
Robust Detection of Comment Spam Using Entropy Rate

Alex Kantchelian
UC Berkeley

akant@eecs.berkeley.edu

Justin Ma
UC Berkeley

jtma@eecs.berkeley.edu

Ling Huang
Intel Labs

ling.huang@intel.com

Sadia Afroz
Drexel University, Philadelphia
sadia.afroz@drexel.edu

Anthony D. Joseph
UC Berkeley

adj@eecs.berkeley.edu

J. D. Tygar
UC Berkeley

tygar@eecs.berkeley.edu

ABSTRACT
In this work, we design a method for blog comment spam detec-
tion using the assumption that spam is any kind of uninformative
content. To measure the “informativeness” of a set of blog com-
ments, we construct a language and tokenization independent met-
ric which we call content complexity, providing a normalized an-
swer to the informal question “how much information does this
text contain?” We leverage this metric to create a small set of fea-
tures well-adjusted to comment spam detection by computing the
content complexity over groupings of messages sharing the same
author, the same sender IP, the same included links, etc.

We evaluate our method against an exact set of tens of millions
of comments collected over a four months period and containing
a variety of websites, including blogs and news sites. The data
was provided to us with an initial spam labeling from an indus-
try competitive source. Nevertheless the initial spam labeling had
unknown performance characteristics. To train a logistic regres-
sion on this dataset using our features, we derive a simple misla-
beling tolerant logistic regression algorithm based on expectation-
maximization, which we show generally outperforms the plain ver-
sion in precision-recall space.

By using a parsimonious hand-labeling strategy, we show that
our method can operate at an arbitrary high precision level, and that
it significantly dominates, both in terms of precision and recall, the
original labeling, despite being trained on it alone.

The content complexity metric, the use of a noise-tolerant lo-
gistic regression and the evaluation methodology are thus the three
central contributions with this work.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval - spam; K.4.2
[Computers and Society]: Social Issues—Abuse and crime in-
volving computers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1664-4/12/10 ...$15.00.

Keywords
Spam filtering, Comment spam, Content complexity, Noisy label,
Logistic regression

1. INTRODUCTION
Online social media have become indispensable, and a large part

of their success is that they are platforms for hosting user-generated
content. An important example of how users contribute value to a
social media site is the inclusion of comment threads in online ar-
ticles of various kinds (news, personal blogs, etc). Through com-
ments, users have an opportunity to share their insights with one
another. However, the medium presents a unique opportunity for
abuse by criminals and other miscreants. Abusers use comment
threads to post content containing links to spam and malware sites,
as well as content that itself is considered as spam by users. If
left unaddressed, abuse reduces the value of a social media site by
reducing the proportion of legitimate comments, thereby leaving
users less satisfied with their experience.

Many approaches were proposed for detecting email spam [16,
19, 22, 23]. However, most of them are not directly applicable to
detecting spam in social media. Spam in social media is different
from email spam in several ways. The majority of spam email mes-
sages are generated by dumb botnets using certain predefined tem-
plates [15]. Large volumes of them contain similar content, format
and target URLs [24], and display strong temporal regularity and
correlation in their sending time [15]. These properties make it rel-
ative easy to develop effective approaches to filter out email spam.
Unlike email spam messages, social media spam messages, for ex-
ample, blog comment spam messages, are usually short and care-
fully crafted by humans, for which even human experts have hard
times to differentiate from legitimate ones. We also observe little
temporal regularity in the posting of blog comment spam. These
differences require us to develop different detectors to filter out
blog comment spam. (Although we use the term “blog comment
spam,” our test set also included items such as newspaper articles.)

Social media spam also takes the advantage of the open nature of
the blog comment space. Anonymous communication is allowed in
most social media which is not possible in case of email. A single
spam message can potentially reach as many viewers as users of the
social media. These spam messages usually target search engines
to increase the pagerank of the advertised page as well as users.

Because of the scale and complexity of the data involved in de-
tecting social media spam, approaches based on machine learn-
ing (ML) offer promising solutions since they scale beyond what
a human expert can achieve. However, practitioners who are in-
terested in applying ML to filtering spam face three fundamental

challenges: First, developing features that provide a strong signal
for the classifier. Second, constructing an algorithmic approach that
can make effective use of those features. Third (often overlooked),
evaluation. To be useful, the evaluation must both measure mean-
ingful characteristics and be conducted in a setting as realistic as
possible. This means using a sample set which accurately describes
the real data. Given a limited amount of hand-labeling resources,
this is usually a hard task.

Our approach. While it is possible to define blog comment
spam as any kind of undesirable content in the fashion of personal
email spam, such a single-user centric view is problematic in the
context of an open medium where everybody is both entitled to
contribute to the media and to access it. In particular, it is possi-
ble to find instances of comments where two legitimate users might
disagree on whether the message is acceptable, as we show in the
evaluation section. Moreover, the context of the surrounding web-
site plays a crucial role in evaluating the undesirability of the com-
ment [10].

As the basis for our approach, we have decided to define spam as
content that is uninformative in the information-theoretic sense. In-
tuitively, if the comments generated by a particular user are highly
redundant, then there is a high likelihood that these messages will
appear as undesirable to the other users of the social media. The
content complexity metric we develop quantifies this redundancy in
an uniform manner for variable length texts. Once constructed, we
can almost immediately obtain meaningful features for blog com-
ment spam detection using this metric.

In addition to the content complexity features, we introduce a
latent variable model that can tolerate noisy labels. For practition-
ers who want to use machine learning methods, acquiring enough
labeled training data is one of the biggest challenges. Sometimes
they may gain access to feeds or services that provide machine-
labeled data that can be noisy (i.e., with the ground-truth label for
the data being different from the label provided). In an adversarial
context, this noise-tolerance is important because it may make our
approach robust to mislabeled outliers deliberately introduced. As
such, we adapt our model training to be tolerant of noisy labels. We
use a latent variable model to handle noisy labels and enhance the
detection accuracy of the content complexity features.

