43rd IEEE Conference on Decision and Control

December 14-17, 2004
Atlantis, Paradise Island, Bahamas

FrB09.1

Polynomial Approximation Algorithms for Belief

Matrix Maintenance in Identity Management

Dept. of Aeronautics and Astronautics, Stanford University, CA 94305

Hamsa Balakrishnan, Inseok Hwang, Claire J. Tomlin

hamsa, ishwang, tomlin@stanford.edu

0-7803-8682-5/04/$20.00 ©2004 IEEE

Abstract— Updating probabilistic belief matrices as new
observations arrive, in the presence of noise, is a critical part
of many algorithms for target tracking in sensor networks.
These updates have to be carried out while preserving sum
constraints, arising for example, from probabilities. This paper
addresses the problem of updating belief matrices to satisfy
sum constraints using scaling algorithms. We show that the
convergence behavior of the Sinkhorn scaling process, used
for scaling belief matrices, can vary dramatically depending
on whether the prior unscaled matrix is exactly scalable or
only almost scalable. We give an efficient polynomial-time algo-
rithm based on the maximum-flow algorithm that determines
whether a given matrix is exactly scalable, thus determining
the convergence properties of the Sinkhorn scaling process.
We prove that the Sinkhorn scaling process always provides
a solution to the problem of minimizing the Kullback-Leibler
distance of the physically feasible scaled matrix from the prior
constraint-violating matrix, even when the matrices are not
exactly scalable. We pose the scaling process as a linearly
constrained convex optimization problem, and solve it using an
interior-point method. We prove that even in cases in which the
matrices are not exactly scalable, the problem can be solved to
e—optimality in strongly polynomial time, improving the best
known bound for the problem of scaling arbitrary nonnegative
rectangular matrices to prescribed row and column sums.

I. INTRODUCTION

Identity management refers to the probabilistic manage-
ment of the identities of multiple interacting objects. This
has become an important problem in control with the advent
of large scale networks of systems, such as sensor networks.
Our motivation for this work stems from distributed identity
management algorithms in air traffic control and sensor
networks [12].

The identity or belief matrix was proposed in [18] as a
possible method of integrating information available in the
system with external information which might be available
sporadically. The belief matrix is a matrix B, in which
elements b;; represent the probability of object j having
identity i. Updating belief matrices as new information
is obtained is a crucial part of many algorithms in iden-
tity management. These require methods for constraining
matrices to prescribed row and column sums. While the
belief matrix of the entire system is doubly-stochastic (i.e.,
each row sum and column sum is 1), in distributed identity
management, in which a particular sensor might only detect
a subset of the objects in the system, the belief matrix

This work was supported by ONR MURI Agreement No. N00014-02-
1-0720. H. Balakrishnan is supported by a Stanford Graduate Fellowship.

might be constrained to some prespecified (but not doubly-
stochastic) row and column sums. This paper addresses the
problem of updating belief matrices by scaling in the face
of uncertainty in the system and the observations.

For example, consider the case of the belief matrix for a
system with three objects (labelled 1, 2 and 3). Suppose
that, at some instant, we are unsure about their identities
(tagged X, Y and Z) completely, and our belief matrix is
a 3 x 3 matrix with every element equal to 1/3. Let us
suppose the we receive additional information that object
3 is definitely Z. Then our prior, but constraint violating
matlrix,

