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Search and rescue missions can be efficiently and automatically performed by small,
highly maneuverable unmanned aerial vehicle (UAV) teams. The search problem is com-
plicated by a lack of prior information, nonlinear mapping between sensor observations and
the physical world, and potentially non-Gaussian sensor noise models. To address these
problems, a distributed control algorithm is proposed, using information theoretic meth-
ods with particle filters, to compute optimal control inputs for a multi-vehicle, coordinated
localization of a stationary target. This technique exploits the structure of the probability
distributions of the target state and of the sensor measurements to compute the control
inputs that maneuver the UAVs to make observations that minimize the expected future
uncertainty of the target state. Because the method directly uses the particle filter state
and an accurate sensor noise model to compute the mutual information, it is no longer
necessary to discard information by using linear and Gaussian approximations. To ensure
safety of the vehicles, the algorithm incorporates collision avoidance and control authority
constraints. The resulting information theoretic cost calculation is coupled amongst the ve-
hicles and becomes prohibitive as the size of the UAV team becomes large. Therefore, single
vehicle and pairwise approximations to the cost function are used that greatly reduce the
computational burden and allow for development of a distributed algorithm for real-time
optimization of vehicle trajectories. Simulation results are shown for a bearings-only sensor
model with multiple vehicles. Initial flight tests of the Stanford Testbed of Autonomous
Rotorcraft for Multi-Agent Control (STARMAC) show the feasibility of implementation
of this algorithm on the quadrotor testbed and in real world situations.

I. Introduction

Small unmanned aerial vehicle (UAV) teams are excellent candidates for improving efficiency and reducing
risk in search and rescue missions in unknown or dangerous environments. By automating the search and
localization process, and by reducing the need to place rescuers in harm’s way, it is possible to improve
speed, reliability and safety of searches over current methodologies.

The deployment of small UAV teams offers certain advantages over both individual vehicles and vehicles
of larger size. Additional vehicles add redundancy to a sensing system, and inter-vehicular communication
enables multiple simultaneous vantage points for search and localization. Small vehicles can be more easily
and cheaply deployed than large ones, and can maneuver effectively in confined spaces. Size restrictions
necessarily affect payload and range capabilities, but for applications in a finite domain that is not easily
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accessible, the small multi-vehicle platform can be quite advantageous for rescuers. In particular, the ma-
neuverability and speed of small rotorcraft enable their use in wilderness areas over uneven and forested
areas, as well as in and around buildings for fire or natural disaster rescue in urban environments.

Figure 1. A potential search team member: a quadrotor unmanned aerial vehicle (UAV), STARMAC II.

Avalanche rescue is one particular search and rescue scenario that lends itself well to solutions using a
small aerial vehicle team. It is of critical importance to find buried victims as quickly as possible, as survival
rates drop dramatically after 15 minutes,1,2 and the terrain is often littered with large debris making ground-
based autonomous search challenging. The search is facilitated by use of a rescue beacon, which emits a
magnetic field that permeates ice, snow, trees and the body with equal strength, enabling detection even
when a skier is buried deep beneath the surface. Rescue beacons are standard apparel whenever entering
an avalanche zone. Current search methodologies involve a rescuer using a receiver with direction indication
to follow the local magnetic field lines to the victim. Search times for this rehearsed localization technique
can vary dramatically depending on user ability and terrain. It is possible for a team of aerial vehicles
to considerably improve upon these techniques. Vehicles equipped with beacon receivers can measure the
strength and direction of the magnetic field lines and automate the search and localization task, although
the resulting measurements are highly non-linear, and measurement noise cannot be accurately modeled as
Gaussian.

Cooperative search using mobile sensor networks has been previously approached in numerous manners.
Recently, a method for cooperative search for maxima in a sensed scalar field using the gradient3 of the field
was proposed, as well as using a Newton step approximation.4 Grid cell based search using probability-of-
detection models5 can be used, and a scalable algorithm for mobile sensor network search using a hexagonal
cell discretization6 exists as well. Cost function definitions based on the expected information gain in
an Extended Kalman Filter (EKF) have been previously proposed, as well.7 Similarly, many distributed
optimization algorithms8 have been proposed for inter-connected constraint satisfaction in multi-vehicle
testbeds, including dual decomposition methods9 and primal methods using penalty functions.10

Given the proposed search application, the need exists for algorithms that manage teams of capable
search vehicles, so that many measurements can quickly be made from a variety of well chosen locations.
Such algorithms must be scalable to multiple vehicles, and should take advantage of processor capabilities on
all vehicles in a distributed manner while not relying on any one vehicle to ensure either safety or efficiency of
the operation. Similarly, such algorithms must seek to solve the search problem as quickly as possible, while
guaranteeing collision avoidance, and should result in vehicles that seek to maximize the gain in information
from each measurement made. It is also necessary to incorporate the ability to manage non-linear dynamics
for vehicle control as well as non-linear measurement models as are encountered in real world sensors, and
hence to manage non-Gaussian probability distributions for target estimation.

In order to address the goals of the search problem, this paper proposes a distributed control algorithm
using the penalty function approach. It uses information theoretic methods with particle filters to compute
optimal control inputs for a multi-vehicle, coordinated localization of a stationary target. This technique
exploits the structure of the probability distributions of the target state and of the sensor measurements. The
resulting control inputs maneuver the UAVs such that they make observations that minimize the expected
future uncertainty of the target state.

The proposed method directly uses the particle filter state and the best available sensor noise model
to compute the mutual information. As a result, it is no longer necessary to discard information by using
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linear and Gaussian approximations. To ensure safety of the vehicles, the algorithm incorporates collision
avoidance and control authority constraints.