Our contributions. Our approach provides contributions on
three fronts:

1. We introduce content complexity features for characterizing
the IP addresses, usernames, and embedded URL hostnames
associated with each comment;

2. We adopt a latent variable model for training a classifier with
complexity features (with non-linear expansion) that can tol-
erate noisy labels in our data sets;

3. We conduct a rigorous evaluation of our method, leading
to semi-normalized precision-recall curves which we believe
are more telling than both receiver operating characteristic
curves or their associated single-dimension area under the
curve metric.

Organization. The rest of this paper is organized as follows.
Section 2 introduces the content complexity metric and explains
the construction of our feature vectors for comment spam detec-
tion. Section 3 describes the latent variable model we use for clas-
sification and tolerating noisy labels. Section 4 describes the data
set and the methods we use for the evaluations in Section 5. We
finish the paper with a discussion of related work in Section 6 and
discuss future work in Section 7.

2. CONTENT COMPLEXITY
We now turn to the construction of the content complexity metric

upon which we build features for blog comment spam detection.
Intuitively, content complexity describes the amount of redun-

dancy in the content associated with a string. While remaining
language-agnostic, it is normalized both for natural language and
string length. In everything that follows and without loss of gener-
ality, x ∈ {0; 1}∗ is a binary string and |x| designates its length, C
is a lossless data compression algorithm.

The basis for the content complexity metric is the compression
ratio |C(x)|/|x|. However, we expect the compression ratio of a
string to be sensitive to the original string length (e.g., we expect
the complexity of a long essay to be lower than the complexity of
a short paragraph). Because we want to be able to compare com-
plexity values between strings of different lengths, we introduce a
normalization factor h(n), a parametrized function which models
the expected compression ratio of strings of length n. The addition
of h(n) allows the content complexity of a string to be calculated
independently of its length, and we discuss how we fit the parame-
ters of h in Section 2.2.

2.1 Modeling the Compression Ratio
Let rC(x) = |C(x)|/|x| be the compression ratio (or the com-

plexity rate) of string x under compressor C. Let x1:n denote the
first n bytes subsequence of x. For any well behaved x and com-
pression algorithm C, we use the following function h(n) to ap-
proximate rC(x1:n):

h(n) = α+A logn/nγ +B/n, (1)
α,A,B > 0, 0 < γ < 1,

where α,A,B, γ are constants which depend on the probability
source emitting x alone.

The termB/n represents the fixed-size overhead of off-the-shelf
compression algorithms, and is an extension to Schurmann’s model
to help model the expected compression ratio for small-to-medium
values of n [18]. For example, compressing a zero-length string
with Lempel-Ziv-Markov chain algorithm (LZMA) [13] produces
a 15 byte output. The term is asymptotically negligible for larger
values of n.

The first two terms α + A logn/nγ describe a power-law con-
vergence to a fixed value α which can be interpreted as an upper
bound on the entropy rate of x.

Finally, while it is possible to give a precise mathematical state-
ment for what we mean by a “well behaved” sequence by requiring
stationarity and ergodicity of the stochastic process, we consider in
this work general sequences from natural language for which such
strong assumptions seem unwarranted. Furthermore, the model is
essentially a postulate which is only backed up a posteriori by the
following experimental evidence.

2.2 Natural Language Complexity Rates
For the rest of this work, we fix the compression function to be

LZMA1. For each of the six languages presented in Figure 1, we
randomly select a dozen plain text UTF-8 e-books from Project
Gutenberg. We minimally preprocess each file by discarding its
header and footer data which contain various copyright information
in English, irrespective of the actual document language. Then, for
each text, we compute the sequence of compression ratios on initial
subsequences of increasing size and plot the resulting graph.
1One reason for this choice is that LZMA can be set up to use a very
large compression block size - or equivalently a very large dictio-
nary size - which makes it able to capture long-range dependencies
in its input.

We finally superimpose the predicted compression ratio by the
above model, where the four parameters have been obtained by
a standard Levenberg [8] Marquardt [9] optimization on the non-
linear least squares formulation. The initial parameters values are
(α,A,B, γ) = (0, 1, 1, 0.5), but the final result is independent of
these values on a large domain. We fit the model using the data of
all six languages so that we obtain a single set of parameters.

Figure 1: LZMA compression ratios |C(x)|/|x| for prefixes of
ebooks in 6 languages, with a single fitted model (R2 = 0.995).
Each line represents one ebook. Notice the lower compressibil-
ity of Chinese.

The optimal parameters derived from our dataset are:

(α,A,B, γ) = (2.23, 7.13, 120, 0.419) (2)

Notice that the extrapolated LZMA entropy rate on infinite length
sequences is α = 2.23 bits per byte. This is compatible with
although much higher than Shannon’s experiments [20] suggest-
ing an average entropy rate of 1.3 bits per character for English
texts. Remarkably, LZMA’s stable behavior is well captured by our
simple model. While European languages are particularly well de-
scribed, the Asian language samples of our dataset exhibit a much
higher variance.

We can finally define the content complexity metric of a string x
as Q(x) = |C(x)|/|x| − h(|x|), where h(n) is defined in Eqn (1),
and its parameters are previously computed by Eqn (2). The con-
tent complexity Q(x) is a real number. Intuitively, it represents the
intrinsic “informativeness” of the string x independent of its length.
A low value of Q(x) means that x contains very little new infor-
mation and has a lot of redundancy. A high value of Q(x) means
that x contains a lot of new information and has little redundancy.2

2.3 From Complexity to Detection Features
One important question to answer is whether the natural lan-

guage as encountered in blog comments will be as well described
by the same model h as for ebooks. Figure 2 gives evidence of
a positive answer. Each point on this plot represents a username
for which all the contributions are concatenated together in a single

2Note that our definition of “informative” does not exactly corre-
spond to the colloquial use of the term. Nonetheless, as we discuss
below, our definition is highly effective at identifying commercial
and other spam.

string and the compression ratio is subsequently computed. The
predicted natural language complexity h is represented in solid
black. The model curve still describes fairly accurately the bulk
of the distribution, except for the fact that the entropy rate of blog
comments seems slightly lower than the one of ebooks. More inter-
estingly, we observe a relatively clear separation between ham and
spam on this graph.