3 % 0 5 50
i3 0 | would logically scale to S 5 0
z 1 0 0 1

ltﬁough the solution is simple in this case, it is not clear
how one would scale an arbitrary rectangular matrix to
prescribed row and column sums. A natural way is to
simply normalize alternately the rows and columns until
the constraints are met. This method of scaling by repeated
normalization is called the Sinkhorn scaling process [20].
However, it is not obvious that such a process would
always converge; and if it does, that it would converge
in a reasonable amount of time. It is also not clear what
the quality of the resulting solution is, whether the process
always maintains the quality of its solution, or whether there
might be faster methods of arriving at the same solution.
These are issues that we will address in this paper.
Sinkhorn iterations were first proposed as a method of scal-
ing matrices to make them doubly-stochastic. This method
was shown to converge for different classes of matrices,
n [21], [20] and [17]. Its properties were analyzed, for the
special case of matrices known as exactly scalable matrices,
in [3], [17] and [8]. This technique was analyzed further
and applied to the problem of identity management for Air
Traffic Control in [10], [11].
The convergence behavior of the Sinkhorn scaling process
for a nonnegative matrix depends greatly on the sparsity
structure of the matrix, and can fall into one of two regimes.
Most studies, such as those mentioned above, have been
restricted to only one of the two regimes, namely, the class
of exactly scalable matrices. Belief matrices in distributed
sensor networks are sparse matrices, since most interactions
between objects are local. In addition, the type of local
information that is most desirable from a practical point

4874

of view is identity-type information, i.e., information that
determines the identity of one of the objects with certainty.
This is also the type of local information that is most
likely to make the prior matrix not exactly scalable. In this
paper, we consider the general problem of scaling arbitrary
rectangular nonnegative matrices to prespecified row and
column sums.

The main contributions of this paper are as follows: We
prove that the Sinkhorn scaling process always converges
to the sum-constrained matrix that minimizes the Kullback-
Leibler distance from the unscaled prior matrix, even when
the matrices are not exactly scalable (Section II). This
property of the solution justifies the use of Sinkhorn scaling
in belief matrix updates. Because the convergence behavior
of the Sinkhorn scaling process can vary widely depending
on whether the matrix is exactly scalable or not, we give an
efficient polynomial time algorithm that determines whether
exact scalability is achievable, for an arbitrary nonnegative
rectangular matrix with prescribed row and column sums
(Section III). The key contribution of this paper is to
show that the Sinkhorn scaling process may be posed as
a linearly constrained convex optimization problem. We
show that, even when the matrix is not exactly scalable, an
interior-point, or barrier method is a strongly polynomial
approximation algorithm which attains e—optimality with
complexity O(n®log(n/e)) for an n x n matrix.

Our approach to the problem is different from the only other
strongly polynomial approximation scheme for matrix bal-
ancing [13], which proposes a modified Sinkhorn algorithm;
we also compare the complexity of the two schemes and
show that for the class of square matrices, the algorithm
based on the barrier method has lower complexity. In
Section V, we present some examples.

II. SINKHORN SCALING

The Sinkhorn scaling procedure was proposed in [19] as
a method for scaling positive matrices to doubly stochastic
matrices. Since then, there have been several extensions to
treat the case of nonnegative matrices [21], to scaling pos-
itive rectangular matrices to prespecified row and column
sums [20], and to scaling nonnegative rectangular matrices
to prespecified row and column sums [17].
Unless otherwise specified, throughout this paper, the prior
sum-constraint violating matrix is denoted by A and the
sum-constrained belief matrix is denoted by B. The pre-
specified row and column sums to be achieved are denoted
by r and c respectively. Since the sum of all the elements
in the matrix is both the sum of the row sums and the sum
of the column sums, >, 7; = 3. ¢;.
We first formalize a few definitions. Let A be an m x n
matrix, and r € R™ and ¢ € R" be the prescribed row and
column sums. A zero minor Z X L of A is a matrix such
that for Z C {1,---,m} and L C {1,--- ,n}, the matrix
Az, = 0. Then, following the definitions in [13], we define
the concepts of exact scalability and almost scalability.

Definition 1: [13] A nonnegative matrix A is exactly

scalable to row and column sums r and c if and only if
for every zero minor Z x L of A,

D) Yiezemi 2 2 e 6 (Of > iezTi < Djere Cj)
2) Equality in (1) holds if and only if the Z¢ x L¢ minor
is all zero as well.
A matrix A is almost scalable to r and c if (1) holds.
Almost scalability is a weaker condition than exact scala-
bility. We sometimes refer to matrices that are almost but
not exactly scalable as only almost scalable.

