which the pilot may initiate high-level

mode-changes and the flight management system maintains low-level control.

2.2 Illustration: Advisory System for the Yellow Interval Dilemma

Consider the following scenario: As a single driver on an expressway approaches an intersection,

suddenly the light turns yellow. The driver must decide whether to brake and try to stop at

the intersection, or to continue driving through the intersection before the red light appears. In

either case, the driver must avoid a red light violation, which occurs whenever the car is in the

intersection at any time during a red light. Typically, due to several factors, including accumulated

experience about the particular car’s braking capabilities, the duration of the yellow light at a

given intersection, and the road and weather conditions, the driver has an “intuitive” feel for the

correct course of action [36]. At some intersections, despite the driver’s best intentions, there are

certain combinations of speed and distance from the intersection for which a red light violation is

inevitable: this is known as the yellow interval dilemma [37, 38]. We wish to design an add-on

advisory system, whose interface would indicate to the driver which action must be taken in order

to avoid a red light violation.

We assume a point-mass model of the car without the additional complexity of gearing [39].

With position x from the near-side of the intersection and speed v = ẋ, braking and acceler-

ation forces enter through ẍ = u. The car has limited braking and acceleration capabilities

(u ∈ [umin, umax]) and must obey the speed limit at all times (v < vmax). For this scenario,

umin = −4m/s2, umax = 2 m/s2, and vmax = 24m/s. The intersection is 10 m in length, and the

duration of the yellow light is ∆ = 4 seconds [40, 37]. A typical driver’s reaction time after seeing

the yellow light is τ = 1.5 seconds [36, 40, 41], during which time we presume the car travels at its

present speed. The advisory system should be designed with the assumption that the driver will

take one of two courses of action when a yellow light appears: 1) accelerate through the intersection

(without violating the speed limit), or 2) brake to stop at the intersection. The question we wish

to answer is: What actions does the driver need to take, and when should the driver enact them,

in order to avoid a red light violation?

Consider the hybrid model Hcar with continuous state x = [x, v, t]T , shown in Figure 1, in

which
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ẋ

v̇

–

=

»

v

u

–

t ≥ τ

t ≥ τ

σbrake

t ≥ 0 ∧

σaccel

t ≥ 0 ∧
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Figure 1: Hybrid model Hcar for a car traveling through an intersection, where the input u is the
car’s acceleration, and x := [x, v, t].

• Qcar = {qgreen, qyellow, q
brake
yellow, q

brake
react , q

accel
yellow, q

accel
react, q

brake
red , qaccelred },

• Xcar = R × R
+
0 × R

+
0 ,

• Ucar = [umin, umax],

• Σcar = Σu ∪ Σh ∪ Σd, with controlled events Σu = {t ≥ 0, t − τ ≥ 0, t − ∆ ≥ 0} (which

are triggered when the inequality is met), human-initiated events Σh = {σbrake, σaccel}, and

disturbance event Σd = {δ}.

The event δ represents the light turning yellow. The transition function Rcar and the continuous

dynamics fcar are defined as shown in Figure 1. The initial set is (qgreen,Xgreen), and the constraint

set is Ccar = Qcar×(Wcar)0, (Wcar)0 = {Xgreen,Xyellow,X
accel
red ,X brake

red }, with Xgreen = {R×(0, vmax]×

R
+
0 }, Xyellow = {R × (0, vmax] × R

+
0 } ∪ {0 × 0 × R

+
0 }, X

brake
red = {(−∞, 0] × (0, vmax] × R

+
0 }, and

X accel
red = {[L,∞)× (0, vmax ]×R

+
0 }. The constraint set encapsulates the desired regions of operation

in terms of the car’s position relative to the intersection and the car’s speed: during the red interval,

the constraint set is any position outside the intersection and any positive speed, plus the position

right at the boundary of the intersection with a speed of 0; during the green and yellow intervals

the constraint set is any position and positive speed.

Problem 2 Find an invariance-preserving abstraction Ĝcar of the hybrid human-automation sys-

tem Hcar, given the constraint set Ccar.

3 Creating an Invariance-Preserving Abstraction

In this section, we propose a three-step algorithm to construct an invariance-preserving abstraction

Ĝ of a hybrid human-automation system H. Each of the three steps in Algorithm 1 will be detailed
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in the following sections, followed by a proof that the resultant discrete event system Ĝ is an

invariance-preserving abstraction of the hybrid human-automation system H.

Definition 6 For every mode q ∈ Q in the hybrid human-automation system H, define the set

of modes HumanReach(q) as the set of all modes which could result after any human-controlled

transition from q:

HumanReach(q)
4
= {p | (p, x) ∈ R(q, x, σh), for all σh ∈ Σh such that R(q, x, σh) exists } (1)

Definition 7 Define the set of entry modes Qentry = {HumanReach(q), q ∈ Q}∪Q0 as the union of

those modes which result after any discrete human input and those modes in the initial set. Define

the cardinality of the entry modes as N
4
= ‖Qentry‖.

Algorithm 1 To create an invariance-preserving discrete abstraction Ĝ of a hybrid human-automation

system H,

1. Separate the hybrid human-automation system H into N hybrid subsystems Hi, using the

HumanReach(·) operator to delineate subsystems which contain no human input.

2. For i = 1 : N , compute the invariance-preserving abstraction Ĝi of hybrid subsystem Hi.

3. Combine discrete event systems Ĝi into one discrete event system G.

3.1 Step 1: Separation into Hybrid Subsystems

In many human-automation systems, it is important to limit how a human’s actions will be pre-

scribed. We therefore wish to minimize the restrictions placed on the human input through our

analysis. We begin our analysis of the human-automation system H by first characterizing regions

of H in which human input is impossible. The first step is to decompose H into subsystems which

contain no discrete human inputs. As noted earlier, it is impossible to guarantee that a trajectory

will be invariant when the system contains human-initiated inputs. However, we can determine

regions of the state-space for which invariant trajectories are possible because no human-initiated

inputs exist. We accomplish this by isolating modes forward-reachable after a human-initiated

transition has occurred, and defining those modes as a subsystem of the original system H. Thus,

within each subsystem, all of the transitions are controlled or disturbance transitions.