Figure 2: A random sampling of a thousand usernames with
two associated comments or more. For each user, all her com-
ments are concatenated and the compression ratio is computed.
The predicted compression ratio h learned on the ebooks is in-
dicated in solid black. The labels are propagated from the com-
ments to the usernames by a simple zero-tolerance rule: a user
is labeled as spam if and only if one of her comments is labeled
as spam. Notice the occurring separation between ham and
spam.

The steps for generating our features are as follow. First, we
minimally normalize the messages by removing periodic runs of
characters, for a period of at most 4 chars. By convention, we only
keep the first two runs. For example, ahahahah becomes ahah,
ooooh becomes ooh but ahAHaHaHAHAh remains unchanged.
Such periodic runs artificially lower the content complexity metric
and are a non negligible source of false positives when left unad-
dressed.

Second, we choose an aggregation field between messages. In
this work, we form the following four groups:

1. messages which share the same username,

2. messages which share the same host name in any linked URL,

3. messages which are posted to the same permalink,

4. messages which come from the same IP address, within a
given time period.

The reason why we aggregate on multiple dimensions and not just
on a per username basis is that a consequent portion of the com-
ments of our dataset are anonymous, and that a spammer can easily
generate a new user account for every new comment, leading to sin-
gleton groupings. This evasion strategy is made more difficult by
aggregating and scoring across IP and including URL host names.

For the URL extraction, we use a relatively naive regular expres-
sion which matches top-level domains. To avoid IP aliasing, the

X G Y

Figure 3: Graphical model for our learning approach

aggregation by IP is parametrized by a timing parameter ∆t, such
that if the time delta between two posts coming from the same IP
address is smaller than ∆t, the messages are grouped together. The
full IP clustering is obtained by transitively applying the property:
two messages a, b are in the same IP grouping if and only if there
exists a sequence of messages staring at a and finishing at b sharing
the same IP and such that the consecutive time deltas are smaller
than ∆t. ∆t is taken to be 3 hours.

A further cleaning-up step we take is removing duplicate mes-
sages within groups. For our dataset, we do this by relying on the
presence of an update flag. We only keep the latest version of an
updated comment.

Finally, we compute the content complexity metric for all the
groups of two messages or more, and we back-propagate the results
to the messages themselves. In the case of the host name grouping,
when a message contains several linked URLs and thus belongs to
several host name groupings, we back-propagate the lowest content
complexity metric among all these groups. If a grouping resulted
in a singleton, we assign the normal content complexity zero to the
corresponding feature.

We call this set of features FC , for complexity features. Thus,
there are exactly four FC features per message. We also define
FLGS for log-group-size which as their name suggests give the log-
arithm of the grouping size (four features per message again), and
FdG for is-defined-group which are four binary features indicating
whether the associated grouping resulted in a singleton or not.

3. LATENT VARIABLE MODEL
We now turn to the design of the classifier. As our base compo-

nent, we use a logistic regression (LR), which accommodates well
to unknown dependencies between features. Besides, classification
is intuitively monotonic in the complexity features: a low content
complexity score is highly indicative of bulk and thus spam traffic.

More formally, our approach of classifying social media com-
ments trains a model using a dataset of n points: {(x1, y1), (x2, y2),
. . . ,xn, yn)}. For comment i in the data set, xi is the vector repre-
senting its associated features and yi ∈ {0, 1} represents the label
(our convention is 0 for ham, 1 for spam).

Furthermore, the label yi might be a noisy representation of the
example’s ground truth label gi ∈ {0, 1}. For example, a spam
comment could be mislabeled as benign in the training set (label
yi = 0) when its ground truth label is gi = 1. The goal of classi-
fication is to train a model so that given a feature vector xi we can
predict gi with high accuracy. Because the ground truth label is not
observed directly (only x and the noisy y are observed), we model
g as a latent variable and derive a latent version of LR similar to the
approach proposed in [17].

3.1 Model Description
Here we describe the probabilistic framework for the latent model,

which is illustrated in Figure 3. The variable X represents the dis-
tribution of messages in the feature space, G represents ground
truth labels, and Y represents the noisy labels. We assume both

X and Y are visible and G is hidden. The conditional probabilities
which define the model are P (G|X) (for inferring the ground truth
label given a data point) and P (Y |G) (for modeling the noise in
the dataset’s labels).

We parametrize the conditional probability P (G|X) using the
usual logistic regression model as follows:

P (G = g|X = x) = σ(x>w)gσ(−x>w)(1−g), (3)

where σ(z) = [1 + e−z]−1. We mention but notationally omit that
we append a dummy column vector of all 1’s to handle bias.

We define the noise model P (Y |G) as a mixture of Bernoulli
distributions which we express as

P (Y =y|G=g) = αgy(1− α)g(1−y)(1− β)(1−g)yβ(1−g)(1−y).

Because y and g are either 0 or 1, the exponents act as indicator
functions that help select a probability based on whether the ground
truth label and data label match. For example, α is the probability
that a spam blog comment is labeled correctly (g = 1 and y = 1),
(1 − α) is the probability that a spam blog comment is labeled
incorrectly (g = 1 and y = 0), (1 − β) is the probability that a
ham blog comment is labeled incorrectly (g = 0 and y = 1), and
β is the probability that a ham blog comment is labeled correctly
(g = 0 and y = 0).

3.2 Learning
The parameters we have to learn for our model are the classifica-

tion weight vector w, and the noise parameters α, β. We use an EM
algorithm to maximize the model’s log-likelihood L(w, α, β) =∑
i Li(w, α, β), where each data point’s log likelihood is

Li(w, α, β) ,

giyi logα+ gi(1− yi) log(1− α)+
(1− gi)yi log(1− β)+
(1− gi)(1− yi) log β+
gi log σ(x>i w) + (1− gi) log σ(−x>i w).