A. Sinkhorn Scaling Algorithm

Algorithm 1: (Sinkhorn Scaling Algorithm):
Given a nonnegative, m x n matrix A, and specified vectors
of the row sums (r € R™) and column sums (¢ € R™), we
1t?0r)ate the following until convergence, with initial values

a;;’ = a;j, and k =1

1) Multiply every element a(k_l)

by the ratio of the de-

k—1
sired row sum 7; to the actual row sum y_ =1 a()

(k) = ra (k 1)/(2 (k 1))

2) Multlply every element of the matrix from (1) by
the ratio of the desired column sum c; to the actual
column sum ;" (ff)
afy = ca /(T)

It can be shown that under the condition that the matrix A is
almost scalable, the Sinkhorn scaling process will converge
to a unique matrix B that satisfies the row and column sum
constraints. The following theorem is a unified statement
of the convergence of the Sinkhorn scaling process, from
various previous results in literature.

Theorem 1: ([21], [20], [17], [13]): Consider A €
R™*™a nonnegative matrix, and desired row sums r € R™
and column sums ¢ € R™. Then there exists a unique
matrix B € R™*" which satisfies these prescribed row
and column sums, where B = D;AD, for D; € R™*™
and Dy € R™ ™, D; and D5 both diagonal, positive definite
matrices, if and only if A is exactly scalable. Furthermore, if
the above is true, the Sinkhorn scaling of A will converge to
such a matrix B. If A is only almost scalable but not exactly
scalable, the Sinkhorn scaling would converge to a unique
limit of the form limy_., D* ADS® which satisfies the
row and column constraints. However, the individual matrix
sequences, ng) and D;k) would not converge.]

B. Exact scalability vs. Almost scalability

We briefly address the practical implications of exact vs.
almost scalability to the Sinkhorn scaling process. It can be
shown that while for exactly scalable matrices, b;; = 0 <
a;; = 0, for almost scalable matrices it is only true that
a;; = 0 = b;; = 0. This implies that a matrix is almost but
not exactly scalable, if and only if there exists at least one
element a;; > 0 which has to be scaled to zero (b;; = 0).
Since the Sinkhorn scaling process tries to achieve this by
multiplying repeatedly by a sequence of positive numbers,
this clearly cannot be done in a finite number of steps. In
practice, it could take a very long time to reach a desired

4875

accuracy (b;; < €). In Section III we formulate an efficient
polynomial time algorithm that determines whether a matrix
is exactly or only almost scalable, which in turn determines
the convergence behavior of the Sinkhorn scaling process.

C. Kullback-Leibler distance as cost

Given a matrix which represents our a priori belief (A),
but violates physical constraints such as prespecified row
and column sums, we would like to compute the sum-
constrained (physically feasible) matrix B that represents
the closest distribution to the (infeasible) given distribution.
In determining a suitable measure for this “distance”, we
need to bear the following in mind: if the given distribution
A satisfies the constraints (row and column sums equal to
the prescribed values), then the scaled distribution B = A;
if there is no a priori distribution, no bias is introduced in
B; and finally, B uses all the information available from A,
but scrupulous care is taken not to make any assumptions
not presented by A. Bearing all this in mind, a suitable
measure is the Kullback-Leibler measure (also known as
the KL-distance or the cross-entropy [5]) given by:

(B Zzbwl g (1)

Jj=11i=1

This is sometimes also called the directed divergence (since
it measures the divergence of distribution B from distribu-
tion A), and is denoted by D(B || A).