The resulting information theoretic cost calculation is coupled amongst the vehicles and becomes pro-
hibitive as the size of the UAV team becomes large. Therefore, single vehicle and pairwise approximations
to the cost function are used that greatly reduce the computational burden and allow for development of a
distributed algorithm for real-time optimization of vehicle trajectories.

These techniques are demonstrated in simulation for a bearings-only sensor, with various configurations
of multiple vehicles. This algorithm is currently being implemented on an autonomous quadrotor aircraft
testbed known as STARMAC, the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control.

This paper proceeds as follows. Section II formalizes the problem definition and defines an optimization
goal for the multi-vehicle distributed search problem. The adaptation of an information-theoretic cost
function definition is developed in Section III, along with two approximation techniques that significantly
reduce the computational complexity of the resulting optimization, permitting the team size to be increased.
A centralized optimization problem is formulated in Section IV, and a distributed algorithm is presented to
maintain team flexibility and ensure coordination without the need for a central command authority. Major
advances to the STARMAC testbed are described in Section V and finally, both simulation results and early
testbed flight results are presented in Section VI.

II. Problem Formulation

This section defines the nomenclature used throughout the paper, and begins with a description of the
vehicle and measurement models. Then, an intuitive search problem formulation is presented whose solution
motivates the work addressed in subsequent sections.

A. Dynamics and Measurements

Consider a set of nv vehicles carrying sensors which can be used to localize a target in the target state search
domain, Θ. The location of the target, θ ∈ Θ ⊂ R

nθ , is unknown to the search vehicles and is assumed to be
stationary. It is straightforward to relax this assumption, through consideration of a process model for the
specific target.11 A common prior distribution, p0(θ), is provided to the vehicles, based on any information
available a priori.

The vehicle state for the ith vehicle at time index, t, is represented by x
(i)
t ∈ R

ns , where ns is the number
of vehicle states. The discrete time dynamics are given by

x
(i)
t+1 = f

(i)
t (x

(i)
t ,u

(i)
t ) (1)

where u
(i)
t ∈ U

(i) ⊂ R
nu is the set of nu control inputs for the ith vehicle, and U (i) is the domain of allowable

control inputs. The function, f
(i)
t : R

ns × R
nu → R

ns , models the state update over time step ∆.
In order to ensure safe operation of the vehicles, a minimum separation is required between all vehicles

at all times. Let x
(i)
t be the subset of the ith vehicle’s states that correspond to its position, and let d̄ be the

minimum distance requirement. Then, collision avoidance constraints can be defined as,

||x
(i)
t − x

(j)
t || ≥ d̄ ∀ j ∈ nv, j 6= i (2)

Sensor measurements for the ith vehicle, z
(i)
t ∈ Z

(i) ⊂ R
nz , are taken at a fixed rate of 1

∆ . The domain

of possible observations is Z(i), and the dimension of each observation is nz. The measurements are given
by the measurement model,

z
(i)
t = h

(i)
t (x

(i)
t , θ, η

(i)
t ) (3)

The observation noise is η
(i)
t ∈ R

nη with known distribution, η
(i)
t ∼ pt(η

(i)). The noise distribution need not
be Gaussian, and may also include noise related to vehicle position estimation. The problem formulation

admits a broad class of measurement functions, as h
(i)
t : R

ns × R
nθ × R

nη → R
nz could be a non-linear or

even discontinuous mapping of the states and measurement noise onto the observation space. It is assumed
that each vehicle knows the measurement model of all other sensors.

The vehicles are assumed to be equipped with communications equipment that enables full connectivity
over a common data channel. This assumption ensures that each vehicle can incorporate the measurements
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made by all other vehicles in the estimation process at each time step. Such an assumption is reasonable in
light of the widespread availability of 802.11b wireless communications devices, and is modeled on such a
network being used on the STARMAC testbed.

B. Search Problem Goal

Each vehicle, i, maintains its own minimum mean square error (MMSE) estimate of the current target state,

θ̂
(i)
t ∈ R

nθ . The estimate is characterized at time t by the posterior distribution computed by each vehicle,
pt(θ

(i))a, based on all observations that vehicle has made or received, via the communication channel, up to
that time.

The main goal of a multi-vehicle search team is to minimize the total time to localize a target within
a desired region, with a given likelihood. Adapting this goal to a single time epoch, control inputs for
the nv mobile sensors are selected which, from the perspective of the ith vehicle, maximize the a posteriori

probability that the estimate of the target state, θ̂
(i)
t , is within a domain, D ⊆ R

nθ , surrounding that estimate.
Because the target state distribution, maintained at each vehicle, is determined using all observations from
all aircraft, the distributions at each aircraft can be assumed to be nearly identical. The multiple mobile
sensor optimal control problem can be defined, from the ith vehicle’s perspective, as the maximization of the
expectation of the probability over the future observations,

Centralized Search Goal:

max
ut∈U

Ezt+1

{
pt+1|t,t+1(θ

(i) ∈ D|θ(i), z)
}

subject to Equation (1, 2, 3)
(4)

where the omission of a superscript on any indexed variables implies that all member vehicles of that indexed
variable are included. For instance, ut is the set of control input vectors at time t for all vehicles. This
optimization seeks to reduce target estimate uncertainty by optimally selecting subsequent vehicle control
inputs for all vehicles. The centralized search goal cost function seeks to reward the addition of information
from subsequent sensor measurements, which in turn reduces the uncertainty of the target state distribution.