(4)

For the E-step, we want to compute the expected value for each
hidden ground truth label gi in our dataset using existing estimates
for conditional probabilities in our model. Because gi is a binary
value, we have E[gi|xi, yi] = P (gi=1|xi, yi), which we calculate
as follows:

P (gi=1|xi, yi) =
P (gi=1|xi)P (yi|gi=1)∑
g∈{0,1} P (g|xi)P (yi|g)

. (5)

Then, we assign ĝi ← E[gi|xi, yi], substitute ĝi for gi in Equa-
tion 4, and then proceed to the M-step.

In the M-step, we reassign the model parameters w, α, and β to
maximize the log-likelihood. Using the logistic regression model
and the L-BFGS optimization routine [14], we reassign the param-
eter vector w. The noise parameters α and β are reassigned as
follows:

α←
∑
i ĝiyi∑
i ĝi

, (6)

β ←
∑
i(1−ĝi)(1−yi)∑

i(1−ĝi)
. (7)

A good initialization is a key to a successful run of the EM. Ex-
perimentally, we found that initializing w to be the result of the
plain LR on the dataset and setting α = β = 0.5 provides the best
results. Hence, we use this initialization strategy in what follows.

Finally, we stop the EM loop as soon as the relativeL1 difference
of two consecutive w parameter vectors is within 1%, i.e.,

|w(i) −w(i−1)|
|w(i−1)|

≤ 0.01,

or if we exceed 300 iterations.

3.3 Feature Expansion
To capture potential non-linear effects among features, we use

polynomial basis functions over those features. Specifically, if z =
(z1, z2, . . . , zk) is our initial feature vector of k features, we ex-
pand it to all the terms in the expansion of the quadratic polynomial

(1+z1+. . .+zk)2. We define expan(z, 2) as the mapping from
the original data vector z to the quadratic polynomial expansion.

Formally:

expan(z, 2) = (1) ∪ (zi)i ∪ (zizj)i≤j .

Expanding a feature vector of size k results in a new vector of size
Θ(k2), thus we can only use this strategy when the initial number
of features is small.

Kernel logistic regression can be also used to handle non-linear
effects among features. However, it usually results in more com-
plex models and requires more computation budget to train a model
and make predictions than the linear method. We leave it as future
work to explore the feasibility of applying kernel logistic regression
to our problem.

4. EVALUATION METHOD
In this section, we explain our evaluation method. We start by

describing our dataset and motivate a sampling strategy for effi-
cient hand-labeling. We conclude by explaining our actual labeling
process.

4.1 Dataset
The dataset we use for our evaluations comes from a provider

that aggregates comment threads from a variety of social media
platforms, such as personal, political or business oriented blogs,
news websites, various entertainment websites, etc. The collection
time period is four months between December 2011 and March
2012. Non-English languages are present at a significant level:
we often encounter comments in Spanish, Portuguese, Chinese,
Japanese or French. The comment data also comes with machine-
generated labels for each comment which contain some error. The
provider is a well reputed source which implement cutting-edge
statistical filtering techniques.

In practice, the dataset resides in a Hadoop cluster where each
record has the form:

timestamp, user_id, end_user_ip,
article_permalink, content, spam_label

For a rigorous evaluation of our algorithms, we divide this dataset
into two equal length time periods of two months each. The first
time period will always serve as the training set (set A), while the
second will be used for scoring only (set B). In particular, when
computing the groupings for the content complexity metrics, we
never aggregate together two messages coming from distinct sub-
sets: future information is not available when training, and past
information is not available when scoring.

A summary of the split dataset is presented in Table 4.1. For
equal time periods, the scoring dataset is significantly larger than
the training dataset. We explain this fact by the rapid gain in pop-
ularity and expansion of the associated web service. Note that the
anti-aliasing process for grouping by IP can produce several dis-
tinct groups sharing the same IP, but at different times, as described
in 2.3.

Characteristic
Training
set A

Scoring
set B

Time period 12/01/2011
01/31/2012

02/01/2012
03/31/2012

Number of comments 25m
(420k/day)

40m
(660k/day)

Number of distinct user ids 990k 1.5m
Distinct anti-aliased IP addresses 3.9m 6.5m
Number of distinct article permalinks 1.4m 2.3m
Distinct hosts from linked URLs 99k 150k
Labeled spam 1.8% 3.6%

Table 1: Learning and training set characteristics.

4.2 An Unbiased Sampling Strategy
While we do have the provider’s labels for each of setsA andB,

we can only use them for training. Indeed, we know and we ob-
serve in the following evaluations that these labels display a non
negligible false positive rate. Since our goal is to compare our
methods both against themselves and the provider, we must estab-
lish a form of ground truth by manually labeling carefully chosen
samples from B.

Also, notice that we still want to use the provider’s labeling for
training, as a way to minimize the hand-labeling labor and test the
latent LR in the wild.

While remaining unbiased, our sampling strategy is driven by
two stringent constraints:

• the high cost of obtaining ground truth labels and

• the scarcity of positive (spam) instances in the data.

Because labeling blog comments requires looking up contextual
information (e.g., the actual blog post, surrounding comments, user
profile and user past activity, translating the contents in English
when necessary), it is a rather time consuming task. Under such
circumstances, a naive uniform sampling over B is inefficient.

The problem is exacerbated because only a small fraction of the
comments are actually spam. In practice, this means that naive
uniform sampling tends to have a strong bias towards extracting
ham comments.

The approach we choose relies on the observation that if one is
just interested in the precision score, i.e., the proportion of spam
among all the flagged instances, then restricting the sampling to
be uniform only over the flagged instances is sufficient. This is
expressed by the following basic result.

Let l : B → {0; 1} the ground truth labeling (0=ham, 1=spam).
Let τ be a detection threshold and f a classifier, e.g., any func-
tion mapping a feature vector to a real number in the 0-1 range.
For notational convenience, we define fτ (x) = If(x)>τ to be our
decision function. τ -level precision is defined as:

pτ =

∑
x fτ (x)l(x)∑
x fτ (x)

.

Let B+ = {x ∈ B, l(x) = 1} be the subset of spam messages
and χ+

τ = {x ∈ B, fτ (x) = 1} be the flagged users at detection
level τ .

