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Abstract. Taint-tracking is emerging as a general technique in software security
to complement virtualization and static analysis. It has been applied faraec
detection of a wide range of attacks on benign software, as well as inarealw
defense. Although it is quite robust for tackling the former problem|iegion

of taint analysis to untrusted (and potentially malicious) software is riddled with
several difficulties that lead to gaping holes in defense. These holesatisnly

due to the limitations of information flow analysis techniques, but also theenatur
of today’s software architectures and distribution models. This papétidiigs
these problems using an array of simple but powerful evasion tecmitiat
can easily defeat taint-tracking defenses. Given today’s binamryebssftware
distribution and deployment models, our results suggest that informétian
techniques will be of limited use against future malware that has beégneels
with the intent of evading these defenses.

1 Introduction

Information flow analyis has long been recognized as an itapbtechnique for de-
fending against attacks on confidentiality as well as intg¢#,8]. Over the past quarter
century, information flow research has been concentratestiatic analysis techniques,
since they can detecbvert channelge.g., so-called implicit information flows) missed
by runtime monitoring techniques.

Static analyses for information-flow have been developethéncontext of high-
level, type-safe languages, so they cannot be directlyieppd the vast majority of
COTS software that is available only in binary form. Worsaffwgare obfuscation and
encryption techniques commonly employed in malware (a$ agebome benign soft-
ware for intellectual property protection) render any kiridtatic analysis very difficult,
if not outright impossible. Even in the absence of obfusegtbinaries are notoriously
hard to analyze: even the basic step of accurate disassetob/not have solutions
that are robust enough to work on large x86 binaries. As atrgawduction-grade
tools that operate on binaries rely on dynamic (rather thaticy analyis and instru-
mentation [3,7,17,25].



Prompted by the need to work with binaries, several reseasdtave recently devel-
oped dynamic information-flow techniques for COTS binafi€15,33]. These tech-
niques have enabled accurate detection of a wide rangeagkatbn trusted softwate
including those based on memory corruption [15,33], forsteihg bugs, command or
SQL injection [2,27,40], cross-site scripting [37], andoso More recently, researchers
have reported significant successes in applying dynanocrivdtion flow techniques on
existing malware, both from the perspective of understamtieir behavior [1], and de-
tecting runtime violation of policies [13,31]. Althoughdgmic taint analysis technique
is quite robust for protecting trusted software, its apglmn to untrusted (and poten-
tially malicious) software is subject to a slew of evasiocht@ques that significantly
limit its utility. We point out that understanding the lirattons of defensive techniques
is not just an academic exercise, but a problem with impogeactical consequences:
emerging malware does not just employ variants of its paldday using metamor-
phic/polymorphic techniques, but instead has begun to drebenplex evasion tech-
niques to detect monitoring environments as a means toquritéeintellectual prop-
erty” from being discovered. For instance, W32/MyDoom [18HaN32/Ratos [35]
adopt self-checking and code execution timing techniquedetermine whether they
are under analysis or not. Likewise, self-modifying teciugis — among others —
are used as well (W32/HIV [18]) to make malware debuggingisassarder [34,36].
Thus, a necessary first step for developing resilient defeissthat of understanding the
weaknesses and limitations of existing defenses. Thigigthtivation of our work. We
have organized our discussion into three major sectionslesvé, depending on the
context in which information flow is being used.

Stand-alone malware. When applied to malware, a natural question is whether the
covert channels that were ignored by dynamic techniqueksl cmiexploited by adap-
tive malware to thwart information-flow based defenses.s€heovert channels were
ignored in the context of trusted software since their “cityawas deemed too small

to pose a significant threat. More importantly, attackeraatchave any control over the
code of trusted software, and hence cannot influence themesr capacity of these
channels. In contrast, malware writers can deliberatelpezhrcovert channels since
they have complete control over malware code. In this paperirst show that it is
indeed very easy for malware writers to insert such coveahngls into their software.
These evasion techniques are simple enough that they carctorated manually,

or using simple, automated program transformation tectesigwe show that it is very
difficult to defeat these evasion techniques, unless vengewative reasoning is em
ployed, e.g., assuming that any information read by a progreuld leak to any of its
outputs. Unfortunately, such weak assumptions can grkatitythe purposes to which
dynamic information flow analysis can be used, e.g., Sties@h [31] use information
flow analysis to detect “remote-control” behavior of botéieh is identified when ar-
guments to security-critical system calls are tainted.dbéaservative notion of tainting
is used, then all programs that communicate over the netwoti#d have to be flagged
as “bots,” which would defeat the purpose of that analysis.

Malware plug-ins. Next, we consider recent evolution in software deploymeodm
els that has favored the use of plug-in based architechtBresvser helper objects

4 In this paper, the term “trusted software” is used to refer to softwarésttraisted to be benign.



(BHOSs), which constitute one of the most common forms of naaénin existence to-
day, belong to this category. Other examples includes deatimiewer plug-ins, media
codecs, and so on. We describe several novel attacks thapssile in the context of
plug-ins:

— Attacks on integrity of taint informatiorMalware can achieve its goal indirectly
by modifying the variables used by its host application,,epdifying a file name
variable in the host application so that it points to a fild thaants to overwrite. Al-
ternatively, it may be able to bypass instrumentation coderted for taint-tracking
by corrupting program control-flow.

— Attacks based on violating application binary interfaeéhereby malware violates
assumptions such as those involving stack layout and ezgisage between callers
and callees.

— Race-condition attacks on taint metadakanally, we describe attacks where mal-
ware races with benign host application to write securitgsitive data. In a success-
ful attack, malware is able to control the value of this dathile the taint status of
the data reflects the write operation of benign code.

While conservative notions of tainting could potentially bged to thwart these at-
tacks [30], this would restrict the applicability of infoation-flow techniques even
more.