III. Information Theoretic Cost Formulation

This section proposes an information-theoretic framework for solving the search problem proposed in
Equation (4). First, the underlying components of the search problem are analyzed. The connection is
made to the information-theoretic concept of mutual information as a utility function. This probabilistic
quantity can be maximized in expectation. Next, the method of representing the target state probability
distribution function as a particle set is explained. This method is capable of handling the nonlinear mapping
between sensor models and the target state. The method of computing information-theoretic quantities with
a particle set representation is developed, and two approximations are given to keep the computation of
these quantities computationally tractable as the number of vehicles in a team increases. This allows the
additional vehicles to efficiently contribute to team performance.

A. Global Cost Function Formulation

Onboard the vehicles, sensors make observations at a fixed rate, with the primary goal of minimizing the
search time. Therefore, the goal could also be stated as controlling sensor locations to minimize the expected

number of future observations necessary to ascertain the target’s state, as defined by Equation (4). A set of
observations by nv vehicles can be interpreted, in an information-theoretic sense, as a code word, with an
alphabet comprised of all possible quantized outputs of the nz sensors on the nv vehicles. These codewords
encode the the target state, which is represented computationally by an alphabet of a finite number of bits.

aThe subscript of probability distribution functions indicates the time steps of the random variable arguments. For instance,
pt+1|t,t+1(a|b, c; d) is the distribution of random variable a at time t + 1 conditioned on random variables b at time t and c at
time t + 1, parameterized by d.
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Therefore, to minimize the expected number of remaining observations is to seek to maximize the expected
log-likelihood over future observations of the posterior distribution, as derived by Shannon.12

In order to compute the posterior probability distribution following an observation, assuming that the
target state is the complete state of the target, and assuming time independence of observation noise, Bayes’
Rule can be used,

pt+1(θ
(i)) = pt,t+1(θ

(i)|z) =
pt(θ

(i))pt+1|t(z|θ
(i))

∫

Θ

pt(θ(i))pt+1|t(z|θ(i))dθ(i)
(5)

Information-theoretic values are defined to quantify the expected log-likelihood of a distribution. The
quantities used here are defined by the equations13

H(θ
(i)
t ) = −

∫

θ∈Θ

pt(θ
(i)) log pt(θ

(i))dθ (6)

H(θ
(i)
t |zt+1) = −

∫

θ∈Θ
z∈Z

pt,t+1(θ
(i), z) log pt|t+1(θ

(i)|z)dθdz (7)

I(zt+1; θ
(i)
t ) =

∫

θ∈Θ
z∈Z

pt,t+1(θ
(i), z) log

pt,t+1(θ
(i), z)

pt(θ(i))pt+1(z)
dθdz (8)

where H(θ
(i)
t ) is the entropy of the target state distribution, H(θ

(i)
t |zt+1) is the conditional entropy of

the distribution, the expected entropy of the target state when conditioning with zt+1, and I(θ
(i)
t ; zt+1)

is the mutual information between the distributions of the target state and the sensors. The entropy of a
probability distribution can be interpreted as the uncertainty of that distribution. Large entropy implies that
the probability of the distribution’s argument being contained within an any small subset of the distribution’s
domain is low. The conditional entropy is the expected entropy of a distribution after conditioning it with
another distribution. The mutual information can be interpreted as a measure of the expected divergence

(the Kullback-Liebler divergence) between the independent and joint distributions of θ
(i)
t and zt+1. It is

large when two distributions have large interdependence, and zero when they are independent.
The current control inputs, ut, and vehicle states, xt, influence the future observations, zt+1, through

Equations (1) and (3). To minimize the future uncertainty of the target state distribution, one minimizes,
with respect to ut, the expected entropy of pt+1(θ

(i)), after conditioning on the distribution of the next
observation. The conditional entropy of the target state distribution13 expands as

H(θ
(i)
t |zt+1)

︸ ︷︷ ︸

posterior
uncertainty

= H(θ
(i)
t )

︸ ︷︷ ︸

prior
uncertainty

− I(zt+1; θ
(i)
t )

︸ ︷︷ ︸

observation
information

(9)

This equation can be derived by taking the log-likelihood of both sides of the Equation (5), Bayes
rule. The expected uncertainty of the posterior is then the prior uncertainty, reduced by the observation
information (the mutual information of the target state distribution with the observation distribution for
the next time step). Note that H(θt|zt+1) is the only the expected uncertainty of the target state following
an observation. The actual uncertainty could be much more or much less, depending on the noisy value
of zt+1 that is actually observed. Looking at the first part of the above equation, the prior uncertainty is
independent of the future control inputs. Thus, to minimize the expected posterior uncertainty, one must
maximize the observation information with respect to the control input. The observation information is
given by

I(zt+1; θ
(i)
t )

︸ ︷︷ ︸

observation
information

= H(zt+1)
︸ ︷︷ ︸

observation
uncertainty

− H(zt+1|θ
(i)
t )

︸ ︷︷ ︸

conditional
observation uncertainty

(10)

Thus, minimizing the expected posterior uncertainty of the target state distribution is equivalent to
maximizing the difference between the joint observation uncertainty and the joint conditional observation
uncertainty. That is, the joint observation uncertainty should be as high as possible while the joint conditional
observation uncertainty should be as low as possible. The joint observation uncertainty is the uncertainty that
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any particular observation will be made. In other words, to maximize this quantity is to maneuver such that
the vehicles expect to make observations for which they are most uncertain what the resulting measurement
will be. The conditional observation uncertainty is the uncertainty that any particular observation will be
made given the target state’s probability distribution. This is the expected uncertainty of their sensor model.
In other words, to minimize this quantity is to maneuver such that the vehicles expect to make observations
for which their sensor models are more certain of the true target state.

In order to seek information, the network should compute its control inputs by maximizing the joint

mutual information utility function,

V (i)(xt,ut, θ
(i)
t ) = I(θ

(i)
t ; zt+1) (11)

In order for the mobile sensor network to approach this optimization, a method to compute the entropy
of a probability distribution represented by a particle set is developed.