PROPOSITION 4.1. Let χ̃+
τ ⊂ χ+

τ a uniformly selected subset
of size n. The following is an unbiased estimator of pτ :

p̃τ =

∑
x∈χ̃+

τ
l(x)

n

Figure 4: Labeler Monostatos has already labeled 277 over 1000 instances in task aisec_classifier_positive.

and

Var p̃τ =
|χ+
τ | − n

n(|χ+
τ | − 1)

(pτ − p2τ) ≤ 1

4n
.

Proof: see Appendix.
If we had a single classifier f to evaluate, we could start by find-

ing a detection threshold τ0 such that
|χ+
τ0
|

|B| = 5.66%, meaning that
the classifier flags 5.66% of the dataset at level τ0. This is justified
by the fact that the provider’s labeling which serves as a baseline
comparison is such that |χ

+|
|B| = 3.62%, so that we need at least

the same proportion of flagged instances for comparison. Adding a
reasonable safety margin gets us to 5.66%.

From there, we uniformly sample n instances χ̃+
τ0 ⊂ χ+

τ0 to
obtain the base evaluation sample for f . Notice that for the same
classifier f and τ > τ0, any subset {x ∈ χ̄+

τ0 , f(x) > τ} is also a
uniform sample in χ+

τ , albeit of a smaller size.
Besides the fact that such sampling does not directly yield the

recall or equivalently the false negative rate of the classifier, a ma-
jor disadvantage is that the sampling is completely dependent on
the classifier. A sampling that is uniform for one classifier has no
reason to be uniform for another one. Thus, one practical issue is
that it is difficult to sample and start labeling before the classifier is
defined.

Concerning the recall issue, we notice that it is sufficient to mul-
tiply the estimated precision p̃τ by the volume of flagged instances
|χ+
τ | to obtain an unnormalized measure which is directly propor-

tional to the recall of the algorithm. As |χ+
τ | is exactly known, the

uncertainty on the unnormalized recall is simply σ(p̃τ)|χ+
τ |. To

obtain a dimensionless number for the evaluations, we use p̃τ
|χ+
τ |
|B|

as our unnormalized recall measure.
Finally, we build our evaluation dataset using the following strat-

egy. Fix a uniform sampling rate 0 < r < 1 and a flagged volume

0 < v < 1. Let f1, . . . , fk be k classifiers we are interested in
evaluating. For each classifier i, compute by binary search the min-
imal detection threshold τ i0 such that {x ∈ B|f i(x) > τ i0}/|B| ≈
v. Uniformly sample with rate r in subset:

{x ∈ B|f1(x) > τ10 } ∪ · · · ∪ {x ∈ B|fk(x) > τk0 }.

The resulting sample provides by construction an unbiased evalu-
ation sample for each classifier w.r.t. the p̃ measure, provided no
classifier i is operated at detection thresholds lower than τ i0. In
practice, we choose r = 0.06% and v = 5.66%, which corre-
sponds to a minimum of rv|B| = 1358 samples to label.

4.3 Labeling Process
Once constructed, we must hand-label the sampled set. To this

end, we wrote a simple Python WSGI web application managing
simultaneous labelers and datasets. Figure 4 shows the labeling
screen the labeler is presented after logging in and selecting a task.
In the labeling screen, the possible actions for the user are: (1)
assign one of the three labels {ham, spam, I don’t know} along with
an optional short note on the instance; (2) browse back or forward
to correct a label; (3) look at the comment in its context.

The spam label is assigned to a comment when at least one of
the following is true.

1. Comment links or refers to a commercial service (most of
the time luxury, beauty, pharmaceutical, dating, or financial
offers) and appears to be completely unrelated to the com-
ments thread. No URL needs to be present as the spammer
can include it in the account profile, or simply ask the users
to search for a particular term.

2. Comment is a generic “thank you” or “nice blog”, with the
intent of boosting the user account reputation (when avail-
able, we examine user’s history).

Each comment gets three potentially conflicting labels from the
three labelers, who used much more or even completely different
information for labeling than what the algorithm uses. With three
labelers and three labels, an instance label can only be one of the
following. It is unanimous when the labelers choose the same la-
bel, a majority when exactly two labelers choose the same label,
and conflicting when all three labelers choose a different label. Ta-
ble 4.3 summarizes the labelers disagreement on all the evaluated
instances. We briefly tried to resolve conflicts, but quickly back-
tracked as the process is very time consuming. Instead, we used
the majority label when one was available, and we treated conflicts
and I don’t know labels as spam. We also experimented with turn-
ing the uncertain labels to ham or simply discarding them from the
dataset at the risk of breaking the uniformity of the sample. None
of the policies noticeably changed the results and the conclusions.

Total number of labeled comments 2349
Unanimity 1575 (67%)
Majority 728 (31%)

Conflicted 46 (2%)
I don’t know 28 (1%)

Table 2: The final evaluation sample characteristics. Most of
the comments result in an unanimous label while a tiny fraction
result in intra-labelers conflicts.

5. EVALUATION
We evaluate the approach of using our latent variable model

(Section 3) with content complexity features (Section 2) associ-
ated with social media comments from our data set (Section 4).
Over the course of the evaluation, we want to answer the following
questions: How effective are content complexity features for clas-
sification? Does the noise-tolerant latent variable model provide an
improvement over standard logistic regression (which is not noise-
tolerant)? And which combinations of complexity features provide
the most accurate classification?

Figure 5 shows the precision-recall curves for the classification
algorithms, comparing Plain LR to Latent LR using four different
combinations of features. In all figures, the precision and recall of
the data provider’s labels is shown for reference (it is a dot because
the labels are discreet “ham/spam” labels). The scaling of the x-
and y-axis of all figures is the same. The filled area around the
curve is an upper bound of a standard deviation above and below
the expected precision and recall for a given threshold, as given by
proposition 4.1. Notice the large precision variance in the low recall
region, as only a handful instances are labeled there (low n). We
stress the fact that we use the same labeled set for all the different
algorithms and features, meaning that the relative position of the
curves is by itself significant.