Definition 8 Given an entry mode qi ∈ Qentry, the hybrid system H = (Q,X , R, f,Σ,U), and a

constraint set C = (Q,W0), define the hybrid subsystem Hi = (Qi,Xi, Ri, fi,Σi,Ui) as:
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• Qi is the set of modes reachable from qi through any string of automatic and disturbance

events (that is, any string which does not contain a user-initiated event)

• Ri(q, x, σ) =







R(q, x, σ) if σ /∈ Σh and q ∈ Qi

{∅} otherwise

• Σi = {σ | Ri(q, x, σ) exists, q ∈ Qi}

and Xi, fi,Ui are subsets of X , f,U which correspond to the modes in Qi ⊆ Q. Similarly, the

constraint set Ci
4
= (Qi, (Wi)0) is a subset of C which corresponds to the modes Qi ⊆ Q.

For ease of notation, we label the entry modes q1, ..., qN . These indices also label the hybrid

subsystems, H1, ...,HN . The following indexing function associates each mode q ∈ Q to the hybrid

subsystems it is contained in:

Ind(q)
4
= {i | q ∈ Qi}, where i ∈ {1, ..., N}. (2)

Note that in general, hybrid human-automation systems will separate into hybrid subsystems which

could overlap.

Yellow Interval Example: For the hybrid human-automation system Hcar, applying Def-

inition 7 results in entry modes Qentry = {qgreen, q
brake
yellow, q

accel
yellow}, since HumanReach(qyellow) =

{qbrake
yellow, q

accel
yellow} and Q0 = {qgreen}. We then apply Definition 8 to find that Hcar separates into three

hybrid subsystems: Hgreen, H
brake
yellow, and Haccel

yellow, as shown in Figure 1. For example, Hgreen contains

Qgreen = {qgreen, qyellow}, Σgreen = {δ}, and Rgreen is graphically depicted in the left-most shaded

region of Figure 1. The constraint set for Hgreen is Cgreen = {(qgreen, (Wgreen)0), (qyellow, (Wyellow)0)}.

The index function Ind maps each mode in Qcar to either Qgreen, Qbrake
yellow, or Qaccel

yellow: for example,

Ind(qyellow) = green, since qyellow ⊆ Qgreen.

3.2 Step 2: Invariance-Preserving Discrete Abstraction

In Step 2 of Algorithm 1, we create an invariance-preserving abstraction of each hybrid subsystem

identified in Step 1. Since the hybrid subsystems do not contain any discrete human inputs,

standard reachability tools can be used to find invariant sets within each subsystem.

Hybrid reachability analysis and controller synthesis provides us with a mathematical guarantee

of invariance to within the limits of the hybrid model, through the generation of 1) the invariant

set of states, (Q,Wi) ⊆ Ci contained within the constraint set Ci, and 2) a control law which

ensures that trajectories which reach the boundary of the invariant set will not be allowed to exit

the invariant set (Figure 2). For the reachability computations in Problem 1, any tool can be

used which can compute the backwards-reachable invariant set for each hybrid subsystem. This
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Figure 3: Invariant region Wbrake
yellow in Hcar in

[x, v].

flexibility allows for selection of the hybrid reachability tool most appropriate for the particular

system at hand [42, 43, 44, 45, 46, 47]. We use a tool based on level-set methods [26, 27] that

computes not only the reachable set, but also the control law necessary to enforce invariance along

the boundary of the reachable set. This tool accommodates hybrid systems with general nonlinear

continuous dynamics, continuous inputs and disturbances, and discrete inputs and disturbances.

Definition 9 An invariant set W ⊆ X has the property that all trajectories with initial state

x0 ∈ W are invariant with respect to W.

Definition 10 Given a hybrid system Hi with Σh = {∅} (no discrete human input), and a con-

straint set Ci = (Qi, (Wi)0), define φ : Qi × (Wi)0 → Qi × (Wi)0 as the result of computing,

for t seconds, the invariant set (Qi,Wi) by means of a backwards-reachable, over- or convergent-

approximative numerical tool: φ(Ci) = (Qi,Wi) ⊆ Ci.

Yellow Interval Example: We compute the invariant sets for each of the constraint sets

in [x, v]: (Qgreen,W) = φ(Cgreen), (Qbrake
yellow,B) = φ(Cbrake

yellow), and (Qbrake
yellow,A) = φ(Caccel

yellow). In each

computed invariant set, we denote the discrete and continuous components as set of pairs of (mode,

continuous set): W = {(qgreen,W(qgreen)), (qyellow,W(qyellow)}, for example. The reachability com-

putation reveals that W(qgreen) = W(qyellow) = Xgreen. In the braking subsystem Hbrake
yellow, the

invariant region in each of the three modes is: B(qbrake
yellow) = B(qbrake

react ) = B(qbrake
red ) = {1a}, the

shaded region shown in Figure 3. In the acceleration subsystem H accel
yellow, the invariant set A(qaccel

yellow)
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Figure 4: Invariant set A(qaccel
yellow) ⊆ φ(Caccel

yellow)
in [x, v].

Figure 5: Intersection of invariant sets
(qyellow,W), (qbrake

yellow,B) and (qaccel
yellow,A

accel
yellow).

is represented by the three shaded regions, labeled {2a, 2b, 2c} in Figure 4. The invariant set

A(qaccel
react) is represented by {2b, 2c}; and the invariant set A(qaccel

red ) is represented by {2c}.

Proposition 1 Given a hybrid subsystem Hi with constraint set Ci, all trajectories whose initial

state is contained in the invariant set (Qi,Wi) ⊆ Ci are user-invariant over time period t.

Proof: Proof by contradiction; see Appendix A.1 for details.

The only way in which a trajectory that begins in Ci can exit Ci is through a human-initiated

discrete event: a human-initiated event may transition the system into a state outside of the

invariant set in the new mode, such that for (p, x) ∈ Ci, R(p, x, σh) 6⊆ Cj . Denote the complement

of a continuous set Wi(p) as Wi(p). Additionally, we presume that trajectories which begin outside

the invariant set in one mode (p, x) ∈ (p,Wi(p)) evolve to states outside the invariant set in the

next mode (q, x′) ∈ (q,Wi(q)) for controlled or disturbance events in the hybrid system such that

(q, x′) = R(p, x, σ), σ ∈ Σu ∪ Σd.