Our problem therefore reduces to

o« e e m n bij
minimize > ;7 > ., bi;log ai;

subject to 37 bij =1 Vi=1,--,m ?)
Yisibij=c¢Vi=1-n
bi; >0vVi=1,--- ,m; j=1,---,n

where r € R™ and ¢ € R" are the prescribed row and
column sums, the constraints on the matrix B. We use the
following convention throughout this paper: 0log0 = 0,
Olog% =0, and alog% =00, if a > 0.
D. Sinkhorn scaling and the Kullback-Leibler distance

In this section, we prove that the Sinkhorn scaling process
always minimizes the KL-distance, irrespective of whether
the matrix is exactly scalable or only almost scalable.
Consider problem (2). We compute the Lagrangian dual of
this problem. The Lagrangian is given by

ZZbulog bij +Z>\ —> " biy)
=1 j=1 J

+> pile _Zbij) 3)
7 i

where)\;, p; € R are the Lagrange multipliers. The
Lagrangian dual of this problem is

Z)\m+z;¢jcﬂ ZZ —eMage' (4)

1=1 j=1

L(B,A\pu) =

Setting the derivatives of L with respect to b;; to zero, for
optimality, we get

1
arg i%f L(B, X\ p) =b;; = ,ex\iaijeﬂj 5)
€

We know that for an exactly scalable matrix, the Sinkhorn
process converges to a solution B = D1 ADs, or in other
words, bi; = dy,a;;dz; where Dy = diag(dy,,--- ,d1,,)
and Do = diag(ds,,- - ,d2,). Therefore,

bij = dha,;jdgjwhere dli = 6)\1'71, d2] = et (6)

satisfies the condition (5) for optimality.

We also notice that B satisfies the nonnegat1v1ty con-
straint. The second derivative of L is gb,} = +— > 0 which
implies that L is indeed minimized. B i is therefore a scaled
matrix with row sums given by the vector r and column
sums by the vector ¢, which can be expressed as Dy ADo,
where D; and D, are diagonal, and A is exactly scalable.
Thus, from Theorem 1, the Sinkhorn iterations of A will
converge to B.

Suppose A is almost scalable, but not exactly scalable.
Then, as before, the Lagrangian is given by (3) and the
dual by (4). Takmg derivatives of (4), we get

m

o, =ri— o ' eMagels, a—luj =cj — ;Ze fazjet

j=1 i=1

Therefore, for optimality, we require that the derivatives
be equal to zero. Since A is almost scalable, we know

from Theorem 1 that the Sinkhorn iterations converge to
a solution of the form limy_, o Dik)ADék), which satisfies
the row and column sum constraints. Let us therefore
consider the limit of the Smkhorn iterations,

bij = limp_ o dgk)amd . Using this in (5), we find that

1,

bij = ge (k) d(k)

‘a;jel = lim dya;5dy. (7
k—oo ° J
satisfies the optimality conditions. Therefore, the limit of
the sequence of matrices generated by the Sinkhorn process
minimizes the KL-distance from the a priori distribution.
From the above, we arrive at the following theorem:

Theorem 2: Given A € R™*", the optimal solution to
(2), B € R™*™ is always the solution to the Sinkhorn
iteration process.

Proof: Theorem 1 states that if the matrix A is
at least almost scalable, then the Sinkhorn process will
converge; the form of the solution is either B = D ADs
or B = limg_. D§k)AD§k), depending on whether the
matrix is exactly or only almost scalable. However, we have
shown that in either case ((6) for exact scalability and (7)
for only almost scalability) the Sinkhorn scaling process
converges to the minimum KL-distance matrix that satisfies
the row/column constraints.]
This shows that from the information-theoretic perspective,
Sinkhorn scaling gives us the best solution to the problem
of incorporating local information into belief matrices.

E. Sinkhorn scaling and KL distance: some intuition

That the Sinkhorn iterations minimize the Kullback-
Leibler distance from the a priori distribution agrees with
intuition. Let us consider the argument:

4876

The logarithm is a concave function, and the function
f(t) = tlogt is strictly convex. We can use this property of
the logarithm to prove the log sum inequality, as in [5]. For
the sake of brevity, we only reproduce the relevant theorem
here.