Analyzing future behavior of malware. Today’s malware is often packaged with
software that seems to provide legitimate functionalitithwnalicious behavior ex-
posed only under certain “trigger conditions,” e.g., whemmmand is received from a
remote site controlled by an attacker. Moreover, malwarg imeorporate anti-analysis
features so that malicious paths are avoided when execlitieith an analysis environ-
ment. To uncover such malicious behavior, it is necessatg¥elop techniques that can
reason about program paths that are not exercised duringaring. While one may
attempt to force execution of all program paths, such ancsmpr is likely to be very
expensive, and more likely to suffer from semantic incdesisies that may arise due to
forcing execution down branches that aren’t taken durireretion. A more selective
approach has been proposed by Matel. [1] that explores paths guarded by tainted
data, rather than all paths. This technique has been quitessful in the context of ex-
isting malware. The heart of this approach is a techniquielises a decision procedure
to discover memory locations that could become tainted asualtrof program execu-
tion, and explores branches that are guarded by such da$sclion 4, we show that
these trigger discovery mechanisms (and more generadlyetthnique for discovering
which data items can become tainted) can be easily evadedrppgefully embedding
memory errors in malicious code.

Paper organization. Sections 2 through 4 describe our evasion techniques, iagghn
along the lines described above. Where possible, mitigatitinese evasions and their
implications on information flow analyses are faced as welummary of related work
is provided in Section 5, followed by concluding remarks @cton 6.



2 Stand-Alone Untrusted Applications

For the sake of concreteness, we discuss the impact of evattacks, as well as mit-
igation measures, in the context of the “remote control”awédr detection technique
presented by Stinsoet al.[31], although the evasion techniques themselves are-appli
cable against other defenses as well, e.g., dynamic spydeseetion [13].

Stinsoret al.observed that bots receive commands from a central sité-(iaer”)
and carry them out. This typically manifests a flow of infotioa from an input op-
eration (e.g., a ead system call) to an output operation (e.g., the file named in an
open system call). Their implementation relied aontent-based tainting:e., taint
was assumed betweenand y if their values matched (identical or had large com-
mon substrings) or if their storage locations overlappedndted by the paper authors,
content-based tainting is particularly vulnerable: it emsily be evaded using simple
encoding/decoding operations, e.g., by XOR’ing the dath wimask value before its
use. However, the authors suggest that a more traditiorakmentation of runtime
information flow tracking [15] would provide “thorough cawege” and hence render
attacks much harder. Below, we describe simple evasionunesthat allow malware
to “drive a truck” through the gaps in most dynamic tainekiag techniques, and pro-
ceed to discuss possible mitigation mechanisms and thplidations.

2.1 Background: Evasion using Control Dependence and Imgdit Flows

Dynamic information flow techniques that operate on trusteftivare tend to focus on
explicit flowsthat take place via assignments. It is well known that infation can flow
from a variabley to another variable without any explicit assignments. Indeed, a num-
ber of covert channels for information flow have been ideadifby previous research
in this area. We demonstrate the ease of constructing evatacks using these covert
channels. We focus on two forms of non-explicit flow, namebntrol dependences and
implicit flows.

Control dependence arises when a variable is assigned within an if-then-else st
ment whose condition involves a sensitive (taifjedriable, e.g.,

if (y=1)thenx :=1; elsex := 0; endif
Clearly, the value of is dependent o, even though there is no assignment of the latter
to the former. In particular, the above code snippet enatapging of a single bit from
y to x without using assignments. Using arway branch (e.g., a switch statement with
n cases) will allow copying ofog n bits. A malware writer can propagate an arbitrarily
large amount of information without using explicit flows byngly enclosing the above
code snippet within a loop.

Implicit flows arise by virtue of semantic relationships that exist betwtbe values
of variables in a program, e.g., consider the following cedippet that allows copying
of one bit of data from a sensitive variahjeo w without using explicit flows or control
dependences:

5 Typically, the term “taint” is used in the context of integrity, while “sensitive'uiged in the
context of confidentiality.



l.z:=0; z:=0;

2.if (y = 1) thenz := 1; elsez := 1; endif
3.if (x = 0) then w := 0; endif

4.if (z = 0) thenw := 1; endif

Atline 2, if y = 1 thenz is marked sensitive because of control-dependent assignme
in the then-clause. Since there is no assignmenindhe then-clause of line 2, it is not
marked sensitive. Moreover, the condition at line 3 will hotd because was assigned

a value of 1 at line 2. But the condition at line 4 holds,s@s assigned the value of
1, but it is not marked sensitive sineds not sensitive at this point. Now, consider the
case whery = 0. Following a similar line of reasoning, it can be seen thawill be
assigned the valugat line 3, but it will not be marked sensitive. Thus, in botsesw
gets the same value gsbut it is not marked as sensitive.

As with control dependences, a malware writer can copy aitrariy large number
of bits using nothing but implicit flow by simply enclosingetbove code within a loop.
It is thus trivial for a malware writer to evade taint-tracgitechniques that track only
direct data dependencies and control dependencies.

2.2 Difficulty of Mitigating Evasion Attacks

To thwart control-dependence-based evasion, a tairkitrgéechnique can be enhanced
to track control dependences. This is easy to do, even inibB)dy associating t&int
labelwith theprogram counter (PC)13]®. Unfortunately, this will lead to an increase in
false positives, i.e., many benign programs will be flaggeexibiting remote-control
behavior. To illustrate this, consider the following codéppet that might be included
in a program that periodically downloads data from the nekwand saves it in differ-
ent files based on the format of the data. Such code may be mggdgrams such as
weather or stock ticker applets:

int n = read(network, y, 1);
if (xy=="t)

fp = fopen("data.txt”, "w");
else if(xy ="7)

fp = fopen("data.jpg”, "w");

Note that there is a control dependence between data readheveetwork and
the file name opened, so a technique that flags bots (or otHaanea based on such
dependence would report a false alarm. More generallytimglidation checks can
often raise false positives, as in the following example:

5 Specifically, the PC is tainted within the body of a conditional if the condition irestainted
variables. Moreover, targets of assignments become tainted wheéneWC is tainted. Finally,
the taint label of the PC is restored at the merge point following a conditiraakh.



int n = read(network, ysizeofy));

if (sanity.check(y)){
fp = fopen("data”, "w");

else{
... 1l report error

In the context of benign software, false positives due tdrobdependence tracking
can be managed using developer annotations (so-calledsemdent or declassification
annotations). We obviously cannot rely on developer ariwotsiin untrusted software;
it is also impractical for code consumers, even if they am#adgeable programmers
or system administrators, to understand and annotatestietraode, especially when it
is distributed in the form of binaries.