B. Target State Estimation by Particle Filtering

The estimate of the target state’s probability distribution function is maintained using a particle filter. This
method has strong advantages in sensing applications with nonlinear measurements due to the ability to rep-
resent the complex interaction of the prior distribution with the sensor model distribution, yielding numerical
approximations to the true posterior distribution, including multiple modes. In contrast, Gaussian based
filters such as Extended Kalman Filters and Multiple Hypothesis Trackers rely on the strong approximation
of linearizing motion and sensing models, leading covariance to underestimation and to estimate divergence
in many scenarios, and grid cell methods scale more poorly with dimension due to maintaining estimates
of likelihood even over regions of the domain that can be eliminated from consideration.14 Particle filters
address these issues with many widely used algorithms.11,15–17 A sequential importance resampling (SIR)
particle filter, suitable to the structure of this problem, is applied.

Each vehicle, i, maintains its own estimate of the current target state at time t, θ̂
(i)
t , and posterior

distribution of the target state, pt(θ
(i)), based on all observations that vehicle has made or received, via the

communication channel, up to that time. Perfect communication is assumed. Each vehicle approximates
this distribution locally, incorporating the observations shared by all vehicles, with a set of N particles,

(θ̃
(i)
t,k,w

(i)
t,k), indexed by k, where θ̃

(i)
t,k is the state of the particle in Θ, and w

(i)
t,k is the likelihood weight.b The

value for N typically ranges from the hundred to many thousands of particles. By maintaining a local set
of particles, only the relatively low dimension observations need to be computed, as opposed to the values
of an enormous set of particles. The particle filter iteratively incorporates new observations by predicting
the state of each particle, updating the likelihood weights with the likelihood of new observations, and then
resampling the particles.

The prediction step incorporates a motion model of the target as a function of the previous particle
state.11 When the process model used in the prediction step has little noise, or none, as would be expected
for the stationary target considered here, particle deprivation due to overlapping particles must be prevented.
One method is for the target states of each particle to be redrawn using using a roughening function, as
suggested by Gordon et al.14 By this method, one spreads the particles out via a Gaussian function.

The update step incorporates observations to compute the particle likelihood using Bayes’ rule, Equation
(5), which is approximated in the update step14 as

w
(i)
t,k =

w
(i)
t−1,kpt|t−1(z|θ

(i)= θ̃
(i)
t−1,k)

∑N
k=1

(

w
(i)
t−1,kpt|t−1(z|θ(i)= θ̃

(i)
t−1,k)

) (12)

Next, the particle set can be resampled, if needed, in order to reconcentrate the particle states on the
states of the more likely particles, with larger weights. An indicator for a need to resample due to lack of

diversity of particles in more likely regions is indicated when w
(i)
t,k → 0 for too many particles. One useful

metric to measure this degeneracy is the effective particle number, Neff , the number of particles that could
represent the distribution if there were no numerical noise caused by small likelihood weights. It cannot be
computed directly, but can be estimated, as shown in Kong et al.18 by,

bThe second subscript of any variable denotes the index of the particle to which the variable belongs.
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Neff ≈
1

∑N
i=1 w

(i)
t

2 (13)

When Neff falls below a threshold value, chosen to be N/2 for this work, residual resampling is used. A

new particle set, ξ, is used to create a resampled copy of θ̃
(i)
t . First, d particles are redrawn deterministically

according to the distribution represented by wt, to help reduce variance due to discretization, as discussed in
Carpenter.16 Second, the N − d remaining particles are drawn randomly from the multinomial distribution
represented by wt using a standard statistical technique.16

The output of the particle filter is a posterior probability distribution. A maximum a posteriori estimate
(MAP) would be preferable, although it is not directly available from the particle set. Instead, a minimum
mean square error (MMSE) estimate is used to estimate the target state.

C. Information-Theoretic Quantities with Particle Sets

It is necessary to compute the joint entropy and conditional entropy of a distribution represented by a
particle filter in order to compute the joint mutual information utility function, Equation (11), with the
particle filter representation. The entropy of the observation distribution,

H(zt+1) = −

∫

Z

pt+1(z;ut,xt) log pt+1(z;ut,xt)dz (14)

is computed from the set of particles, using Monte Carlo integration. The technique of Monte Carlo integra-
tion is described in Bergman.19 Using this technique, the entropy can be computed aboard the ith aircraft
as shown by Hoffmann et al.20 as

H(zt+1) =

−
∫

Z

(
N∑

k=1

(

w
(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

))

· log

(
N∑

k=1

(

w
(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)

))

dz

(15)
where it is assumed that the sensors do not suffer from correlated noise - that they can be modeled as having
probability distributions of readings that are conditionally independent of one another, given the target’s
state. The entropy computation relies only on the particle set and on the sensor model. The integral can be
computed by numerical quadrature, as described in Moin.21

The conditional observation uncertainty,

H(zt+1|θt) = −

∫

Z,Θ

pt+1,t(z, θ
(i);ut,xt) log pt+1|t(z|θ

(i);ut,xt)dzdθ
(i) (16)

is computed using another Monte Carlo integration. The conditional entropy is given by20

H(zt+1|θ
(i)
t ) = −

∫

Z

N∑

k=1






w

(i)
t,k

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt) · log

nv∏

j=1

pt+1|t(z
(j)|θ(i)= θ̃

(i)
t,k;ut,xt)






dz (17)

where it is assumed that the sensor models are conditionally independent given the target state.
The mutual information between the sensors and the target state can then be computed using Equations

(15) and (16) as

I(zt+1; θ
(i)
t ) = H(zt+1)−H(zt+1|θ

(i)
t ) (18)

Thus, it is possible to evaluate the joint mutual information utility function, Equation (11). This utility
function remains highly coupled between the sensors of the nv vehicles. The degree of cooperation between
the vehicles is analyzed to determine a scalable utility function that permits computation of control inputs,
with varying levels of optimality, over a network of many vehicles.
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D. Single and Pairwise Approximations

The degree of cooperation is the extent to which vehicles take into account one another’s planned observations.
To be fully cooperative, all vehicles would use the joint mutual information utility function, Equation (11).
However, the computational complexity of solving Equation (11) simultaneously for all vehicles grows as
O(2nz×nv ), due to integration over the observation domains. Consequently, for large groups of vehicles, it is
necessary to make approximations that improve computational feasibility.