Yellow Interval Example: For any trajectory which begins in the shaded region of Figure 3,

the car will be able to avoid a red light violation by coming to a complete stop before the intersection.

For any trajectory which begins in the shaded region of Figure 4, the car will be able to pass

completely through the intersection before the red light occurs. In both cases, computed control

laws to enforce invariance must be applied along the boundaries of the shaded sets.

Definition 11 Given a set of k sets K = {W1, · · · ,Wk}, Wi ⊆ X , define a map ψ : K → Q̂ from

the set of k regions in the continuous state-space to the discrete state-space, based on a partition of

the continuous domain X . The partition divides X into 2k disjoint regions {W1∩W2∩· · ·∩Wk,W1∩
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W2∩· · ·∩Wk,W1∩W2∩· · ·∩Wk, · · · ,W1∩W2∩· · ·Wk ⊆ X} according to the intersection of the sets.

Define the set of discrete modes, correspondingly: {w1w2 · · ·wk, w1w2 · · ·wk, w1w2 · · ·wk, · · · , w1w2 · · ·wk},

so that, for example:

x ∈ (W1 ∩W2 ∩ · · · ∩Wk)
ψ
→ w1w̄2 · · ·wk 3 Q̂ (3)

and more generally, Q̂ = ψ(K). The labeling convention of the discrete modes reflects the parti-

tioning of the continuous state-space.

Definition 11 therefore defines a discrete state-space in which the system being in a particular

discrete state corresponds precisely to the continuous state being in the corresponding cell of the

state-space partition, according to equation (3).

Yellow Interval Example: Consider the intersection of three invariant sets, Kyellow
4
=

{W(qyellow), B(qbrake
yellow), A(qaccel

yellow)}, representing the mode from which a user-initiated transition

is possible, and the two resulting modes. Since W(qyellow) = Xgreen, we construct the inter-

section of the remaining two sets, producing 22 = 4 disjoint regions in Xgreen. In Figure 5,

region {1} represents B(qbrake
yellow) ∩ A(qaccel

yellow); region {2} represents B(qbrake
yellow) ∩ A(qaccel

yellow); region

{3} represents B(qbrake
yellow) ∩ A(qaccel

yellow); and region {4} represents B(qbrake
yellow) ∩ A(qaccel

yellow). We ab-

stract these four regions to the discrete modes: wb1a1, wb1a1, wb1a1, and wb1a1, respectively. Let

Q̂yellow = {wb1a1, wb1a1, wb1a1, wb1a1}, where Q̂yellow = ψ(Kyellow). The result is a set of discrete

modes which represent the intersection of a set of continuous invariant sets.

Definition 12 Define a map Sel(Q̂,Wi) which selects, for Wi ∈ K, certain modes in Q̂ = ψ(K),

created from a partition as defined in Definition 11:

Sel(Q̂,Wi))
4
= {p ∈ Q̂ = ψ(K) for which x ∈ Wi} (4)

The result is modes in Q̂ which represent continuous states for which x ∈ Wi.

Yellow Interval Example: Using the map previously defined, consider the case in which the

driver should brake to a safe stop. We want to select the discrete modes in Q̂yellow which represent

the continuous states from which this is possible: Sel(Q̂yellow,B(qbrake
yellow)) = {wb1a1, wb1a1}. We now

have a discrete representation of the hybrid states (qyellow, x) from which a safe braking maneuver

is possible.

These definitions are key in creating a discrete abstraction of a hybrid mode. However, beyond

constructing the modes of the discrete abstraction (as above), we must also construct the discrete

transition relation in a way which mimics the behavior of the original hybrid system. Both of these
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points are addressed in the following algorithm. In the first step, discrete modes are constructed

according to the partition defined in Definition 11. The remaining steps define the discrete tran-

sition relation for 1) controlled or disturbance events, 2) human-initiated events, and 3) internal

transitions which arise from the continuous dynamics of the original hybrid systems.

Algorithm 2 Given a hybrid subsystem Hi of the hybrid human-automation system H, a con-

straint set Ci, and an invariant set (Qi,Wi) = φ(Ci), create a discrete event system Ĝi as follows:

1. For each mode p ∈ Qi, uniquely map the continuous state-space (partitioned into 2K cells,

where K = ‖Ind(HumanReach(p))‖ is the number of distinct modes possible after any human-

initiated transition from mode p) to a set of discrete states Q̂p corresponding to the hybrid

state (p, x):

Q̂p = ψ({Wi(p),Wk(HumanReach(p))}), k ∈ Ind(HumanReach(p)) (5)

Here, since Hi has no discrete human input, the only states p ∈ Qi for which HumanReach(p) 6=

∅ are the “exit” modes from Qi.

2. Define the relation R̂i(p̂, σ) for each p̂ ∈ Q̂p, corresponding to the hybrid subsystem transition

q = Ri(p, x, σ), for p, q ∈ Qi, x ∈ X , σ ∈ Σi (i.e. for those controlled or disturbance transitions

to modes within the hybrid subsystem Hp). For ease of notation, denote L
4
= Wi(p) the

invariant set Wi in mode p, M
4
= Wi(q) the invariant set Wi in mode q, P̂

4
= Q̂p the set of

discrete modes which represent the hybrid state (p, x), and Q̂
4
= Q̂q the set of discrete modes

which represent the hybrid state (q, x).

R̂i(p̂, σ) ∈







Sel(Q̂,M) for p̂ ∈ Sel(P̂ ,L)

Sel(Q̂,M) for p̂ ∈ Sel(P̂ ,L)
(6)

Because the reachability analysis of Section 2 ensures that for controlled and disturbance events

in the hybrid system Hi, trajectories that begin in the invariant set in mode p evolve to the

invariant set in the following mode q, in Step 2, the discrete transition relation R̂i is defined

to reflect this behavior for controlled and disturbance events. See Figure 6 for clarification.