Mitigating implicit-flow based evasion is even harder. Istgen shown that purely
dynamic techniques cannot detect implicit flows [39]. Thibécause, as illustrated by
the implicit flow example above, it is necessary to reasorubhssignments that take
place onunexecutegrogram branches. On binaries, this amounts to identifyirg
memory locations that may be updated on program branchearthaot taken. Several
features of untrusted COTS binaries combine to make thisi@nointractable:

— Address arithmetic involving values that are difficult toyqaute statically

— Indirect data references and indirect calls

— Lack of information about types of objects

— Absence of size information for stack-allocated and stattjects (i.e., variables)

— Possibility that malicious code may violate low-level centions and requirements
regarding the use of stack, registers, control-flow, etc.

As a result, it is unlikely that implicit flows can be accutgtgacked for the vast ma-

jority of today’s untrusted software that gets distribuésdk86 binaries.

2.3 Implications

Evasion measures described above can be mitigated byngg&ali all data written by
untrusted code as tainted (i.e., not trustworthy), and (daa written by untrusted
code as sensitive if any of the data it has read is sensitorestnd-alone applications,
these assumptions mean that all data output by an untrusbeggs is tainted, and
moreover, is sensitive if the process input any sensitita. dia other words, this choice
means that fine-grained taint-tracking (or information flamalysis) is not providing
any benefit over a coarse-grained, conservative techriigieperates at the granularity
of processes, and does not track any of the internal acticapmcess.

In the context of detecting remote-control behavior, weeobs that in the absence
of evasion measures, the use of dynamic information flowrtiecies enables us to dis-
tinguish between malicious behavior, which involves the afssecurity-critical system
call arguments that directly depend on untrusted data, antgb behavior. The use
of evasion techniques can easily fool taint-tracking tégqhes that only reason about
explicit flows. If the technique is enhanced to reason abouotrol dependences, eva-



sion resistance is improved, but as illustrated by the exasrgbove, many more false
positives are bound to be reported, thus significantly dishing the ability of the tech-

nique to distinguish between malicious and benign behavibwe further enhance

evasion resistance to address all implicit flows, we willdhtvtreat all data used by an
untrusted application to be tainted, thereby completedinip the ability to distinguish

between benign and malicious behavior.

In summary, the emergence of practical dynamic taint-frectechniques for bina-
ries enabled high-precision exploit detection on trustatec This was possible because
the presence of explicit information flow from untrusted re@uto a security-critical
sink indicated the ability of an attacker to exert a high éegof control over opera-
tions that have a high risk of compromising the target apgiii;n — a level of control
that was unlikely to be intended by the application developeseemed that a similar
logic could be applied to untrusted code, i.e., a clearrtititn could be made between
acceptable uses of tainted data that are likely to be fourbimign applications from
malicious uses found in malware. The discussion so far stivatshis selectivity is lost
once malware writers adapt to evade information flow tealesq

3 Analyzing Runtime Behavior of Shared-Memory Extensions

A significant fraction of today’s malware is packaged as aeresion to some larger
piece of software such as browser or the OS kernel. Browseraraespecially attrac-
tive target for malware authors because of their ubiquitases in end-user financial
transactions. Thus, an attacker who can subvert a browsesteal information such as
bank account passwords that can subsequently be usedltmstasy.

Most browsers support software extensions, commonlynede¢o as browser helper
objects (BHOs)that add additional functionality such as better GUI sesj@automatic
form filling, and viewing various forms of multimedia conte®due to the growing
trend among users of installing off-the-shelf BHOs for thparposes, stealthy malware
often gets installed on user systems as BHOs. These maiBibi®Ds exhibit common
spyware behaviour such as stealing user credentials angroarising host OS integrity
for evading detection and easier installation of futurevmaaé.

Recent works [13] have proposed the idea of using informatiow-based ap-
proaches to track the flow of confidential data such as copk@sswords and cre-
dentials in form-data as it gets processed by web browsdrt@detect any leakage
of such data by malware masquerading as benign BHOs loadix iaddress space
of the browser. The crux of the problem is to selectively idfgmalware’s actions.
They use amttribution mechanism to attribute actions that access system resoarce
trusted and untrusted contexts. System calls or operatiaate directly by the BHO or
by a host browser function called on its behalf, belong touhtusted context, while
those by the host browser itself belong to the trusted cornifexdentify untrusted con-
text, their scheme identifies host function invocationg tre called by the untrusted
code in addition to identifying execution of untrusted cddelf. In the untrusted con-
text, any sensitive data processed is flagged “suspiciamns!’ presence of such data at

" Depending on the browser, browser extensions are named in diffeags. Internet Explorer
uses the term BHOSs, while Gecko-based browsers (e.g., FireFexhagerm plug-ins. We
will use the two terms interchangeably throughout the paper.



output operations such as the system calls that perfornesvidt networks and files,
raises alarms signalling leakage of confidential data efteby the BHO. Although
these methods are successful in analysis and detectiomrehtmalware, they are not
carefully designed to detect adaptive malware that empagsion techniques against
the specific mechanisms proposed in these defenses. Betowrasent several such
evasion attacks. We remind our readers that the techniqasemed in the previous
section continue to be available to malware that operatdsmtihe address space of a
(benign) host application. In this section, our focus is dditonal evasion techniques
that become possible due to this shared address-space.

3.1 Attacks using arbitrary memory corruption

Corruption of untainted/insensitive data to effect leakag. By corrupting the mem-
ory used by its host application, a malicious plug-in carug&lthe host application to
carry out its tasks outside the untrusted context. For ft&taa privacy-braching mal-
waredoes nonecessarily need to read the confidential data itself to itetakexternal
network interfaces. Instead, it could corrupt the data umetthe browser (i.e., the host
application) so that the browser would itself leak this mnfiation. We now present a
simple idea of an attack that avoids direct manipulationrmyf sensitive data or point-
ers —instead, it corrupts higher level untainted pointeas point to the sensitive data.
Consider a pointer variabjein the browser code that points to data items that are to be
transmitted over the network. By corrupting such pointengdint to intended sensitive
data, sayr, stored within the browser memory, a BHO can arrange forisemslata

x to be transmitted over the network on its behalf undete@@dilarly, a BHO may
corrupt a file descriptor as well, so that any write operatisimg this file pointer will
result in the transmission of sensitive data over the ndéw®uch vulnerable pointers
and data buffers needed for the above attack occur commuoidyge systems, and are
easily forgeable because of the high degree of address spadag between the host
browser and extensions.