One possible simplification, as derived in Hoffmann et al.,20 is for each vehicle to consider only the
observation uncertainty of its own sensor. Applying this, the single vehicle approximation to the joint
mutual information utility function, for the ith vehicle, is

V (i)
s (xt,ut, θ

(i)
t ) = I(z

(i)
t+1; θ

(i)
t ) (19)

The error ǫ
(i)
single in the objective function approximation is

ǫ
(i)
single = −

nv∑

j=1
j 6=i

(

I(z
(j)
t+1; θ

(i)
t )
)

+

nv∑

j=2

(

I(z
(j)
t+1; z

(1)
t+1, . . . , z

(j−1)
t+1 ) ) (20)

The first summation in the error equation is not a function of the control inputs of the ith vehicle, hence
it does not affect the optimization. The second summationc reflects the amount by which the approximation
overestimates the uncertainty of the observation distribution, by ignoring the mutual information the vehicle’s
observation will have with other vehicles observations.

The observation uncertainty of the sensor alone is still conditioned on all previous observations from all
aircraft, thus a coordinated behavior results, as demonstrated by Grocholsky et al.22 for information filter
based decentralized control. However, because this behavior does not take planned observations of other
vehicles into account, every vehicle plans to obtain the most uncertainty reduction possible, in expectation,
at the subsequent time step, even if another vehicle will already acquire the same information. Multiple
vehicles can race to the same point, seemingly attempting to outdo one another.

In order to obtain a higher degree of cooperation, but still computationally feasible estimate of the
joint mutual information utility function, it can be approximated considering the pairwise interaction of
the ith vehicle with all other vehicles, as shown in Hoffmann et al.20 For nv > 1, the pairwise interaction

approximation to the joint mutual information utility function, for the ith vehicle and for nv > 1, is

V (i)
p (xt,ut, θ

(i)
t ) = −(nv − 2)

(

I(z
(i)
t+1; θ

(i)
t )
)

+

nv∑

j=1
j 6=i

(

I(z
(i)
t+1, z

(j)
t+1; θ

(i)
t )
)

(21)

The error ǫ
(i)
pair in the approximation of the objective function is

ǫ
(i)
pair =

n∑

j=2
j 6=i

(

I(z
(j)
t+1; z

(1)
t+1, . . . , z

(j−1)
t+1 |z

(i)
t+1)

)

(22)

The error in using the pairwise approximation to the joint mutual information utility function, Equation
(11), is the mutual information reduction when conditioning the joint observation probability distributions
between all vehicles, besides the ith vehicle, on the observation probability distribution of the ith vehicle. The
magnitude of the error terms that vary with the ith vehicles control inputs for the pairwise approximation
are less than or equal to that for the single approximation, as shown in.20 The magnitudes are equal when
the vehicles sensors observations are independent of all other vehicles, or for the special case of nv = 2.
Thus, the pairwise approximation to computing the joint mutual information utility function provides a
more accurate function to optimize, with respect to the control inputs.

The benefit of this approximation can be explained intuitively by considering three vehicles with single
sensors. In the single vehicle approximation, the mutual information between the target state and the joint
distribution of the sensors is computed without accounting for the information gained from any correlation

cThe conditioning variables in a mutual information expression apply to both distributions, on the left and right of the
semicolon.
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between the three sensors, which are likely correlated when not conditioned on the target state. In the
pairwise interaction approximation, the mutual information computation accounts for the information gained
when considering the ith vehicle’s sensor to be correlated individually with the other two vehicles’ sensors. It
doesn’t consider the incremental gain from including the three-way correlation of the sensors over considering
the pairs individually. If those sensors measured bearings to a target, for instance, then the single vehicle
approximation would not affect the vehicles positions beyond the emergent behavior due to the common
prior distribution. The pairwise approximation, however, would yield utilities that encourage the vehicles
to move to expect to take orthogonal measurements to the target’s position. Hence, considering just the
pairwise interactions yields the same result in this case as the exact solution.

The effectiveness of these approximations is demonstrated in the simulations presented in Section VI.
The single vehicle approximation requires O(1) computational time, with respect to the number of vehicles.
The pairwise approximation requires O(nv) computational time. Thus, even the pairwise approximation can
be applied to substantially larger sets of vehicles than the joint mutual information utility function, while
remaining closer to the true joint mutual information.

IV. Optimization Algorithm

This section begins by introducing a centralized optimization program that incorporates the information
seeking cost function from Section III, as well as vehicle dynamics and collision avoidance constraints amongst
the vehicles. The section then proceeds with the development of a distributed optimization algorithm which
enables the elimination of centralized coordination of the unmanned search team.