Theorem 3: ([S], Log sum inequality): For nonnegative
numbers, ai,as,- - ,a, and by, ba, - , by,

b log 2% > by | log 2= 8
;zgai_<;,) S (8)

i=1 i

with equality if and only if % is a constant. [

In the case of an m x n matrix, we can treat every row
(or column) as a set of nonnegative numbers. The log sum
inequality implies that for every row, the set of possible
new rows that minimize the KL-distance are the ones in
which the elements of the new row are obtained by scaling
all the elements of the old row by the same amount. But
this is exactly what the Sinkhorn iteration does at every
iteration - it scales the entire row by the same amount,
and the scaling factor is chosen in a way that satisfies
the row sum constraint. It then repeats this for the column
distributions. As long as this process of scaling rows and
columns alternately converges (as it does, by Theorem 1),
the matrix it converges to will minimize the KL-distance.

F. Complexity and convergence of Sinkhorn scaling

The Sinkhorn iterations are a natural way of scaling a
matrix to achieve prescribed row and column sums. The
complexity of each iteration is very small, and for an
m X n matrix, simply involves dividing mn numbers by
their row sums or column sums. While Sinkhorn and others
([20], [21], [14], [17]) proved that the iterative procedure
converges for appropriate matrices, they did not study the
rate of convergence. Franklin and Lorenz [7] showed that
each iteration of Sinkhorn scaling for an exactly scalable
matrix is a contraction map in the Hilbert projective metric,
and they concluded that the number of iterations is bounded
by O(L(A) - 1/e), where L(A) is the binary input length
(the log of the ratio of the largest to smallest non-zero
elements of A) and € is the desired accuracy in some
metric of interest. Thus the Sinkhorn iteration process is an
approximation scheme, but is not polynomial in log(1/e),
even for positive, exactly scalable matrices. For an only
almost scalable matrix, there are no known bounds on the
rate of convergence of the Sinkhorn process.

III. FEASIBILITY OF THE PROBLEM

For the Sinkhorn iterations to converge, at the very
least, the optimization problem (2) must be feasible. We
first note that the feasibility check can be carried out in
polynomial time by identifying an equivalent problem [13].
The feasibility test is equivalent to a check for almost
scalability. We also formulate an approximation that checks
for the infeasibility of exact scalability.

A. Feasibility of scaling algorithm

The feasibility of (2) is equivalent to the maximum-flow
problem on a graph with m+n+-2 nodes. Consider the graph
in Fig. 1. The flow on source-adjacent and sink-adjacent
arcs is denoted by f; and g; respectively. The flow on the
arc (4,7), i =1,---m, j =1,---n is denoted by b;;.

Proposition 1: 1f 37, = 7, c; = K, there exists a
feasible matrix scaling if and only if the maximum source-
to-sink flow equals K.

Proof: Suppose the maximum flow equals K. Then,
we have a flow in the network that saturates the source- and
sink-adjacent arcs (i.e, f; = r;, g; = ¢;), does not violate
flow conservation, and does not violate capacity restrictions
(bij = 0 Y{(4,7)| ai; = 0}). Therefore,

Zjbij :fi =r;, Vie {17“' ,TI’L}

Zibij =gj=c¢j, VjE€E {1,---,n}

which is the definition of a feasible point for the optimiza-
tion problem, whose elements are given by b;;.

Suppose the value of the maximum flow is less than K.
Then, the value of every feasible flow in the network is
also less than K. Given such a flow, there exists at least
one unsaturated source-adjacent arc, i.e.,
die {1,-" ,m} such that Zjbij <71
which violates the row sum constraint. Therefore, every
feasible flow in the network violates at least one of the
row sum constraints, which implies that there is no feasible
matrix solution to the optimization, and hence no feasible
solution to the Sinkhorn scaling process. [
The maximum flow problem in bipartite networks can be
solved in O(pqlog(q®/p)), where p is the number of non-
zero elements in A = (a;;), and ¢ is min{n, m} ([2], [9]).