Optimistic assumptions about data originating from untrusted code. Another at-
tack involves using seemingly harmless data, such as ausstahich are treated as
untainted by most techniques [13,42], as a means of congiptiowser data structures
to leak information. Treating constants or any data undexctintrol of the malware is
problematic, since these may be addresses. The attackaswmlerwriting an untainted
pointerp, that may initially point to a sensitive datawith an untainted value such as
the attacker controlled address constaniWhen the browser uses for a critical oper-
ation, such as determine the destination to send certasitiserinformation, this threat
becomes very significant.

Areal attack. We now present a real example that illustrates how an uegluim-
ponent which is loaded in the address space of a host appticean corrupt data
pointer to violate a confidentiality policy of preventingalkeage of any sensitive in-
formation, such agsookies The example has been tested on Lynx, a textual browser
which does not have a proper plugin framework suppdtowever, it uses libraries
to enhance its functionalities and, as they are loaded iyt address space, it is

8 Lynx has been chosen merely because we are interested in keepingthgles as simple as
possible, where possible.



possible to compare these libraries to untrusted compsnbnfact, the result herein
considered is generic enough to be reported to a differeawssr application (e.g.,
Internet Explorer, FireFox) with a full-blown plug-in fraawork.

typedef struct _cookie{
char xdomain;// pointer to the domain this cookie belongs to
} c&)kie;

typedef struct _HList {
void xobject;
HTList xnext;

} HTList;

extern HTList xcookielist; // declared by the core of the browser

void changedomaingoid) { // untrusted plugin functions
HTList «p = cookielist; // untainted ptr— — the list itself is not tainted
char xnew.domain = strdup("evil.com”)// untainted string
for (; p; p = p—>next){ // iterating over an untainted list gives untainted ptrs
cookiextmp = (cookiex)p— >object;// tmp takes the address of a cookie object untainted
tmp—>domain = newdomain;// changing an untainted pointer with an untainted address

The attack consists of modifying the domain name in the aadkilLynx, all cached
cookies are stored in a linked-lisboki e_|i st (note thatcooki e_|i st is not
sensitive as only the sequence of bytes containing cookike\s). Later on, when
the browser has to send a cookie, the domain is comparedlugsty _conpar e (not
shown) which callst ri ngcasecnp. Now, any plug-in can traverse the linked list,
and write its intended URL to theonmai n pointer field in cookie record, subverting
the Same Origin Policy. On enticing the user to visit a malisi web site, such as
evil.com, these cookies will now automatically be sent te #ttacker web site. The
point to note in this example is that tidemai n pointer will be untainted; the object
it points to will be tainted or sensitive. These higher lgveinters themselves are not
sensitive, therefore they can be corrupted without raisugpicion though such attacks
have severe implications.

Implications

The above example an shows how confidential data can leakutiteading it. The
approach proposed in [13] does not deal with this. Recallgbasitive data, if directly
read and copied to the external interfaces, will cause it Bked “suspicious” in [13]
and hence detected. Consequently, overwritingdbeai n pointer with an attacker
chosen address value (which is untainted) causesuapicious flaqto use the termi-
nology used in [13]) to be set.

To detect the aforementioned evasion attacks, an infoomditow technique needs
to incorporate at least the following two features. Finstpider to detect the effect of
pointer corruption (of pointers such as those used to poidata buffers), the technique
must treat data dereferenced by (trusted) browser codg asiainted pointer as if it
is directly accessed by untrusted code. Second, it musgnéo® corruption of point-
ers with constant values. Otherwise, the above attack udltsed since it overwrites a
pointer variable with a constant value that correspondseartemory location of sensi-



tive datd. Itis unclear how to extend the taint propagation itselfliatsa way that could
be strengthened to deal with these attacks, without rafsilsg positives. Considering
every write performed by the untrusted BHO to be tainted,wsgyested previously
(therefore, considering everything written by the untedsBHO as “suspicious”), may
be a too conservative strategy yielding high false postivethe cases where plug-
ins access sensitive data but do not leak it. Applying thésidf conservative tainting
specifically to recognize control attribution as done in][gdems reasonable, but may
raise significant false positives when applied to identifgata possibly controlled by
the plugin.

3.2 Attacking Mechanisms Used to Determine Execution Contéx

For using runtime information flow based malware detectmmshared memory plu-
gins, it is necessary to distinguish the execution of utddiextension code from that
of trusted host application code. Otherwise, we will havafiply the exact same poli-
cies on both contexts, which reduces to treating the enpipiGation as untrusted (or
trusted). To make this distinction, an information flow apgorh needs to keep track of
code executionontext The logic used for maintaining this context is one obviaurgét
for evasion attacks: if this logic can be confused, thendbinees possible for untrusted
code to execute with the privileges of trusted code. A molglswattack involves data
that gets exchanged between the two contexts. Since eardntirusted context af-
fords more privileges, untrusted code may attempt to aehitsvobjectives indirectly
by corrupting data (e.g., contents of registers and the&ksthat gets communicated
from untrusted execution context to the trusted context.

Although the targets of evasion attack described above emerglly independent
of implementation details, the specifics of an evasion kstadll need to rely on these
details. Below, we describe how such evasion attacks cak indhe specific context
of [13].

Attacking Context-Switch Logic

To distinguish between trusted and untrusted context, pipeoach proposed in [13]
uses the following algorithm. The system checks whethectite to be executed be-
longs to the BHO code region. If so, then it records the vafukecurrent stack pointer,
espsaved, @and then the instruction is executed. Whenever the ingbrupbinter points
outside the code region of the BHO, a decision has to be madetésmine whether
the instruction has to be executed on behalf of the BHO (irgrusted context) or not
(i.e., trusted context). The technique implicitly assurteg on 1A-32 the stack grows
downwards, the activation records are pushed on the staekstack data belonging
to the caller is left unchanged by the callee, and that thieedlinction cleans up its
activation leaving the stack pointer restored after it®@ation — all assumptions which
are reasonable for benign code only.
Here, their technique checks if the value of the currentkspainter,espeyrrent, 1S

less tharesp,q.eq then it attributes the host function call to the untrustedtegt. On
the other end, if the condition does not hold, it assumesttietast untrusted BHO

9 Such pointers reside often enough on global variables, whose locatonse predicted in
advance and hard-coded as constants in the malware.



code stack frame has been popped off the stack and the exe@antext does not
belong to the BHO anymore. This attribution mechanism alealid (benign) context
switches (from untrusted to trusted context) at call/metiumction boundaries, more
specifically, when the last BHO functiofiis about to return and there are not other
browser functions invoked by.