A few high-level trends emerge when looking at the plots. First
is that in all cases, all our classifiers that use complexity features
outperform the labels from the reference data provider. This is a
notable result because it means that it is possible to use a training
set labeled by another algorithm to train a classifier that can out-
perform the original algorithm. This observation also makes sense
because the complexity features help model a key characteristic of
spam: the repetitive, uninformative nature of the posted content
associated with a user/IP/embedded hostname.

Second, from Figures 5(a), 5(c), and 5(d), we see that for most
feature sets the Latent LR outperform the Plain LR (i.e., having
a higher precision for a given recall, or vice versa). Thus, a noise-
tolerant algorithm like Latent LR can provide an improvement over

Plain LR, especially in a data set that could contain noisy labels.
The exception is Figure 5(b), where the performance of Plain and
Latent LR are indistinguishable. This happens in Figure 5(b) be-
cause in a quadratic expansion with a higher number of dimensions,
the adverse affects of mislabeling are less noticeable because the
decision boundary itself is more complex (i.e., more nonlinear with
respect to the original, unexpanded features). Still, because Latent
LR performs better than Plain LR in most cases (and in the worst
case performs at least as well as Plain LR), it is safe to use the
Latent LR in practice.

But given the Latent LR algorithm, which of the feature set com-
binations are most appropriate for deploying in practice? As we
can see from Figure 6, the performance of the different feature sets
are relatively close overall. A slight edge may be awarded to the
FC ∪FLGS feature set because it has good performance in both the
high-precision region and high-recall regions of the precision-recall
space (the parts of the graph where unnormalized recall is ≤ 0.75
and≥ 1.75, respectively). By contrast, other feature sets may favor
higher recall at the expense of lower precision (like (FC∪FLGS)2),
while yet others may favor high precision at the expense of recall
(like the remaining feature sets). For example, at a recall of 0.5,
FC ∪ FLGS scores a precision of over 97%, whereas the quadratic
expansion (FC ∪ FLGS)2 only achieves 90% precision. And at a
recall of 1.8, FC ∪FLGS achieves a precision of 69%, whereas the
precision for FC and FC ∪ FdG is 65%.

On a computational complexity standpoint, there are three phases
with distinct performances: features extraction, learning, and scor-
ing. The scoring phase consists solely of an inner product of size
the number of features and a scalar comparison, thus its running
time is negligible. Depending on the number of features used, train-
ing a plain logistic regression on the whole dataset takes from a few
minutes to an hour on a 2 GHz Intel Core i7. On the same machine,
training a latent logistic regression takes between half an hour to
several hours. The feature extraction phase is the most compu-
tationally expensive and is done on a Hadoop grid with 8 mappers
and 6 reducers. Grouping comments (map and sort phase) and com-
pressing groups (reduce phase) takes a few hours, thus computing
the 4 core groupings takes about half a day.

Overall, because of the performance of the complexity features
combined with the latent variable model, they provide a promising
complementary to existing comment spam detection techniques.

Finally, we mention that there are two arbitrarily fixed param-
eters we did not evaluate. The first is the ∆t parameter we use
for IP anti-aliasing. Everything else considered equal, decreasing
this parameter breaks down groupings into smaller ones, until all
IP groupings are singletons. On the contrary, increasing it will
merge all groups sharing the same IP together, thus loosing the
anti-aliasing benefit. Thus, there is arguably an optimal value for
the parameter, which we did not try to evaluate. An adversary might
also want to arrange for posting her messages with a temporal rate
smaller than ∆t−1, thus it also acts as an implicit upper bound on
the spam rate of a given IP.

In the same fashion, the second parameter which evaluation we
did not take is the time window on which we compute the fea-
tures. This parameter is equal to two months in our evaluation, and
presents a behavior similar to the one of ∆t when varied.

6. RELATED WORK
User-generated content (e.g., comments and reviews) is widely

available on blog and online shopping websites, and online so-
cial networks. Mishne and Glance analyze various aspects of Web
blog comments in their 2006 study, which (among other findings)
showed that blog comments could be as crucial as the original blog

.
(a) Complexity only (b) Complexity with quadratic expansion

(c) Complexity + isDefined (d) Complexity + log-group-size

Figure 5: Precision-recall plots for Plain LR and Latent LR using different combinations of features, with standard deviations for
both axis.

post in providing original, searchable content to the article [11].
Brennan et al. use metadata, for example user activity, reputation,
comment time, and posts’ contents to predict the community rat-
ings of the Slashdot comments [3].

Ranking and rating help to promote high-quality comments and
demote low-quality ones. Using a large corpus of Digg stories and
comments, Hsu et al. collect a set of features related to user, con-
tent, and popularity to train a Support vector Machine (SVM) to
rank comments according to quality [6]. They find that the tandem
of user and content based features are among the most effective
ones. Their measure of content complexity is different from ours
because they compute the entropy of a single comment message,
whereas the study in this paper computes messages over a set of
comments grouped. Chen et al. show that the quality of a comment
is almost uncorrelated to the ratings of comment, and propose a
latent factor model to predict comment quality based on its con-
tent, author reputation, agreement in opinions, etc [4]. Mishra and
Rastogi apply semi-supervised learning techniques to address the
user bias issue in comment ratings using information from user-
comment graph [12].

Using data compression for spam filtering is not new. Bratko et
al. propose adaptive data compression models for email spam fil-
tering [2]. They train the classifier by building two compression
models from the training corpus, one from spam examples and one
from legitimate examples, and then predict the label of new in-
stances using a minimum description length principle [1].

Mishne et al. study the feasibility of using unigram language
models for detecting off-topic link spam blog comments [10]. They
use Kullback-Leibler divergence between language model of the
blog post and that of the comment to predict whether a comment is
link spam.

Shin et al. study comment spam on a research blog using vari-
ous content specific and host-based features [21]. Their approach
showed significant performance but was limited to only one partic-
ular blog whereas our data are more diverse including a wide range
of personal and commercial sites.