A. Centralized Optimization

Given the above cost formulations, a centralized optimization can be posed for the multi-vehicle search
problem. Vehicle dynamics constraints and control bounds are added for each vehicle as well as collision
avoidance constraints amongst each pair of vehicles. The resulting optimization is,

Centralized Optimization Program:

maximize
ut∈U

V (i)(xt,ut, θ
(i)
t )

subject to x
(i)
t+1 = f

(i)
t (x

(i)
t ,u

(i)
t ) ∀ i ∈ nv,

z
(i)
t = h

(i)
t (x

(i)
t , θ, η

(i)
t ) ∀ i ∈ nv,

||x
(i)
t+1 − x

(j)
t+1|| ≥ d̄ ∀ i, j ∈ nv, i 6= j

(23)

which can be evaluated based on any vehicle i’s posterior distribution estimate. The centralized optimization
program is a nonlinear program, for which locally optimal solutions can be computed using commonly
available software tools, such as fmincon, written for the Matlab environment23–25 or SNOPT,26 written in
Fortran. However, it is undesirable to aggregate all information and control authority in one location, and
as such, a distributed algorithm is proposed for the above problem that allows the individual vehicles to
coordinate toward a solution to the centralized optimization.

B. Distributed Optimization

Formulation of a distributed algorithm to solve the centralized optimization proceeds by determining individ-
ual cost functions for each vehicle, and by identifying any interconnecting constraints amongst the vehicles.
Fortunately, the cost functions are defined in a separable manner, and the only constraints that couple the
vehicles together are those ensuring collision avoidance. A local optimization problem can be formed which
assumes the actions of the other vehicles are fixed, and an iterative algorithm is implemented based on
previous work by Inalhan et al.10 which ensures convergence to ǫ-feasible solutions that satisfy the necessary
conditions for Pareto optimality.
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In order to satisfy the interconnecting constraints, an inexact penalty function is defined for each vehicle
as,

P (x
(i)
t , u

(i)
t |x

(−i)
t , u

(−i)
t ) =

n(i)
c∑

k=1

max(0, g(i,k)(x
(i)
t , u

(i)
t |x

(−i)
t , u

(−i)
t )γ) (24)

where k indexes the set of n
(i)
c interconnecting inequality constraints, g(i,k) that affect vehicle i, and −i refers

to the set of all vehicles other than i. The penalty functions are defined such that they assume a value of
zero wherever the constraints are satisfied, and are differentiable for all γ ≥ 2, γ ∈ R. The interconnecting
constraints are exactly the nv − 1 constraints that ensure collision avoidance between the vehicles as defined
in Equation (2). Let

g(i,k) = d̄− ||x
(i)
t+1 − x

(k)
t+1|| ≤ 0 ∀ k ∈ nv, k 6= i (25)

refer to the set of all interconnecting constraints between the vehicles. The penalty function is added to
the individual vehicle cost with a penalty parameter, β, which varies the tradeoff between the constraint
violation cost and the information-theoretic cost. A local optimization problem using the single vehicle
approximation is defined by,

Single Vehicle Approximation Local Optimization Program:

maximize
u

(i)
t ∈U(i)

V
(i)
s (x

(i)
t ,u

(i)
t , θ

(i)
t |x

(−i)
t , u

(−i)
t )

− 1
β
P (x

(i)
t , u

(i)
t |x

(−i)
t , u

(−i)
t )

subject to x
(i)
t+1 = f

(i)
t (x

(i)
t ,u

(i)
t )

z
(i)
t = h

(i)
t (x

(i)
t , θt, η

(i)
t )

(26)

Note that the decentralized penalty method requires local costs that depend only on local variables, which
is immediately true of the single vehicle approximation. In order to adapt the single vehicle approximation
local optimization to use the pairwise vehicle approximation, Equation (21), slack variables must be added
to decouple the local sensor costs, resulting in additional interconnecting constraints which are also included

in the penalty function. Define the slack variable, ũ
(i)
t , as the vector of all sensor control inputs aboard the

ith sensor. Agreement amongst the vehicles as to the next control input for all vehicles is introduced as a
penalty function enforced constraint,

ũ
(i)
t = ũ

(j)
t ∀ i, j ∈ {1, . . . , nv : j 6= i} (27)

The pairwise approximation local optimization program is defined analogously to the single vehicle approxi-

mation program, replacing V
(i)
s with V

(i)
p , and with the optimization over the entire control vector, ũ

(i)
t ∈ U ,

instead of just the local control inputs, u
(i)
t ∈ U

(i).
The distributed algorithm can proceed in a number of manners, but relies on an iterative approach where

interim solutions are communicated amongst the vehicles between local optimizations. This process can be
structured to operate hierarchically, synchronously or asynchronously, but is described here in a hierarchical
manner for simplicity. Alternate algorithms and convergence results have been presented by Inalhan et al.10

The vehicles are ordered in a fixed manner that may be arbitrary. Initial solutions are determined locally
by ignoring interconnected constraints. Then, prior to local optimization, the relative weight of the penalty
function with respect to the local cost is increased by a factor α ∈ (0, 1),

β := αβ (28)

which increases the penalty of violating the interconnecting constraints gradually as the vehicles iterate
on the solution. Each vehicle, starting with vehicle 1, solves the local information-seeking optimization
problem with the current preferred solution and penalty parameter, and subsequently passes that solution
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and parameter onto the next vehicle. The optimization concludes when the solution agreed to is within
ǫ > 0 of feasible and the local cost functions satisfy an appropriate convergence criteria. The algorithm is

summarized below, for both the single vehicle approximation with local control input, u
(i)
t , and the pairwise

approximation with local network control vector, ũ
(i)
t .