Unfortunately, relying only on this attribution mechanisinsecure. Malware may
employ simple low-level attacks that could subvert the aritow integrity of the ap-
plication at the host-extension interface leading to dexasg attacks. The taint analysis
approach and the attribution mechanism employed in [13}tpmit that their mecha-
nism can deal with two threats that may circumvent conteixibation — execution
of injected code, and attempts to adjust the stack pointeveathe threshold limit by
changing the ESP register in its code. However, this atidhumechanism is not secure
enough to protect against other low-level integrity vimas, such as return-into-lib(c)
style [28,32] attacks, which aim to eventually executealdsepresent code. In fact,
the attribution mechanism proposed therein simply stataswhen all the functions
invoked on behalf of the BHO have returned and the last BH@tfan f returns, the
stack pointer is movedbovethe threshold limit enforced by the attribution mechanism
(this is done by the semantic of thet instruction) and the context switches from
BHO (i.e., untrusted) to browser (i.e., trusted).

We describe a simple attack against this techngiue in mopéhd&he malicious
BHO corrupts control pointers, such as return addresseseduly the calling host
function, to point to target locations of its choice. It cdaldditionally create a compat-
ible stack layout required for a return-into-lib(c) attaokperform intended action and
let its latest invoked function simply return. Changing tohpointers such as return
address above the recorded threshold ESP, without makingnadification to ESP
itself, is sufficient and touches no sensitive data. Suctufns” from untrusted code
trigger control transfers to the attacker controlled tafgactions, and furthermore,
with arbitrarily controlled parameters on the crafted kthgout. As no other BHO
instructions are executed after such a return, subseqodetwill be executed in the
browser context fulfilling the attacker’s objectives.

Implications

To counteract such a return-into-lib(c) style attack, dorimation flow analysis has
surely to strength the attribution mechanism adopted wtetide whether a piece of
code is running in a trusted or untrusted context.

Panorama [42], for instance, labels every write operatienfiopmed by a BHO for
the only purpose of being able to track dynamically generatele. Moreover, by rely-
ing on the same attribute mechanism adopted by [13], itlisvsiinerable to the attack
presented in the previous section as the attribution méstmacan be circumvented.
HookFinder [41], instead, is able to catch every hook im@drinto the system by an
untrusted binary. To do so, they use an approach which idasimoi information flow-
based techniques: they label every write operation peddrby untrusted binaries, as
they want to be able to analyze any hooking attempts (regssdl they are made by be-
nign or potentially malicious modules). This seems to becarsing approach for the
attribution problem. In fact, an extension to their strgtes the one proposed in [30],



which marks context as untrusted whenever control trassfeolve tainted pointers
resolves the issue of correctly attributing context.

Attacking Shared Data between Trusted and Untrusted Contets

Another significant category consists of attacks that itnb@ally violate the semantics
of the interface between the host and the extension, anchadeddetect with any kind
of taint tracking. These attacks pertain to violation of litipassumptions in the host
code about certain usage of shared processor state by the &g conventions
and compile-time invariants such as type safety of the @égddunction interface. For
instance, certain registers, which are called “calleegavegisters, are implicitly as-
sumed to be unmodified across function invocations. In axdtb the attack outlined
earlier that violates control flow integrity, there are athihat could target data integrity
such as corrupting callee-saved registers. Consideriegytaing that comes from un-
trusted context to be tainted would probably be problematsctrusted context will
completely be polluted: browser and plug-ohsinteract with each other, therefore, as
long as not sensitive data are considered, it is perfectijnabto rely on BHO-provided
data.

3.3 Attacking Meta-Data Integrity

Another possible avenue for evasion is that of corruptingartiata maintained by a
dynamic information flow technique. Typically, meta-datasists of one or more bits
of taint per word of memory, with the entire metadata regjdina data structure (say,
an array) in memory. An obvious approach for corrupting ttata involves malware
directly accessing the memory locations storing metadiétat existing dynamic infor-
mation flow techniques include protection measures agairddt attacks. Techniques
based on emulation, such as [13] can store metadata in thiatemsimemory, which
cannot be accessed by the emulated program. Other teckrigake as [40] ensure that
direct accesses to metadata store will cause a memory fauhis section we focus
our attention on indirect attacks, that is, those that neshi&n inconsistency between
metadata and data values by exploiting race conditions.

Attacks Based on Data/Meta-Data Races. Dynamic information flow techniques

need to usually perform two memory updates correspondiege¢b update in the orig-

inal program: one to update the original data, and the othermptdate the metadata
(i.e., the taint information). Apart from emulation basgipeaches where these two
updates can be performed “atomically” (from the perspeatifzemulated code), other

techniques need to rely on two distinct updates. As a raawdtmultithreaded program

where two threads update the same data, it is possible farcamsistency to arise be-

tween data and metadata values. Assume, for instance, #tatlata updates precede
data updates, and consider the following interleaved di@tof two threads:

Beni gn t hread Mal i ci ous thread

t1. set tag[X] to "tainted"
t2. set tag[X to "untainted"

t3. wite untainted value to X



tk. wite tainted value to X

Note that at the end, memory locatidhcontains a tainted value, but the corre-
sponding metadata indicates that it is untainted. Such@maistency can be avoided
by using mandatory locks to ensure that the data and metagdttes are performed
together. But this would require acquisition and release lotk for each memory up-
date, thereby imposing a major performance penalty. Asutresisting information
flow tracking techniques generally ignore race conditi@ssuming that it is very hard
to exploit these race conditions. This can be true for utedistand-alone applications,
but it is problematic, and cannot be ignored in the contexhalware that share their
address-space with a trusted application.