Gao et al. quantify and characterize spam campaigns on online
social networks using a dataset of “wall” messages between Face-
book users [5]. Their approach first groups together wall posts
that share either the same URL or strong textual similarity using

Figure 6: A side-by-side comparison of the precision-recall per-
formance for different feature sets using Latent LR.

a graph-based clustering technique, and then apply threshold filters
based on the wall post sending rate of user accounts and time cor-
relation within each subgraph to distinguish potentially malicious
clusters from benign ones.

Lee et al. propose a honeypot-based approach for uncovering
social spammers in online social network [7]. They deploy so-
cial honeypots for harvesting deceptive spam profiles from social
networking communities, and create spam classifier using machine
learning methods (e.g., SVM) based on a variety features derived
from user demographics (e.g., age, gender, location), user con-
tributed content (e.g., blog posts, comments, tweets), user activity
features (e.g., posting rate, tweet frequency), and user connections
(e.g., number of friends, followers, following).

Email spam problem has been extensively studied in recent years.
One category of approaches are based on machine learning tech-
niques. Sculley and Wachman show that Support Vector Machine
(SVM) classifiers produce state-of-the-art performance for online
content-based detection of spam on the web (e.g., email, comments,
splogs) [19]. To relieve the burden of labeling large-scale data, Xu
et al. propose the use of active semi-supervised learning method for
the training spam classifier [23]. Their approach can leverage both
unlabeled emails and asynchronous human feedback to build high
performance classifiers with small amount of labeled data. Instead
of using content-based information, Ramachandran et al. develop a
spam filtering system to classify email senders based on their send-
ing behavior [16]. Xie et al. characterize spamming botnets using
information from both spam payload (e.g., embedded URLs) and
spam server traffic, and develop a signature-based framework to
detect botnet-based spam emails and botnet membership [22].

7. CONCLUSION AND FUTURE WORK
In this paper we described a robust approach of detecting spam in

social media. Our approach uses content complexity of comments
with a latent logistic regression classifier. This approach is a first
step in detecting comment spam from noisy and missing labels us-
ing language-agnostic features. Our evaluation shows the approach
is general and robust, and provides new insights for industry to fur-
ther improve their techniques for fighting comment spam.

Moving forward, a diverse of research directions can be pursued
to improve the performance of comment spam detection. We high-
light a few below.
Alternative definition of spam. Our algorithm is designed based
on the informativeness of a comment, and only uninformative com-
ments are considered as spam. The algorithm misclassifies in cases
where this assumption is not true (e.g., short messages saying "wow,"
"nice," or "thanks," messages containing only URLs). A more
broad definition of spam, along with the classifiers derived from it,
could provide bigger coverage on spam cases and further improve
spam detection performance.
More features. In addition to the content-complexity based fea-
tures, there are a variety of other features we would like to incorpo-
rate into our framework to further improve its detection accuracy.
Among them, the containment of spam trigger words and URLs
has been shown to be very discriminative [22], as well as the post-
ing behavior of users [16], user reputation [4] and user-comment
relationship graph [12].
Online update and operation. In production, spam detectors are
usually deployed and operated in an online setting. When a new ex-
ample arrives, features need to be extracted from the data and fed to
the classifier. The classifier makes a prediction, is told if its predic-
tion is correct, and updates its model accordingly. While our clas-
sifier itself can be easily adapted for online setting, the feature sets
are very intertwined: when a new data point is assigned to groups
with several messages in it, the complete calculation of the content
complexity measure has to be re-triggered and back-propagated to
all affected messages. This could lead to an expensive online up-
date step for several data points. We leave it as a future work to
develop an efficient (incremental) approach for extracting content
complexity features from comment data.
Human in the loop. There are both passive and active ways to
incorporate human experts in the predict-feedback-update loop for
improving and adapting the spam classifier. In a passive way, ex-
perts may examine (some of) the classification results (e.g., those
comments classified as spam) to identify the mistakes that the clas-
sifier has and re-train the classifier using the misclassified exam-
ples. In an active setting, the classifier can use an active learning
approach to identify the weakest classification region of itself and
ask human expert to collect more labeled samples to improve its
confidence in that region.
Adversary-awareness. Knowing what features that a spam classi-
fier is built on, an adversary may modify its comments and its be-
havior of comments posting to evade the spam classifier. We should
develop learning algorithms that are robust to adversaries, using
features that are resistant to adversarial modification, and adopt an
online approach that can continuously adapt the classifier to the ad-
versarial changes.
Distributed learning framework. In this social network era, users
are generating enormous content. With massive data being contin-
uously generated, it is imperative to develop a distributed learning
framework to speed up the (online) training, testing and updating
process for spam classifier.

Acknowledgement
We thank Impermium Corporation for the data as well as invalu-
able suggestions to improve this work. We also thank anonymous
reviewers for their helpful comments on the paper. We are grateful
to the Intel Science and Technology Center for Secure Comput-
ing, DARPA (grant N10AP20014), the National Science Founda-
tion (through the TRUST Science and Technology Center), and the
US Department of State (DRL) for supporting this work in part.

The opinion in this paper are those of the authors and do not neces-
sary reflect the opinion of any of the funding sponsors.

8. REFERENCES
[1] A. R. Barron, J. Rissanen, and B. Yu. The minimum

description length principle in coding and modeling. IEEE
Transactions on Information Theory, 44(6):2743–2760,
1998.

[2] A. Bratko, G. V. Cormack, B. Filipic, T. R. Lynam, and
B. Zupan. Spam filtering using statistical data compression
models. Journal of Machine Learning Research,
7:2673–2698, Dec 2006.

[3] M. Brennan, S. Wrazien, and R. Greenstadt. Learning to
extract quality discourse in online communities. In
Workshops at the Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[4] B.-C. Chen, J. Guo, B. Tseng, and J. Yang. User reputation
in a comment rating environment. In Proceedings of
KDD’11, 2011.

[5] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao.
Detecting and characterizing social spam campaigns. In
Proceedings of IMC, 2010.