3. Define the relation R̂i(p̂, σh) for each p̂ ∈ Q̂p, corresponding to any hybrid subsystem tran-

sitions to modes q ∈ HumanReach(p) 6= ∅, for p ∈ Qi, q ∈ Qk, k ∈ Ind(HumanReach(p)),

(i.e. for those human-initiated transitions to modes in other hybrid subsystems). For ease of
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notation, denote N
4
= Wk(q) the invariant set Wk in mode q.

R̂(p̂, σh) ∈







Sel(Q̂,N ) for p̂ ∈ Sel(P̂ ,N )

Sel(Q̂,N ) for p̂ ∈ Sel(P̂ ,N )
(7)

In Step 3, the discrete transition relation R̂i is defined such that for human-initiated events,

trajectories which begin in the invariant set φ(Ci) in mode p may or may not evolve to

the invariant set in the following mode q. This reflects the user’s prerogative to initiate a

transition—whether or not the system will be in the invariant set in the next mode depends

on the region of the state-space from which the user enacts the switch. See Figure 7 for

clarification.

4. Define the relations R̂(p̂, αq) and R̂(q̂, βq) for p̂, q̂ ∈ Q̂p, corresponding to movement of the

continuous state in one mode with respect to the boundary of the invariant set in the next

mode q ∈ HumanReach(p) 6= 0, for p ∈ Qi, q ∈ Qk, k ∈ Ind(HumanReach(p)) (i.e. internal

transitions not corresponding directly to any discrete transition in Hp). See Figure 7 for

clarification.

R̂i(p̂, αq) = q̂,

R̂i(q̂, βq) = p̂,
with p̂ ∈ Sel(P̂ ,N ) and q̂ ∈ Sel(P̂ ,N ) (8)

The discrete transition relation R̂i is defined such that for internal events, it reflects the

original continuous dynamics that govern the movement between cells of the partition defined

in Definition 11. The controlled event αk occurs when the continuous state exits the region

in which a transition to mode q would be invariance-preserving: x ∈ Wk(q)
αk−→ x ∈ Wk(q).

Conversely, the controlled event βk occurs when the continuous state enters the region in

which a transition to mode q would invariance-preserving: x ∈ Wk(q)
βk−→ x ∈ Wk(q).

The result is Ĝi = (Q̂i, Σ̂i, R̂i), with Q̂i =
⋃

p Q̂p, Σ̂i = Σi, and ˆ(Qi)0 = Q̂p, p = (Qi)0.

The discrete event system Ĝi reflects, by construction, the evolution of hybrid system trajectories

with respect to the hybrid invariant sets.

Proposition 2 The discrete event system Ĝi is invariance-preserving for trajectories whose initial

states are contained in (Q̂inv
i )0 = Sel(Wi(p), Q̂p), p = (Qi)0.

Proof: Proof by induction; see Appendix A.2 for details.
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Figure 6: Discrete abstraction of two-mode
hybrid automaton with one controlled dis-
crete input γ. Both hybrid modes belong
to the same hybrid subsystem Hi, therefore
p, q ∈ Qi. The invariant set is φ(Ci) =
{(p,L), (q,M)}. In the corresponding dis-
crete abstraction, P̂ = {l, l} and Q̂ = {m,m}.

Figure 7: Discrete abstraction of a two-mode
hybrid automaton with human-initiated dis-
crete input σh. The hybrid modes belong to
different hybrid subsystems Hi and Hk, there-
fore p ∈ Qi and q ∈ Qk. The invariant sets
are φ(Ci) = {(p,L)} and φ(Ck) = {(q,N )}. In
the corresponding discrete abstraction, P̂ =
{ln, ln, ln, ln} and Q̂ = {n, n}.

Yellow Interval Example: Consider subsystem Hgreen. With no user-controlled transi-

tions HumanReach(qgreen) = {∅}, the state-space for p = qgreen is partitioned into 21 regions:

{W(qgreen),W(qgreen)}. The abstraction of these two continuous regions is the modes Q̂green =

{w,w}. Previously we constructed the discrete modes Q̂yellow = {wb1a1, wb1a1, wb1a1, wb1a1}.

Since the transition δ from qgreen to qyellow is a disturbance event, we follow Step 2 of Algorithm

2 to determine the transition function in the discrete abstraction. According to Equation (6)

since w = Sel(Q̂green,W(qgreen)) and Q̂yellow = Sel(Q̂green,W(qyellow), the transition relation is

R̂(w, δ) ∈ {wb1a1, wb1a1, wb1a1, wb1a1}.

Now consider mode qyellow. Two transitions are possible, both human-initiated events. If brak-

ing is applied, the hybrid system switches into mode qbrake
yellow; if acceleration is chosen, the hybrid

system switches into mode qaccel
yellow. In the discrete abstraction, these two modes are represented

by {b1, b1} and {a1, a1}, respectively, based on reachability analysis performed earlier. Following

Equation(7) of Algorithm 2, since we know that the mode wa1b1 ∈ Sel(Q̂brake
yellow,B(qbrake

yellow)) is in the

region of the state-space that is “safe” in the next mode, qbrake
yellow, the corresponding relation in the

discrete abstraction is defined as R̂green(wb1a1, σbrake) ∈ Sel(Q̂brake
yellow,B(qbrake

yellow)), which simplifies to

R̂green(wb1a1, σbrake) = b1. Similarly, we can find that R̂green(wb1a1, σbrake) = b1. A total of eight

such transitions are defined for the two user-initiated transitions (σbrake and σaccel) possible from

each of the four modes in Q̂yellow. The result is depicted in Figure 8. Additionally, internal transi-

tions are shown graphically in Figure 8. The transition R̂green(wb1a1, α
yellow
brake ) = wb1a1 corresponds

to the continuous state evolving from a region in which braking would be a safe course of action,
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to one where it would not be safe.

Lastly, consider one of the remaining hybrid modes: qbrake
yellow. No user-initiated transitions are

possible, so we abstract this hybrid mode to 21 discrete modes, Q̂brake
yellow = {b1, b1}. We again look

to Equation (6) of Algorithm 2 to determine the appropriate transition relation in the discrete

abstraction: R̂brake(b1, t ≥ τ) = b2, R̂brake(b1, t ≥ τ) = b2, where Q̂brake
react = {b2, b2}. The discrete

abstraction of the other modes in Hbrake and Haccel proceeds similarly, with Q̂brake
red = {b3, b3},

Q̂accel
yellow = {a1, a1}, Q̂

accel
react = {a2, a2}, and Q̂accel

red = {a3, a3}, and similarly defined transition relations

in the discrete abstraction, as shown in Figure 8.