To confirm our hypothesis, we experimentally measured thbalility of success
for a malicious thread causing a sensitive operation withaigsing an alarm, against
common fine-grained taint tracking implementations knowctaly. The motivation of
this attack is to show that, by exploiting races between dathmetadata updates op-
erations, it is possible to manipulate sensitive data witthaving them marked as sen-
sitive. To demonstrate the simplicity of the attack, in oxperiment we used a simple
C program shown below (a) that executes as a benign threadsditsitive operation
open (line 10 (a) column) depends on the poinfemane which is the primary target
for the attacker in this attack. We transform the benign ¢odeack control-dependence
and verified its correctness, since the example is small.

1 char xfname = NULL, oldfname = NULL; void smaliciousthreadyoid xq) { 1
2 void checkpreferences (] while (attempts< MAX _ATTEMPTS){ 2
3 fname ="/.../.mozilla/.../cookies.txt"; 3
4 if (getpref.name () == OK) 4
5 old_fname ="/.../. mozilla/.../pref.js”; } 5
6
7 while (...) {
8 fname = oldfname;
9 if (fname){
10 fp = open (fname, “w”);
11 .
12 }
13}

(a) (b)

The attacker’s thread (b) runs in parallel with the benigedld and has access to the
global data memory pointémane. The attacker code is transformed for taint tracking
to mark all memory it writes as “unsafe” (i.e., tainted).

We ran this synthetic example on a real machines using tvierdiit implementa-
tions of taint tracking. For conciseness, we only presentéisults for the taint tracking
that uses 2 bits of taint with each byte of data, similar to],[4@th all taint track-
ing code inlined, as this minimizes the number of instrudidor taint tracking and
hence the vulnerability window. On a quad-core Intel Xeorchi@e running Linux
2.6.9 SMP kernel, we found that chances thatdpen system call executes with the
corresponding pointdrnanme marked “safe” (i.e., untainted) varies fra0% — 80%
across different runs. On a uniprocessor machine, the saseh worse — the success
probability is betweeff0% — 100%. The reason why this happens is because the trans-



formed benign thread reads the taint forane on line8 and sets the control context
to tainted scope, before executing the original code fdiopeting conditional compar-
ison on line9. The malicious thread tries to interleave its executiorfie one of the
benign thread, trying to achieve the following ordering:

X : read taint info (fname) // safe, benign thread

\.N.ri.te taint info (fnane) = "unsafe"
wite fname = "/honme/user/.nozillaldefault/.../cookies.txt"
Y : .r;e.ad (f nane) /1 benign thread

If such an ordering occurs, the data read by the benign thseadfe” as the benign
thread has cleared the taint previously, while the data cemdains an attacker con-
trolled value about user browser cookies. In practicalrggtt the window of time be-
tweenX andY varies largely based on cache performance, demand pagithgchedul-
ing behaviour of specific platform implementations. Fipall is worth noting that the
attacker could improve the likelihood of success by indreathe scheduling priority
of the malicious thread and lower, where possible, thosepign thread.

Implications

Attacks on direct corruption of metadata has been studiéord§40] and thwarted
by implementations using virtual machines and emulatorghviexplicitly manage
the context switches between threads or processors. Howeueh of the design of
such metadata tracking monitors has not been carefullyestud the context of multi-
threaded implementations (or multi-processor emulatarg) techniques in this section
highlight the subtle importance of these.

4 Analyzing Future Behavior of Malware

Several strategies have been proposed to analyze untaddtacre. Broadly speaking,
these strategies can be divided in two main categories,rtbs based oatatic analy-
sis and the others which adoptignamicanalysis approach. While static analysis has
the potential to reason about all possible behaviors ofvsoé, the underlying com-
putational problems are hard, especially when working wWittary code. Moreover,
features such as code obfuscation, which are employed byaralas well as some
legitimate software, make it intractable in practice. Agsutt, most practical malware
analysis techniques have been focussed on dynamic analysis

Unfortunately, dynamic analysis can only reason aboutetleo®cution paths in a
program that are actually exercised during the analysiger@étypes of malware do
not display their malicious behavior unless certain trigggnditions are present. For
instance, time bombs do not exhibit malicious behavior artertain date or time. Bots
may not exhibit any malicious behavior until they receiv@mmand from their master,
usually in the form of a network input.

In order to expose such trigger-based behavior, Mesat. [1] suggested an inter-
esting dynamic technique that combines the benefits ofia atad dynamic information-
flow analyses. Specifically, they taint trigger-relatedutsy such as calls to obtain time,
or network reads. Then, dynamic taint-tracking is used socaier conditionals in the



program that are dependent on these inputs. When one of thieramches of such a
conditional is about to be taken, their technique creatdseakpoint and a snapshot of
the analyzed process, and keeps exploring one of the br&utisequently, when the
exploration of the taken branch ends or after a timeout ttulelsis reached, their tech-
nique forces the execution of the unexplored branch. Sucimiprequires changing the
value of a tainted variable used in the conditional, so that the value of the condition
expression is now negated. By leveraging a@eaision proceduréo generate a suitable
value forv, the proposed approach also identifies any other variablései program
whose values are dependentigrand modifies them so that the program is in a consis-
tent staté”. We observe that this analysis technique has applicabiliegrtain kinds of
anti-virtualization or sandbox-detection techniques ai.WiFor instance, suppose that
a piece of malware detects a sandbox (or a VM) based on thermresf a certain file,
process, or registry entry. The approach proposed canairéritie functions that query
for such presence, and proceed to uncover malicious cotléstegecuted only when
the sandbox is absent.

Since the underlying problems the analysis proposed by Mais#. has to face are
undecidable in general, their technique is incomplete sbetms to work well in prac-
tice against contemporary malware. However, this incotepless can be exploited by
a malware writer to evade detection. For instance, as ngtéloebauthors of [1], a con-
ditional can make use of one-way hash function. It is contmnally hard to identify
values of inputs that will make such a condition true (ordal8/ore generally, malware
authors can force the analysis to explore an unbounded nuofiiganches, thereby
exhausting computational resources available for araliAowever, the approach pro-
posed in [1] will discover this effort, and report that theta@re under analysis is
suspicious. A human analyst can then take a closer look atreadware. Nonetheless,
today’s malware writer places high value on stealth, and&evould prefer alternative
anti-analysis mechanisms that do not raise suspicionsyargescribe such primitives
next.