Fig. 1. Equivalence of feasibility problem to maximum-flow problem

B. Infeasibility of an exactly scaled solution

We consider the case in which we might expect the
existence of an only almost scaled but not an exactly scaled
solution, i.e., a solution B such that b;; = 0 even though
a;; # 0. As we might expect, this solution, although
feasible, can be theoretically reached by the Sinkhorn
scaling process only after an infinite number of iterations.
We formulate the infeasibility of an exactly scaled solution
as the following equivalent network flow problem.

We are interested in checking whether there is some element
bi; such that a;; # 0 whose value is exactly zero in

4877

every feasible matrix scaling (assuming one exists). This
is equivalent to asking if there is a feasible scaling such
that b;; > 0 V{(¢,7)|a;; # 0}. While it is not possible
to answer this question exactly, it is possible to check (in
polynomial time) if there exists a feasible scaling such that
bij > € Y{(i,j)|a;; # 0}, for arbitrarily small values of
€. We work on the same graph as before (Figure 1), but
impose a lower bound of € on the flow on arcs {(¢, j)|a;; #
0,i € {1,---m},j € {1,--- ,n}}. By the same argument
as before, there exists a feasible matrix scaling B such
that b;; > eV{(4,7)|a;; # O} if and only if the maximum
flow equals K. The problem of finding the maximum flow
in a network with arc lower bounds is as hard as solving
two maximum flow problems [1] (Section 6.7, Flows with
lower bounds). Both maximum flow problems are solved on
bipartite graphs (one on the original graph, and one on a
transformed graph); therefore, the complexity of finding an
e-accurate solution to the question of the infeasibility of an
exactly scaled solution is also O(pqlog(q?/p)), where, as
before, p is the number of non-zero elements in A = (a;;),
and ¢ is min{n,m} [2]. We note that for this infeasibility
check, which is e—approximate, the run time is independent
of e. We also note that it is not possible to identify the exact
element in B that needs to be zero — we can only prove
that such an element necessarily exists.

IV. SCALING ALGORITHM BASED ON AN INTERIOR
POINT METHOD

Let us denote the mn—dimensional vector
of the elements of the matrix B by =z, ie,
r = [bu, b217 s ,bml, b12, b227 s 7bmn]T. Similarly,
let y = [au,agl, ce L, Qm1,A12,022, " 7 ,amn]T. Then we
can reformulate (2) as

minimize 37" 2; log 7t
subjectto —x; <0,i=1---mn ©)]

Cx=d

where C'z = d is the linear equality constraint derived
from the row and column sum constraints. We note that the

elements of C' are zeros and ones.

The optimization program (9) is a linear inequality con-
strained problem, with linear equality constraints and a
convex cost. The barrier method solves this problem by
solving a sequence of equality constrained problems, using
Newton’s method. It is also called the interior-point method,
since all the iterates of x are strictly feasible, i.e., they lie
in the relative interior of the feasible set. We have already
seen how the maximum-flow formulation can be used to
compute a feasible point z(?) in polynomial time. Using
the techniques presented in [4] and [16], we can derive the
following theorem:

Theorem 4: The complexity of scaling an m xn matrix to
specified row and column sums using the proposed interior-
point method with a logarithmic barrier and the KL-distance
as the objective function is O (m?n?(m + n)?log(™2)).
In particular, if n > m, we can equivalently bound the
complexity by O (n®log(2)).

Proof: The interior-point algorithm sequentially per-
forms outer iterations, and a centering step in every outer
iteration, which in turn involves a number of the Newton
steps, and the total complexity can be derived, as in [4]. m

A. Discussion on the relative computational efficiency of
various algorithms for scaling

We have already seen that while the Sinkhorn process is
an approximate algorithm, it is not polynomial in log(1/€).
For reasonably small and exactly scalable matrices, the
Sinkhorn process is a very attractive option because of its
ease of computation and reasonable computational times.
However, for larger or only almost scalable matrices (a
property that we have shown can be checked in polynomial
time), we need to use more general and efficient polyno-
mial approximation schemes. For the problem of scaling
square matrices to prescribed row and column sums, [13]
developed an iterative process that is a modification of
the Sinkhorn scaling process, and which has complexity
O (n"log(1/€)) for an n x n matrix. This is the first (and,
to our knowledge, only) existing strongly polynomial-time
algorithm for general matrix scaling. In this paper, we
approach the problem in an optimization framework and
develop an algorithm that scales nonnegative rectangular
matrices to prescribed row and column sums, with a com-
plexity of O (nflog(n/e)) for square matrices.