Algorithm 1 Single Time Step Distributed Optimization

1: Define xt

2: Initialize M and ut or ũt

3: repeat

4: β ← αβ
5: for i = 1 to nv do

6: Transmit M and ut or ũt to vehicle i
7: Perform local optimization at vehicle i

8: Update u
(i)
t or ũ

(i)
t for vehicle i

9: end for

10: until Convergence criteria satisfied

This algorithm ensures that vehicle teams with control constraints maintain safe operation while max-
imizing information gain at each time step. Through the single vehicle and pairwise approximations, the
algorithm can be computed in real-time and implemented on vehicles for real-world scenarios. The following
section presents ongoing development work for a multi-vehicle platform capable of carrying the necessary
sensors and computational resources for such scenarios. Simulation results demonstrating the capabilities of
this algorithm are presented subsequently in Section VI.

V. Testbed Development

As previously introduced, the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control27

(STARMAC) is a small-scale multi-vehicle testbed of quadrotor aircraft which is designed to facilitate real
world testing of recent developments in multi-vehicle control algorithms. The original design iteration of
the STARMAC vehicle, STARMAC I, was used as a proof of concept study and resulted in successful
simultaneous hover of two autonomous vehicles.28

Figure 2. Testbed vehicles, STARMAC I (left), and STARMAC II (right).

Flight testing revealed, however, that there were four significant limitations to the testbed as designed in
the first iteration, and as such, an improved version of the quadrotor vehicle was designed to address these
issues. The key improvements for STARMAC II are:

1. Thrust Capabilities:

Brushless motors and more rigid plastic propellers were combined to double the efficiency and
increase the total available thrust fourfold, resulting in a total of 4 kg of thrust for each vehicle.
STARMAC I was close to its payload limit with only 1 kg of thrust, operating at 75% full throttle at

11 of 21

American Institute of Aeronautics and Astronautics



hover. The improvements to vehicle thrust on STARMAC II enable the inclusion of larger batteries
to further extend flight time, as well as the inclusion of additional computation resources and sensors,
such as a stereo camera and LIDAR.

2. On-board Computation Resources:

With the added lift capabilities, it was possible to significantly increase onboard computing power.
A commercial microcontroller board, the Robostix, is used for inner loop vehicle control. It uses an
Atmel ATMega128 processor, and is programmed in C++ using AVR-GCC. For position estimation
and control, the Stargate, an Intel PXA255 based single board computer (SBC) was added. It operates
using a scaled down Linux OS, is programmed in C++, has 64 MB of RAM and 32 MB of flash memory.
Finally, a PC-104 computer was added running Windows XP for onboard processing of camera and
LIDAR information, optimal path planning, and other high level automation tasks. With a Pentium-
M Dothan 1.8GHz processor, 1 GB of memory, and 6 GB of Compact Flash disk, the platform is
comparable to todays high-end laptops. In contrast, the STARMAC I design was capable of performing
inner loop control using two on board 40 MHz PIC microprocessors, while lateral position estimation
and lateral control computations, were performed off board. There was no additional computing
capacity onboard.

3. Communication Reliability and Bandwidth:

The testbed communication channel was switched from Bluetooth to WiFi, enabling much greater
bandwidth, moderate gains in range, and improved communication channel management through a
wireless router at the basestation. The Stargate platform was pre-configured with a compact flash
802.11b WiFi card, and field testing has revealed significant improvements in communication robustness
between base station and vehicle as compared with the Bluetooth capabilities of STARMAC I.

4. Position Measurement Accuracy:

STARMAC II relied on fusing 1 Hz code phase differential GPS measurements with 76 Hz IMU
data to estimate vehicle position, which resulted in accuracy no better than 3-5 m circular error
precision (CEP). The resulting accuracy on position control could do no better than the position
estimate, which represented hover location variability of five times the vehicle size. In order to keep
vehicle weight and cost down yet significantly improve position estimate accuracy, it was decided to
develop a 10 Hz carrier phase differential positioning system at Stanford, which resulted in errors of 2
cm CEP using the low-cost Novatel SuperStar II platform.

Initial flight results for the STARMAC II platform are presented in the following section, and an additional
five vehicles are being built to expand the fleet to six vehicles. It is capable of indoor and outdoor flight.
The significant improvement in capabilities outlined in this section will allow the STARMAC II vehicle to
be used in real-world applications, with sufficient computational resources and excess lift capacity to tackle
challenging tasks autonomously.

VI. Implementation Results

The algorithm, as presented in Section IV, was implemented for bearings only measurement with nv

vehicles and a single, stationary target. Bearings-only measurement situations are motivated in particular
by monocular camera vision systems. Such measurements provide a bearing to the target, assuming the
target can be identified in the field of view, but cannot give range information to the target, unless the exact
dimensions of the target are known. The resulting measurement equations for bearings-only measurements
are,

h
(i)
b (x

(i)
t , θ, η

(i)
t ) = ψ

(i)
R + η

(i)
t

(29)

where ψ
(i)
R is the relative bearing between the target and the ith vehicle. The measurement noise was assumed

to be a modified Gaussian distribution, where all probability encompassed in the tails, eliminated by the
bounded measurement domain is distributed uniformly over the domain.

The vehicles were assumed to operate in a plane, and the quadrotor non-linear position dynamics were

linearized, which results in second order integrators for each degree of freedom. Once again, let x
(i)
t refer to
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the ith vehicle position at time t, and let v
(i)
t refer to its velocity. Linear dynamics can be assumed for the

quadrotor vehicles, which is reasonable for non-aggressive maneuvers,

x
(i)
t+1 = x

(i)
t + v

(i)
t

v
(i)
t+1 = v

(i)
t + u

(i)
t (30)

For simulation, control bounds of U ∈ [−1, 1], and velocity constraints of v ∈ [−4, 4] are assumed.
A fixed target was located in a field of dimension, [0, 40] × [0, 40], and a simulation horizon of T = 10

time steps was considered.