4.1 Evasion using Memory Errors

Binary code is generally hard to analyze, as briefly pointetlio Section 2.2. Rea-
sons for this are absence of information about variablesitiaties and types, which
makes many source-based analyses inapplicable to bin#feesbserve that given an
arbitrary binary, it is hard to say whether it potentiallyntains a vulnerability such
as a memory error (e.g., buffer overflow), and to determimepifecise inputs to ex-
ploit it. Exhaustively running the binary on all possiblgirts is often infeasible for
benign code, leave alone malware which is expected to eéxpeiexponential nature
of exhaustive searches to cause the worst-case hit each run.
Motivated by this observation, we present an attack agaiyisamic information

flow-based analyses used to analyze malware behaviorasitoilthe one presented
in [1]. We propose our attack that is able to hide maliciouecftom being discovered,

19 This is required, or else the program may crash or experience emditons that would not
occur normally. For instance, consider the cgde= x; if (x == 0) z = 0; else
z = 1/y; If we force the value ok to be nonzero, they must also take the same value or
else the program will experience a dive-by-zero exception.
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and further strengthen it such that extensions to analysigayed in [1] are unable
to detect it. Our attack leverages on the introductiomefnory errorsas shown in the
following example.

int trigger;

;/.é)id proclnputgoid) {
int «p = &buf[0];
char buf[4096];
.r:riy,gets(buf);
=1

if“(trigger)
malcode();

The introduced memory error is a plain stack-based bufferftow vulnerabilityL.
The attacker’s goal is to write past the endbaff (line 7) and corrupt the pointep
to make it point to the variabler i gger . Eventually, the malware will setr i gger
to 1 (line 9) which in turn has the effect to disclose the malicious cogferesented
by mal code at line 12, guarded byt ri gger . It can be observed that the lack of
proper bound checking in the code snipped shown above iornm tonsidered as a
suspicious pattern by itself. In fact, the mere use of anferfsaction agtyy _get s'?
does not imply that there is a memory error. In fact, bounctkimg could have been
performed elsewhere by the programmer (which justifies sieeofian unsafe function),
or the programmer knows that at that point the input can nieediigger thartuf .

In order to disclose the malicious code during analysisydr@ablet ri gger has
to eventually be marked as tainted, so that the code it guzdide further analyzed.
The variablet ri gger is never tainted unlegs, which can potentially be corrupted
with tainted data by the malware, points to it.

The problem of determining whether could point tot ri gger is undecidable
statically, thus augmentations to [1] using some form ofistanalysis do not help.
On the other end, one might argue that the dynamic approagoged in [1] could
potentially accomplish thdetectionof the overflow, at least (while it is unlikely that
the correct vulnerability exploitation can be achievedYalct, given the aforementioned
example, it is fairly easy for the analysis technique cozrgd to generate a big-enough
input which will eventually corrupt the pointgr. Even if such a technique is employed,
we show that we can extend this example to make it even haiiflaptunfeasible — to
achieve this step.

It is reasonable to ask ourselves whether it is possible terttze previous point
harder to achieve for the analyzer. That is, it would be déérto have a functiorf
that is easy to compute, but hard to reason about some piesgpeftit. To this end,
it is possible to modify the previous example in such a way akenharder for the

11t is important to note that there are not constraints on the type of vuliigramtroduced. A
generic buffer overflow, an integer overflow, or a (custom) forastahg vulnerability would
have done as well.

12 This function resembles the well-known liget s. The malware author can either use its own
implementation or the one provided by the C library.



analyzer to even detect whether a memory error vulnerghdipresent or not. The

int trigger;

void procinputgoid) {
int pad, n, I;
char buf[4096+256];
int xp = &pad;
char xdst;

n = read(s, bufsizeof(buf));

| = computespace(buf, n);

/I make sure we have enough room
dst = alloca(l + 128);

decode(buf, |, dst);

int computespacehar *src,int nread){
inti, k=0;
for (i=0;i < nread; i++){
switch(src[i]) {
case0: k++; break;

case255: k++;break;
return k;

void decodeg¢har xsrc,int nread char sdst) {
inti, j;
for (i=0,j=0;i < nread; i++, j++){
switch(src[i]) {

*p=1; case0: dstfj] = src[i]; break;
i.f“(trigger) ;:”asell3: dst[j++] = srcfi];
malcode(); dst[j] = srci];

break;
casell4: dst[j] = src[i];break;
;:.ése255: dst[j] = src[i]; break;
}
} }

Fig. 1. Memory error hard to automatically detect which conceals malicious code.

example shown in Figure 1 represents such a situation. Ti@nagerformed by the
program can easily be found in benign programs as well. Itagtlwnoting that the
function conput espace is easy to compute, but is relatively hard to reason about
some properties of it. For instance, by looking at the sococdk, it is easy to understand
that at the end of the computatikirholds the same value as the length of the data read
into the bufferbuf . On the other end, the same reasoning can be hard to do oresinar
and in an automated way. Thus, it is hard to corretat¢he number of read bytes,
tol, the minimum number of space to allocate to be sure the fumdttcode does

not cause overflow. The functiafecode presents a problem by itself, by deliberately
introducing the condition for an overflow to occur. In fatttéan causelst to overflow

into p if the number of bytes given as inpuif ) whose ASCII value i413 exceed

a certain threshold. Only an exhaustive search over all tissiple input values and
combination would deterministically trigger this memoryae. Unfortunately, such an
enumeration would be extremely onerous if not impossiblegidorm. Similar to NP-
complete problems which are hard to solve while verificatiboorrect answers is easy,

it is rather simple for the attacker to provide the right inphich will cause to overflow
dst so thatp can be corrupted in such a way to eventually disclose thecinal
behavior, through ri gger . From the analysis point of view, instead, an exhaustive
search will probably start with a sequence of lengttrying all the possibl@s5 ASCII



values. This does not cause overflow as there is a safe paoflig bytes fordst .
Following this reasoning, a sequence of lengmd255* combination have to be tried.
For instance, & equal to64 can reach the boundaries @$t . This, however, would
roughly require to tes255%% combinations on average which is a fairly huge number.

Hiding malicious payload using interpreters. As a final point, we note that the ma-
licious payload need not even to be included in the progracar be sent by an attacker
as needed. We can use the techniques described above totghevealware analyzer
from identifying this possibility.