3.3 Step 3: Connecting systems Ĝi

The third step of Algorithm 1 is to combine the N abstractions Gi into a single discrete event

system Ĝ = (Q̂, Σ̂, R̂).

Definition 13 We define Q̂ =
⋃

i Q̂i, Σ̂ =
⋃

i Σ̂i, and R̂(q̂i, σ) = R̂i(q̂, σ), σ ∈ Σ̂i, q̂ ∈ Q̂i with

i ∈ Ind(Qentry).

Yellow Interval Example: The invariance-preserving discrete abstraction Ĝcar of the hybrid

system Hcar (Figure 1) is shown graphically in Figure 8.

Proposition 3 The discrete event system Ĝ = (Q̂, Σ̂, R̂) with initial modes Q̂0, constructed ac-

cording to the three-step procedure in Algorithm 1 from the hybrid system H = (Q,X , R, f,Σ,U)

with constraint set C ∈ Q×X , is an invariance-preserving abstraction of H.

Proof: Proof by contradiction; see Appendix A.3 for details.

3.4 Using the Discrete Abstraction

An advisory system can then be deduced from the invariance-preserving abstraction Ĝ using existing

discrete reduction techniques, not covered here. See [48, 49, 50, 51] for information on reduction of

finite-state machines, [52, 53, 54, 55, 56] for computational techniques to accomplish discrete-state

reduction, and [17, 18] for application of discrete-state reduction to the problem of interface design.

Using these techniques, we can design an interface, or advisory system, which will maintain the

invariance-preserving properties of the abstraction Ĝ.

In some situations, an interface may already exist, and may be designed by different people

than those who designed the safety control laws for the system. In this case, it is important to

verify that the interface correctly represents the underlying, hybrid system. The authors in [12, 17]
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Figure 8: Discrete event system Ĝcar is the invariance-preserving abstraction of Hcar. In each mode
of the abstraction, the name of the discrete mode is listed in the top line. Listed below are the
continuous regions the discrete mode corresponds to, as shown in Figures 5, 3, and 4 as appropriate.

developed a method to formally verify that one discrete system (such as an interface) adequately

represents another discrete system (such as a “truth” model of a system). Using these methods, the

existing interface can be verified against the invariance-preserving discrete abstraction developed

here, according to the method in [12, 17]. (We demonstrated this on the autoland example in [15].)

The same authors have used techniques for state reduction of deterministic, incompletely-

specified finite state machines, as a tool for interface design [18]. Given a finite state machine which

represents a “truth” model of the actual system, and an output function defined for every state, the

resultant reduced model, created through state reduction, represents the interface for the original

finite state machine. This technique can be extended for the types of nondeterministic systems

particular to the abstraction technique presented here, which may contain far more information

than the user needs in order to accurately interact with the system.

Yellow Interval Example: An interface for the yellow interval advisory system, constructed

through discrete state-reduction techniques, is shown in Figure 9. We associate the modes of Ĝcar

in Figure 8 to five advisories:
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Unsafe

Accelerate or
Brake

Continue Driving

Accelerate

Slow to Stop

Figure 9: Interface indications for the dashboard device, as determined from Figures 4, 3, 8.

“Continue Driving” {w0, a3}

“Slow to Stop” {wb1a1, b1, b2, b3}

“Accelerate” {wb1a1, a1, a2}

“Accelerate or Brake” {wb1a1}

“Unsafe” {wb1a1, b1, b2, b3, a1, a2, a3}

The advisory system provides the reduced set of control instructions to guide the user suc-

cessfully in navigating the intersection, avoiding a red light violation. The process of interface

design through discrete state reduction is closely related to the topic of discrete observability: this

relationship is investigated in [57].

4 Application: Automatic Landing of a Large Civil Jet Aircraft

Autoland systems are complex, safety-critical systems, subject to stringent certification criteria [58].

Modeling the aircraft’s behavior, which incorporates logic from the autopilot as well as inherently

complicated aircraft dynamics, results in a high-dimensional hybrid system with many continuous

and discrete states. Naturally, only a subset of this information is displayed to the pilot. We want

to design a cockpit interface which provides the pilot with enough information so that the pilot can

safely land or safely go-around. In previous work [15, 59] we introduced a model of an autoland

system for a large civil jet aircraft which made many simplifying assumptions regarding the pilot’s

input. This work demonstrated the use of a hybrid reachability tool [27, 26] to aid in the problem

of user-interface verification. We now introduce a more realistic model of the autoland scenario,

and demonstrate the general method developed in this article to create an invariance-preserving

abstraction. The new model incorporates the multitude of options a pilot has at his disposal in

the event of an aborted landing, known as a go-around. The autoland example is derived from

publicly available aerodynamic data and actual flight management systems onboard a commercial

jet aircraft.

During a typical autoland, the pilot and the autopilot share control over the aircraft. The pilot
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ẋ = f1(x, u)

σF

γ2 σUP

Hflare

H
(4)
togaH

(3)
toga

H
(1)
toga

H
(2)
toga

Figure 10: Autoland/go-around automaton Hautoland. The mode labels refer to the particular
combination of mode-logic (i.e. desired trajectory the aircraft autopilot is tracking) as well as the
dynamics of the particular mode. The first part of the TO/GA maneuver (Toga-Fxx-1) occurs
with input T = Tmax, the second part of the TO/GA maneuver (Toga-Fxx-2) occurs with input
T ∈ [Tmin, Tmax]. The automatic transition γ1 occurs when h = 0, γ2 occurs when ḣ ≥ 0, and γ3

occurs when h ≥ halt.

controls the aircraft’s flaps setting and landing gear, which affect the aircraft’s aerodynamics. The

flaps can be set at Flaps-20, Flaps-25, or Flaps-30, in increasing deflections; the landing gear can

be either up or down. The autopilot controls the thrust and angle of attack in order to guide

the aircraft to a smooth touchdown with an appropriate descent rate—this is known as a “flare”

maneuver.