A. Simulation Results

Simulation results are presented for nv = 2, 3, 4 vehicles. The figures for two and three vehicles contain
four subplots. Subplot (a) displays the vehicle trajectories (yellow lines with red dots), measurements (grey
arrows), target location and estimate (red box and blue x), and the particle set (grey-blue points). Subplot
(b) displays the approximate entropy in nats over time. Subplot (c) displays the true error in the MMSE
target state estimate and subplot (d) displays the probability that the target can be found within a fixed
domain, D, centered at the target estimate. The figures for four vehicles also contain four subplots, though
these depict the snapshots in time of the particle sets, observations, and vehicle positions, as described
for subplot (a) in the two and three vehicle plots. Subplots a through d depict time steps 1, 3, 5 and 10
respectively.

In all simulations, estimation error and uncertainty drop dramatically in the course of the 10 iterations.
For all cases except the two-vehicle scenario using the single vehicle approximation, the target is localized
to within D prior to the conclusion of the simulation. The results show that localization of a target can
be reliably achieved for scenarios with nonlinear measurement models and non-Gaussian noise sources by
applying the algorithm presented above.

In the two vehicle case, as seen in Figs. (3,4), the pairwise solution method is exact and results in
notable improvement over the myopic single vehicle approximation. Specifically, both the estimation error
and probability of the target being found within D were improved. The most apparent difference in behavior
is the steepness of the spiral along which the vehicles approach the target. In the case of the pairwise
approximation, they approach on a steeper, faster trajectory, due to anticipation of information from the
other vehicles in the team.

In the three vehicle case, as seen in Figs. (5,6), the benefits of the pairwise approximation are less obvious,
which is attributable to the availability of measurements from multiple vantage points in both cases due to
the minimum spacing requirements between vehicles. It was noted in simulations without such restrictions
that the single approximation often resulted in identical trajectories for multiple vehicles, which resulted in
less efficient localization. The trajectories of the pairwise approximation again show a different trend, of a
steeper spiral toward the estimated target position.

In the four vehicle case, as seen in Figs. (7,8), the benefits of the pairwise approximation are more
apparent. The snapshots in time depict the state of the aircraft and particles following an observation, prior
to resampling and moving. The darkness of the particle dots indicates the particle weights. The single
vehicle approximation again leads to a relatively shallow spiral of approach toward the target, whereas the
pairwise vehicle approximation leads to much more cooperative approach to the target.

B. Outdoor Flight Tests

The above scenario is currently being implemented on the STARMAC II platform, although such tests have
not yet been completed as of the time of writing. Preliminary flight tests of the new platform are included
to provide guidance as to the improved abilities of the vehicles as well as the feasibility of the above claim.
Position measurement accuracy has been greatly improved by the carrier phase differential GPS position
solutions, as seen in Fig. (9). Further in flight validation is provided in a comparison of the SODAR and
GPS altitude measurement, since SODAR is known to be accurate to within 3-5 cm, and excellent agreement
can be observed between these two data streams in Fig. (10).

Initial flight tests of the vehicle’s inner loop control are shown in Figs. (11, 12). Although improvements
will be made to the tuning of these controllers, the results display reasonable vehicle stabilization in spite of
significant wind disturbances on the test date.
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Figure 3. Single vehicle approximation for two vehicle scenario. (a) Vehicle trajectories, measurements, target
state estimates and particle set. (b) Approximation of entropy of target distribution in nats. (c) True MMSE
estimate error. (d) Probability that target is within a domain, D, centered at the estimate.

VII. Conclusion

Automated search and localization is an application where small UAV teams offer the potential for
significant improvements over conventional methods. By automating the interpretation of the information
that sensors are capable of collecting, and directly fusing it with vehicle trajectory planning, search time can
be effectively minimized. In order to be applicable to real world search problems, an algorithm was developed
that can use non-linear measurement models and dynamics, as well as models of non-Gaussian noise sources.
The distribution of the algorithm amongst the members of the vehicle team enables operation without relying
on a central command unit, and ensures robustness against individual failures in communication or sensing.

The STARMAC testbed has now become a viable platform for solving real world search problems as
quickly as possible. With the added payload margin, it is now possible to carry additional sensors, such
as video cameras or avalanche receivers, that can be in the field for target localization. With the added
computational resources, it is now feasible to perform the distributed optimization algorithm presented
above onboard, enabling deployment in real scenarios where the environment is sufficiently well mapped to
ensure obstacle avoidance is not an issue.
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Figure 4. Pairwise calculation for two vehicle scenario. (a) Vehicle trajectories, measurements, target state
estimates and particle set. (b) Approximation of entropy of target distribution in nats. (c) True MMSE
estimate error. (d) Probability that target is within a domain, D, centered at the estimate.
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Figure 9. 1 cm error circle for static Carrier Phase Differential GPS measurements over two 1 minute periods.
The green (light) line indicates a first set of measurements from which the circle center is determined, and the
magenta (dark) line represents a second set of measurements recorded minutes later.
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Figure 10. Comparison of GPS and filtered Sodar (ultrasonic ranger) altitude measurements confirm in-flight
accuracy of the GPS calculations. Note that the ground was sloped underneath the flyer, and this accounts
for the deviation between the two measurements after the 65 second mark.
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Figure 11. Vehicle attitude control during indoor flight test. The desired pitch, roll and heading are described
by the red, dashed line. The blue, solid line depicts the measured angles and the light green, solid line depicts
the flight on/off switch.
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Figure 12. Vehicle altitude control during indoor flight test. The desired pitch, roll and heading are described
by the red, dashed line. The blue, solid line depicts the measured altitude, using SODAR data. Note that
actuation of the attitude loops result in significant disturbances to the altitude loops, which in turn cause
oscillations that decrease over time.
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