V. EXAMPLES

We compare the performance of the Sinkhorn scaling
process and the barrier method through a few examples.
Let us first consider a very basic example, demonstrative
of the kind of scenarios we are likely to encounter during
tracking and identity management in a small sensor
network. Suppose the system has 4 objects (1,2,3 and
4) which are initially given the identities W, X, Y and
Z. During the process of tracking multiple maneuvering
objects, when the objects come close to each other,
it becomes almost impossible to maintain the distinct
identities of the objects. Let us consider the case in which
after repeated interaction between the objects, the belief
matrix is confused. Suppose, at this instant, one of the
sensors notices a physical attribute of Object 4 which
distinguishes it as Z for certain. Then, our belief matrix
before the observation and the prior (unscaled) distribution
after the observation are given b

0.1 0.1 03 0.5

0.2 04 0.3 0.1

04 0.2 0.1 0.3 04 02 01 0

03 0.2 03 02 03 02 03 1
The maximum-flow formulation of Section III tells us

that the prior matrix is almost but not exactly scalable to
a doubly-stochastic matrix. We choose an € of 1078, A
MATLAB implementation of the Sinkhorn scaling process
takes 1.718 seconds (and 7105 iterations) to converge to
a solution, while an implementation of the interior-point
method in AMPL [6] using the MINOS [15] solver for the
centering takes 0.0156 seconds to reach the same solution.

0.1 01 03 O

02 04 03 0
and

4878

Finally, we present a 100 trial Monte Carlo simulation
over a range of matrix sizes, for two different cases -
Sinkhorn scaling for only almost scalable matrices, and the
interior-point method, whose performance is independent of
scalability. The random matrices for the Sinkhorn scaling
were generated such that the elements of the prior matrix
that had to be scaled to zero were no more than 0.1 in mag-
nitude, i.e., they only violated the exact scalability condition
weakly. The matrices for the interior-point method were
a random combination of exact and only almost scalable
matrices. The average computational times are plotted in
Figure 2. While the Sinkhorn scaling process would perform
very well for exactly scalable matrices, there is a dramatic
deterioration in its performance when the prior matrix is
only almost scalable, even if the elements that need to
be scaled to zero are small in magnitude. On the other
hand, the interior-point algorithm scales much better and
is independent of the scalability of the prior matrix, as long
as it is at least almost scalable.

In most sensor networks, the nodes are scattered over a
large area. In the presence of a group management proto-
col [18], the scaling is carried out within a group, making
the computation inherently distributed. The development of
a distributed algorithm for scaling matrices within a group
would be an interesting direction for further research.

CPU time vs. Matrix size
35 T T T T T T T T T

— Interior-point method
sk . Almost scalable Sinkhorn 1

cpu time (seconds)

Size of matrix (n x n)

Fig. 2. Computational time comparisons- Sinkhorn and Barrier methods

VI. CONCLUSIONS

The main aim of this paper is to develop efficient
algorithms for belief matrix maintenance, for the purpose of
identity management in large, possibly distributed, systems
with multiple objects. We identified the chief problems as
being (1) the efficient scaling of large rectangular nonneg-
ative matrices to prescribed row and column sums, and
(2) the efficient diagnosis of the behavior of the easy-to-
implement Sinkhorn iterations. We began with an analysis
of the properties of the solution of the Sinkhorn process
for the case when the matrix is only almost scalable, and
showed that the process always minimized the Kullback-
Leibler distance, even if it was slow to converge. We
formulated a maximum-flow with lower bounds algorithm
to efficiently predict the behavior of the Sinkhorn process,

and to generate a feasible point. We then formulated an
equivalent convex optimization problem, and showed that
the interior-point method was strongly polynomial in com-
plexity. We demonstrated through simulations that the pro-
posed algorithm is not sensitive to the sparsity structure of
the matrix, and performs better than the Sinkhorn algorithm.