However, if for any reason the pilot or air traffic controller deems the landing unacceptable

(debris on the runway, a potential conflict with another aircraft, or severe wind shear near the

runway, for example), the pilot must initiate a go-around maneuver. The pilot initiates a go-around

maneuver at any time before the aircraft touches down, by toggling the “TO/GA” (Take-Off/Go-

Around) lever. We therefore model the decision to go-around as a human-initiated event, σTOGA.

We model the nonlinear longitudinal dynamics of a large civil jet aircraft by ẋ = fi(x, u), in

which the state x = [V, γ, h] ∈ R
3 includes the aircraft’s speed V , flightpath angle γ, and altitude
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Dynamics CL0 CD0 K Flaps Setting Landing Gear

ẋ = f1(x, u) 0.4225 0.024847 0.04831 Flaps-20 Down
ẋ = f2(x, u) 0.7043 0.025151 0.04831 Flaps-25 Down
ẋ = f3(x, u) 0.8212 0.025455 0.04831 Flaps-30 Down
ẋ = f4(x, u) 0.4225 0.019704 0.04589 Flaps-20 Up
ẋ = f5(x, u) 0.7043 0.020009 0.04589 Flaps-25 Up
ẋ = f6(x, u) 0.8212 0.020313 0.04589 Flaps-30 Up

Table 1: Aerodynamic constants for autoland modes.

Mode V [m/s] γ [degrees] α [degrees] T [N]

Flare [55.57, 87.46] [−6.0◦, 0.0◦] [−9◦, 15◦] 0
Toga-F30-1 [55.57, 87.46] [−6.0◦, 0.0◦] [−9◦, 15◦] Tmax

Toga-F30-2 [55.57, 87.46] [0.0◦, 15.7◦] [−9◦, 15◦] [0, Tmax]
Toga-F20-1 [63.79, 97.74] [−6.0◦, 0.0◦] [−8◦, 12◦] Tmax

Toga-F20-2 [63.79, 97.74] [0.0◦, 13.3◦] [−8◦, 12◦] [0, Tmax]
Altitude [63.79, 97.74] [−0.7◦, 0.7◦] [−8◦, 12◦] [0, Tmax]

Table 2: State bounds for autoland modes of Hautoland.

h (see [60, 44]):








mV̇

mV γ̇

ḣ









=









−D(α, V ) + T cosα−mg sinγ

L(α, V ) + T sinα−mg cos γ

V sin γ









(9)

We assume the control input is u = [T, α], with aircraft thrust T and angle of attack α. The

aircraft has mass m = 190000 kg, pitch HumanReach = α + γ, and gravitational acceleration is

g = 9.81 m/s2. The aircraft’s lift L(α, V ) = 1
2ρV

2SCL(α) and drag D(α, V ) = 1
2ρV

2SCD(α)

depend on air density ρ = 1.225 kg/m3, wing surface area S = 427.80 m2, and the coefficients

of lift and drag, CL(α) = CL0 + CLαα and CD(α) = CD0 + KC2
L(α). The constants CL0 , CD0 ,

and K were determined for the particular combinations of flap settings and landing gear in an

autoland/go-around scenario [60, 61, 62, 63, 64] (Table 1). CLα = 5.105 in all modes.

The initial state is the Flare mode (Figure 10), in which the flaps are at Flaps-30 and the thrust

is fixed at idle. During a normal automatic landing, upon touchdown, the aircraft switches to

Rollout mode. We model this event through γ1, which occurs when h = 0. We do not model the

dynamics of the aircraft as it rolls along the runway.

If a go-around is required, the pilot immediately changes the flaps to Flaps-20 and the au-

tothrottle forces the thrust to Tmax. When the aircraft obtains a positive rate of climb, the pilot

raises the landing gear, and the autothrottle allows T ∈ [0, Tmax]. The user-controlled transition

σF occurs when the pilot selects Flaps-20, and the automatic transition γ2 occurs when ḣ ≥ 0.

The aircraft continues to climb to the missed approach altitude, halt, then automatically switches
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Subsystem V [m/s] γ [degrees] h [m]

Hflare [50, 100] [-8, 17] [-5, 20]

H
(i)
toga [50, 100] [-8, 17] [-5, 20]

Table 3: Computational domain for autoland hybrid subsystems.

into an altitude-holding mode, Altitude. We model this event as an automatic transition γ3 which

occurs when h ≥ halt.

While standard procedure calls for a flap change simultaneously when the go-around is initiated,

the pilot may complete the flap change after toggling the TO/GA lever. While standard procedure

indicates a strict order of events, in practice the pilot has more flexibility. For example, the pilot

may raise the landing gear before or after obtaining a positive rate of climb. After initiating a go-

around, three changes must occur, but can occur in any order: 1) the pilot changes the flaps from

Flaps-30 to Flaps-20 (σF), 2) the pilot raises the landing gear (σUP), and 3) the aircraft obtains a

positive rate of climb (γ2).

State and input bounds due to constraints arising from aircraft aerodynamics and desired

aircraft behavior, are summarized in Table 2 [64, 65]. Bounds on γ and T are determined by the

desired maneuver [66, 67], with Tmax = 686700 N. Additionally, at touchdown, HumanReach ∈

[0◦, 12.9◦] to prevent a tail strike, and ḣ ≥ −1.829 m/s to prevent damage to the landing gear.

These constraints, in addition to those listed in Table 2, form the constraint set Cautoland.

4.1 Reachability Analysis of Hybrid Subsystems

We separate the hybrid model Hautoland into five hybrid subsystems with no human-initiated events,

as shown in Figure 10. We perform standard reachability analysis on each system using the level-set

based tool [27, 26]. Computationally, automatic transitions are smoothly accomplished by modeling

the change in dynamics across the switching surface as another nonlinearity in the dynamics.

Additionally, we assume in H
(i)
toga that if the aircraft exits the top of the computational domain

(h = 20 m) without exceeding its flight envelope, it is capable of safely achieving Altitude mode.

The computational domain is indicated in Table 3.