One common technique for hiding payload has been based an exuctyption.
Unfortunately, this technique involves a step that is neddy unusual: data written by a
program is subsequently executed. This step raises sospasid may prompt a careful
manual analysis by a specialist. Malware writers would gréd avoid this additional
scrutiny, and hence would prefer to avoid this step. Thislmdone relatively easily
by embedding an interpreter as the body of the functimh code() in the attack
described above. As a result, the body of the interpreteesaape analysis. Moreover,
note that interpreters are common in many types of softvdar@aments viewers such as
PDF or Postscript viewers, flash players, etc, so their paseven if discovered, may
not be unusual at all. Finally, it is relatively simple to d&p a bare-bones assembly
language and write an interpreter for it. All of these fastamggest that malware writers
can, with modest effort, obfuscate execution of downloazt&te using this technique,
with the final goal to hide malicious behavior without ragsiiny suspect.

4.2 Implications

The implications on whether dynamic information flow-basechniques can help to
disclose, analyze, and understand the behavior of thegemeration of malware is
similar to the ones pointed out in the rest of this paper. t, fio detect the evasion
technique proposed in the previous section, an informdlionbased approach should
ideally be able to triggeany memory error which may be present in the analyzed soft-
ware, and automatically exploit the vulnerability so thaeresting (i.e., tainted) pre-
viously disabled conditions will be examined. In the presection we have shown
how this could be hard — if not impossible — at all to achiefeljrectly faced. Alter-
natively, information flow analyses could taiaty memory location, considering all
the possible combinations, and see how information is gaiea. While this would
eventually taint r i gger and thus disclose the malicious behavior, it would drop the
benefits provided by taint-tracking mechanisms which fabesanalysis ointeresting
data, agverypaths would be forced to be explored. For instance, thetiegw@nalysis
would be similar to the one proposed in [9] where, even if thdarlying technique is
different, the end result is thaverypath can potentially be explored, which of course
is a hard task by itself. For instance, one may attempt taeferecution of all program
paths, but this is likely to be very expensive, and to suffemf semantic inconsisten-
cies that may arise due to forcing execution down branchegsatte not taken during
execution.



5 Related Work

Information flow analysis has been researched for a long [61#2,14,20,23,29,38].
Early research was focused on multi-level security, wheve-firained analysis was
not deemed necessary [6]. More recent work has been focuskthguage-based ap-
proaches, capable of tracking information flow at variablel [26]. Most of these tech-
niques have been based on static analysis, and assumeeasab$gdcooperation from
developers to provide various annotations, e.g., seitgitabels for function param-
eters, endorsement and declassification annotationsninelie false positives. More-
over, they typically work with simple, high-level languagevhile much of security-
critical contemporary software is written in low-level uages like C that use pointers,
pointer arithmetic, and so on. Finally, it can be noted trestpite their benefits static
analyses are generally vulnerable to obfuscation schesrecantly remarked by [22].
Therefore, it is reasonable to rely on dynamic or hybrid apphes, instead. As a re-
sult, information flow tracking for such software has beemgrily based on run-time
tracking of explicit flows that take place via assignments.

Recently, several different information flow-based (ofk@own as taint analysis as
they are concerned with data integrity) approaches havepreposed [11,15,16,33,40].
They give good and promising results when employed to pragecign software from
memory errors and other type of attacks [15,40], by relyingsome implicit assump-
tions (e.g., no tainted code pointers should be de-refeddndhe reason is because
benign software is not designed to facilitate an attaclkgd, tahile malware, as we have
seen, can be carefully crafted to embed evasion attacklk,asicovert channels, and
general memory corruption.

Probably, an ideal solution would require that untrustedbées would carry proofs
that some properties are guaranteed. This is achieved loj-paorying code [24]. To
be successful, this technique relies on some form of colitlom between the code
producer and consumer. For instance, Medell. [21] and Yuet al. [43] proposed in-
formation flow analyses for typed assembly languages. LisevBartheet al. provided
non-interference properties for a JVM-like language [4d @eal with timing attacks
by using ACID transactions [5], as well. Unfortunatelystinlikely that malware writ-
ers (i.e., the code producer, in this context) are goingue this form of collaboration
which is necessary for the success of these approachesfdtegrit is unlikely that
these strategies would soon be adopted as is in the contendlfious software.

Driven by the recent practical success of information flavgdx techniques, several
researchers have started to propose solutions based omidytant analysis to deal
with malicious or, more generally, untrusted code [1,1.83142,41]. The last year,
these techniques have been facing different tasks (eagsititation, detection, and
analysis) related to untrusted code analysis. Unfortlyateen if preliminary results
show they are successful when dealing with untrusted caatentis not been designed
to stand and bypass the employed technique, as we hope thesslen in this paper
highlighted, information flow is a fragile technique thatshta be supported by new
analyses to be more resilient to evasions purposely adiyyteder-evolving malware.



6 Conclusion

Information flow analysis has been applied with significardcess to the problem of
detecting attacks on trusted programs. Of late, there hexs significant interest in ex-
tending these techniques to analyze the behavior of uethigstftware and/or to enforce
specific behaviors. Unfortunately, attackers can modigirthoftware so as to exploit
the weaknesses in information flow analysis techniques. &dascribed using several
examples, it is relatively easy to devise these attackstaladk significant amounts of
information (or damage system integrity) without beingedégd.

Mitigating the threats posed by untrusted software mayirequore conservative
information flow techniques than those being used today fawere analysis. For in-
stance, one could mark every memory location written byustéd software as tainted;
or, in the context of confidentiality, prevent any confidahtnformation from being
read by an untrusted program, or by preventing it from wgitimything to public chan-
nels (e.g., network). Such approaches will undoubtedlyt litre classes of untrusted
applications to which information flow analysis can be agxpliAlternatively, it may be
possible to develop new information flow techniques thattoaisafely applied to un-
trusted software. For instance, by reasoning about qyaftinformation leaked (mea-
sured in terms of number of bits), one may be able to suppoithaintrusted software
that leaks very small amounts of information. Finally, meshers need to develop ad-
ditional analysis techniques that can complement infoionatow based techniques,
e.g., combining strict memory access restrictions witbrimfation flows.
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