[6] C.-F. Hsu, E. Khabiri, and J. Caverlee. Ranking Comments
on the Social Web. In Proceedings of the IEEE International
Conference on Computational Science and Engineering
(CSE), pages 90–97, 2009.

[7] K. Lee, J. Caverlee, and S. Webb. Uncovering social
spammers: social honeypots+ machine learning. In
Proceedings of SIGIR, 2010.

[8] K. Levenberg. A method for the solution of certain
non-linear problems in least squares. In Quarterly of Applied
Mathematics, volume 2, pages 164–168, 1944.

[9] D. Marquardt. An algorithm for least-squares estimation of
nonlinear parameters. In SIAM Journal on Applied
Mathematics, volume 11, pages 430–441, 1963.

[10] G. Mishne, D. Carmel, and R. Lempel. Blocking Blog Spam
with Language Model Disagreement. In Proceedings of the
International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), 2005.

[11] G. Mishne and N. Glance. Leave a Reply: An Analysis of
Weblog Comments. In Proceedings of the International
World Wide Web Conference (WWW), 2006.

[12] A. Mishra and R. Rastogi. Semi-supervised correction of
biased comment ratings. In Proceedings of WWW’12, 2012.

[13] I. Pavlov. LZMA SDK (software development kit), 2007.
[14] P. L. R. H. Byrd and J. Nocedal. A limited memory

algorithm for bound constrained optimization. In SIAM
Journal on Scientific and Statistical Computing, volume 16,
pages 1190–1208, 1995.

[15] A. Ramachandran and N. Feamster. Understanding the
network-level behavior of spammers. In Proceedings of
Sigcomm, 2006.

[16] A. Ramachandran, N. Feamster, and S. Vempala. Filtering
spam with behavioral blacklisting. In Proceedings of
CCS’07, 2007.

[17] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin,
L. Bogoni, and L. Moy. Learning from crowds. Journal of
Machine Learning Research, 11:1297–1322, April 2010.

[18] T. Schurmann and P. Grassberger. Entropy estimation of
symbol sequence. Chaos (Woodbury, N.Y.), 6(3):414–427,
Sept. 1996.

[19] D. Sculley and G. M. Wachman. Relaxed online svms for
spam filtering. In Proceedings of SIGIR’07, 2007.

[20] C. Shannon. Prediction and Entropy of Printed English. Bell
System Technical Journal, 30(1):50–64, 1951.

[21] Y. Shin, M. Gupta, and S. Myers. Prevalence and mitigation
of forum spamming. In INFOCOM, 2011 Proceedings IEEE,
pages 2309–2317. IEEE, 2011.

[22] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and
I. Osipkov. Spamming botnets: Signatures and
characteristics. In Proceedings of SIGCOMM 08, 2008.

[23] J.-M. Xu, G. Fumera, F. Roli, and Z.-H. Zhou. Training
spamassassin with active semi-supervised learning. In
Proceedings of the 6th Conference on Email and Anti-Spam
(CEAS’09), 2009.

[24] L. Zhuang, J. Dunagan, D. R. Simon, H. J. Wang, I. Osipkov,
G. Hulten, and J. Tygar. Characterizing botnets from email
spam records. In Proceedings of LEET, 2008.

9. APPENDIX
This is a formal proof of proposition 4.1.

E[p̃τ] =

(
|χ+
τ |
n

)−1 ∑
|χ̃+
τ |=n

∑
x,x∈χ̃+

τ
l(x)

n

=

(
|χ+
τ |
n

)−1
1

n

∑
|χ̃+
τ |=n

∑
x∈B

l(x)1
x∈χ̃+

τ

=

(
|χ+
τ |
n

)−1
1

n

∑
x∈B

l(x)
∑
|χ̃+
τ |=n

1
x∈χ̃+

τ

=

(
|χ+
τ |
n

)−1
1

n

∑
x∈B

l(x)

(
|χ+
τ | − 1

n− 1

)
1
x∈χ+

τ

=
1

n

∑
x∈B

l(x)1
x∈χ+

τ

n

|χ+
τ |

=
1

|χ+
τ |

∑
x∈B

l(x)1
x∈χ+

τ

= pτ

proving that p̃r is unbiased.

E[p̃2τ] =

(
|χ+
τ |
n

)−1 ∑
|χ̃+
τ |=n

(∑
x,x∈χ̃+

τ
l(x)

n

)2

=

(
|χ+
τ |
n

)−1
1

n2

∑
|χ̃+
τ |=n

(∑
x∈B

l(x)1
x∈χ̃+

τ

)2

=

(
|χ+
τ |
n

)−1
1

n2

∑
|χ̃+
τ |=n

∑
x,y∈B

l(x)l(y)1
x∈χ̃+

τ
1
y∈χ̃+

τ

=

(
|χ+
τ |
n

)−1
1

n2

∑
x,y∈B

l(x)l(y)
∑
|χ̃+
τ |=n

1
x∈χ̃+

τ
1
y∈χ̃+

τ

=

(
|χ+
τ |
n

)−1
1

n2

∑
x,y∈B

l(x)l(y)
((|χ+

τ | − 1

n− 1

)
1
x,y∈χ+

τ
1x=y

+

(
|χ+
τ | − 2

n− 2

)
1
x,y∈χ+

τ
1x 6=y

)
=

1

n|χ+
τ |

∑
x,y∈B

l(x)l(y)1
x,y∈χ+

τ

(
1x=y +

n− 1

|χ+
τ | − 1

1x 6=y

)
=

1

n|χ+
τ |

(n− 1

|χ+
τ | − 1

∑
x,y∈B

l(x)l(y)1
x,y∈χ+

τ

+
|χ+
τ | − n
|χ+
τ | − 1

∑
x∈B

l(x)1
x∈χ+

τ

)
=

1

n(|χ+
τ | − 1)

[
|χ+
τ |(n− 1)p2τ + (|χ+

τ | − n)pτ
]

Hence:

Var p̃τ = E[p̃2τ]− E[p̃τ]2 = E[p̃2τ]− p2τ

=
|χ+
τ | − n

n(|χ+
τ | − 1)

(pτ − p2τ)