Invariant sets are computed with a level-set based reachability tool [27]. While coarse com-

putations can be accomplished under an hour, computations on a finer grid (n = 100) such as

those shown in Figures 11, 12, and 13 can take as long as a day. Figure 11 depicts the constraint

set (Wflare)0 (shown as the wireframe box) as well as the invariant set Wflare (solid). Figure 12

depicts the constraint set (W
(4)
toga)0 (wireframe box), as well as the invariant set W

(4)
toga (solid). The

computed invariant set W
(2)
toga is indistinguishable from W

(4)
toga since the dynamics ẋ = f1(x, u) differ
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Figure 11: Constraint set (Wflare)0 (wireframe
box) and invariant set Wflare (solid).

Figure 12: Constraint set (W
(2)
toga)0 (wire-

frame box) and invariant set W
(2)
toga (solid),

which are computationally indistinguishable

from the constraint set (W
(4)
toga)0 and invari-

ant set (W
(4)
toga), respectively.

from ẋ = f4(x, u) only slightly, in the drag term CD0 . (See Figure 10 and Table 1). Figure 13

depicts the constraint set (W
(1)
toga)0 (wireframe box), as well as the invariant set W

(1)
toga (solid). The

computed invariant set W
(1)
toga is indistinguishable from W

(3)
toga since the dynamics ẋ = f3(x, u) and

ẋ = f6(x, u) also differ only slightly, in CD0 .

The intersections of these sets must be computed for the pilot to be able to safely control the

aircraft. For example, for the pilot to safely switch from Toga-F30-1 or Toga-F30-2 to Toga-F20-1 or

Toga-F20-2, respectively, by enacting σF, the pilot must have information at his disposal regarding

the intersection of W
(3)
toga and W

(4)
toga. The intersections of W

(1)
toga and W

(3)
toga; of W

(2)
toga and W

(4)
toga; of

W
(1)
toga, W

(2)
toga, and W

(3)
toga; and of Wflare and W

(1)
toga must be computed.

The intersection of W
(3)
toga and W

(4)
toga in Figure 14 is the set of states from which the aircraft can

safely remain in H
(3)
toga and from which the aircraft is safe to switch to H

(4)
toga. States in W

(3)
toga which

are outside of this intersection are states from which the aircraft can safely remain in H
(3)
toga, but

will become unsafe if the pilot switches the aircraft to H
(4)
toga (by raising the flaps from Flaps-30 to

Flaps-20). Similarly, the intersection of Wflare and W
(1)
toga in Figure 15 is the set of states from which

the aircraft can safely land, and alternatively, from which the aircraft can safely switch into the

first Toga mode. The analysis shows that there are regions from which a safe landing is possible,

but a safe go-around is not: for x /∈ (Wflare ∩W
(1)
toga) in Flare mode, the aircraft will become unsafe

when the pilot initiates a go-around by enacting σTOGA. This region is necessary for the aircraft to

be able to complete a landing, however is problematic in the event of a go-around. The region in

Flare from which a safe go-around is possible is considerably larger than the result in [15], shown in

Figure 16: expanding the system to account for all user options results in an increased safe region
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Figure 13: Constraint set (W
(1)
toga)0 (wire-

frame box) and invariant set W
(1)
toga (solid),

which are computationally indistinguishable

from the constraint set (W
(3)
toga)0 and invari-

ant set W
(3)
toga, respectively.

Figure 14: The invariant sets W
(3)
toga (dark

mesh (blue)), W
(4)
toga (light mesh (green)), and

their intersection (solid (red)). The intersec-
tion represents the set of continuous states in

W
(3)
toga from which the pilot can safely change

the flaps (σF).
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Figure 15: The intersection Wflare ∩ W
(1)
toga

(light solid (cyan)) represents the set of con-
tinuous states in Flare in which the pilot can
safely enact the transition σTOGA.

Figure 16: In a simplified version of Hautoland

[15], σTOGA and σF are assumed to be concur-
rent. This results in a significantly reduced
region in Flare from which a safe go-around is
possible.
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Figure 17: Reduced version of discrete event system Ĝautoland for autoland/go-around maneuver.

of operation, since the pilot can allow the aircraft to gain sufficient speed in Toga-F30-1 before

changing to Flaps-20.

4.2 Invariance-Preserving Discrete Abstraction

Using the reachability computations, we can now create an invariance-preserving discrete abstrac-

tion of Hautoland. In most commercial aircraft, the low-level control is performed by the autopilot,

which has authority over small control surface movement. The details of the low-level control are

hidden from the pilot, who anticipates system behavior by understanding the behavior of each au-

topilot mode. We therefore assume an automated controller enforces u ∈ u∗(x) along the boundary

of the controllable sets, but leave it to the pilot to enforce any discrete switches necessary to main-

tain safety. By doing so, we mimic the supervisory role pilots have in highly automated aircraft,

including the prerogative not to enforce a recommended switch.

In previous work [15], we used the discrete composition method of Heymann and Degani [17, 18]

to determine whether or not a given interface adequately and unambiguously represents Ĝautoland,

the invariance-preserving abstraction of Hautoland. The hybrid model and discrete interface in [15]

were both simplified systems with a relatively small number of discrete modes. In general, more

complex systems (such as in Figure 10) will result in discrete systems with a much higher number of

discrete modes. The mode explosion which will result from the abstraction of Figure 10 is necessary

to determine the interaction of the user’s actions and maintenance of the aircraft within its flight

envelope; it also motivates the use of a method, as in [17, 18], for the verification and design of
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duced version of Ĝautoland (Figure 17). The pilot’s presumed and recommended actions are indicated
in each mode. Events which will transition the system to unsafety are struck through.

interfaces too large to be accurately studied in an ad-hoc way.

4.3 Results

The discrete abstraction Ĝautoland has 111 states. With the information contained in the abstracted

model Ĝautoland, it is possible to determine what information the pilot needs in order to steer the

aircraft to safe regions of operation. We reduce Ĝautoland using discrete state reduction techniques

(Figure 17), and propose an interface for Hautoland by relabeling the modes of this reduced automa-

ton to indicate possible actions to the pilot. The result, Ĝinterface, is shown in Figure 18.

We validated the use of the invariance-preserving abstraction through tests in in an actual

commercial aircraft flight simulator. Using the abstraction method as a tool for user-interface

verification, we successfully predicted problematic behaviors in human-automation interaction.