REFERENCES

[11 R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory,
Algorithms and Applications. Prentice-Hall, 1993.

[2] R.K. Ahuja, J. B. Orlin, and C. Stein. Improved algorithms for
bipartite network flow. SIAM Journal on Computing, 23(5):906-933,
1994.

[3] M. Bacharach. Biproportional Matrices and Input-Output Change.
Number 16 in University of Cambridge, Department of Applied
Economics Monographs. Cambridge University Press, 1970.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[5] T. Cover and J. Thomas. Elements of Information Theory. John
Wiley and Sons, 1991.

[6] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modelling
Language for Mathematical Programming. Brooks/Cole-Thomson
Learning, 2003.

[7]1 J. Franklin and J. Lorenz. On the scaling of multidimensional
matrices. Linear Algebra and its Applications, 114/115:717-735,
1989.

[8] A. Golan, G. Judge, and S. Robinson. Recovering information
from incomplete or partial multisectoral economic data. Review of
Economics and Statistics, 76(3):541-549, August 1994.

[9]1 A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-
flow problem. Journal of the Association of Computational Machin-
ery, 35:921-940, 1988.

[10] 1. Hwang, H. Balakrishnan, K. Roy, J. Shin, L. Guibas, and C. Tom-
lin. Multiple-target Tracking and Identity Management algorithm
for Air Traffic Control. In Proceedings of IEEE Sensors (The
Second IEEE International Conference on Sensors), Toronto, Canada,
October 2003.

[11] I. Hwang, H. Balakrishnan, K. Roy, and C.J. Tomlin. Multiple-target
Tracking and Identity Management in clutter with application to
aircraft tracking. In Proceedings of the American Control Conference,
2004.

[12] 1. Hwang, K. Roy, H. Balakrishnan, and C.J. Tomlin. Distributed
multiple-target tracking and identity management in sensor networks.
In IEEE Conference on Decision and Control, 2004.

[13] N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic
strongly polynomial algorithm for matrix scaling and approximate
permanents. Combinatorica, 20:531-544, 2000.

[14] A.W. Marshall and I. Olkin. Scaling of matrices to achieve specified
row and column sums. Numerische Mathematik, 12:83-90, 1968.

[15] B.A. Murtagh and M.A. Saunders. Minos 5.5 user’s guide. Technical
Report SOL 83-20R, Department of Operations Research, Stanford
University, 1998.

[16] Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Methods
in Convex Programming. Society for Industrial and Applied Mathe-
matics, 1994.

[17] U. Rothblum and H. Schneider. Scaling of matrices which have
prespecified row and column sums via optimization. Linear Algebra
and its Applications, 114/115:737-764, 1989.

[18] J. Shin, L.J. Guibas, and F. Zhao. A distributed algorithm for
managing multi-target identities in wireless ad-hoc sensor networks.
In F. Zhao and L. Guibas, editors, Information Processing in Sensor
Networks, Lecture Notes in Computer Science 2654, pages 223-238,
Palo Alto, CA, April 2003.

[19] R. Sinkhorn. A relationship between arbitrary positive matrices and
stochastic matrices. Annals of Mathematical Statistics, 35:876-879,
1964.

[20] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row
and column sums. American Mathematical Monthly, 74:402-405,
1967.

[21] R. Sinkhorn and P. Knopp.
and doubly stochastic matrices.
21(2):343-348, 1967.

Concerning nonnegative matrices
Pacific Journal of Mathematics,

4879

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