5 Conclusions

Human-automation systems are ubiquitous, from common consumer devices (an indoor thermostat)

to extremely complex, specialized systems (modern aircraft autopilots). As the use of human-

automation systems inevitably grows, verification of how users interact and supervise such systems

becomes crucial. This is especially true when the applications involve safety-critical, expensive, or

high-risk systems, but is also applicable to simpler, less-critical systems which can cause pointless
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frustration. While some systems can be reasoned through in an ad-hoc way, systems which have

nontrivial continuous dynamics or many modes require a methodical approach.

We presented a method for the synthesis of an invariance-preserving abstraction of a hybrid

human-automation system. The method presented here involves three steps: 1) separation of the

hybrid system into hybrid subsystems with no discrete human inputs, 2) abstraction of each hybrid

subsystem into a discrete system on the basis of information procured through hybrid reachability

analysis and controller synthesis of each hybrid subsystem, and 3) connection of each of the resultant

discrete subsystems into one discrete event system which is an invariance-preserving abstraction

of the original hybrid system. The key contribution of this work is a systematic way to create an

abstraction of hybrid systems based on a hybrid reachability result: the resultant discrete system

is one for which existing interface analysis, verification, and design techniques can be implemented.

The resulting discrete event system preserves information regarding the invariance of the un-

derlying hybrid system and the potential effect of the human’s input on maintaining invariance.

Applying discrete state reduction techniques to this invariance-preserving abstraction results in a

reduced discrete event system (interface) with which the human can effectively interact. The advan-

tage of using this technique is that interfaces designed through this method will contain information

about the invariance of the underlying hybrid system – this information would not otherwise have

been incorporated through standard discrete event system modeling and analysis techniques. In

safety-critical systems, such as civil jet aircraft automation, information about the effect of the

human’s actions in system invariance is vital for safe operation. In autoland/go-around scenario,

this information results in a interface which provides the minimal information necessary for the

pilot to safely complete a go-around maneuver. The two examples presented, an add-on dashboard

device for yellow interval guidance and an aircraft autopilot, served to demonstrate the abstraction

algorithm and its application to a wide range of problems.
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A Appendix

A.1 Proposition 1

Proof: Proof by contradiction. Assume there exists a trajectory with initial state (q0, x0) ∈

φ(Ci) = (Qi,Wi) which is not user-invariant. From Definition 3, this means that either a) (q0, x0) /∈

Ci, or b) the trajectory may exit Ci under disturbance or controlled inputs. Since φ(Ci) ⊆ Ci, we

know (q0, x0) ∈ Ci which contradicts the first point (a). In addition, since all trajectories which

begin in φ(Ci), will by construction (Definition 10), remain in Ci under controlled and disturbance

inputs, this contradicts the second point (b).

A.2 Proposition 2

Proof: Proof by induction: 1) Begin with the k = 0 mode in the initial set q0 ∈ (Q̂inv
i )0. By

definition, the initial set contains only modes corresponding to hybrid states (q0, x) ∈ Wi within

the invariant set. 2) Consider a generic state qk resultant from a string of k events. a) For any

controlled or disturbance input σ for which Ri(qk+1, x, σ) = (qk, x), implementing the control law

arising from the reachability calculation assures that (qk, x) ∈ Wi −→ (qk+1, x) ∈ Wi, and equation

(6) assures that this is reflected in the abstracted system Gi, as well. According to the discrete

transition function formed in equation (6), qk ∈ Sel(Wi(qk), Q̂qk) implies that qk+1 ∈ R̂(q0, σ) ∈

Sel(Wi(qk+1), Q̂qk+1
), so that the set of discrete modes corresponding to (qk+1, x) are contained

within the discrete representation of Wi. b) For any human input σh such that R(qk, x, σh) =

(qk+1, x), the hybrid state may transition to a state outside of the invariant set (qk+1, x) ∈ {Wj ,Wj},

depending from which regions of the hybrid state space the human enacts σh, and equation (7)

reflects this same phenomenon in the abstracted system Gi as well. Similarly, in the abstracted

system Gi, although qk ∈ Sel(Wi(qk), Q̂qk), qk ∈ {Sel(Wi(qk+1), Q̂qk+1
), Sel(Wj(qk+1), Q̂qk+1

)}, as

indicated in equation (7): discrete trajectories are allowed to transition into discrete states which

correspond to the complement of the invariant set.

From the two above points, we can conclude that trajectories beginning from Qinv
i will remain

in discrete modes corresponding to the hybrid region Wi for any event strings consisting only of

controlled or disturbance inputs. For any discrete human input to a state outside ofHi, the resultant

discrete state will not necessarily correspond to a hybrid state within Wj . ThusGi with initial mode

Qinv
i accepts only invariant or user-invariant trajectories, and is therefore invariance-preserving.
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A.3 Proposition 3

Proof: Proof by contradiction: Assume that Ĝ accepts trajectories which are not user-invariant.

Then there exists a trajectory with initial state q ∈ Q0 which is not invariant and not user-invariant.

Therefore this trajectory must enter a discrete state corresponding to W, where W =
⋃

iWi ⊆ C,

Wi = φ(Ci) for each subsystem Hi, i ∈ {1, ..., n}, through either a controlled or disturbance discrete

input.

From Proposition 2, we know that each subsystem Ĝi is an invariance-preserving abstraction

of its corresponding hybrid subsystem Hi for trajectories whose initial states are contained within

(Q̂inv
i )0. From Definition 2, this means that only invariant or user-invariant trajectories are accepted

by Ĝi. This contradicts the existence of the trajectory assumed above, which is neither invariant

nor user-invariant.

In addition, the only transitions possible between subsystems (i.e. from modes in Ĝi to modes

in Ĝj) are discrete human inputs. Trajectories corresponding to hybrid states in the invariant

set Wi can transition into modes corresponding to hybrid states outside the invariant set Wj ,

as allowed by user-invariant trajectories. Therefore all trajectories whose state may transition

from one subsystem to another subsystem are user-invariant. This contradicts the existence of the

trajectory assumed above, which is neither invariant nor user-invariant.
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