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Abstract. Taint-tracking is emerging as a general technique in software security
to complement virtualization and static analysis. It has been applied for accurate
detection of a wide range of attacks on benign software, as well as in malware
defense. Although it is quite robust for tackling the former problem, application
of taint analysis to untrusted (and potentially malicious) software is riddled with
several difficulties that lead to gaping holes in defense. These holes arise not only
due to the limitations of information flow analysis techniques, but also the nature
of today’s software architectures and distribution models. This paper highlights
these problems using an array of simple but powerful evasion techniques that
can easily defeat taint-tracking defenses. Given today’s binary-based software
distribution and deployment models, our results suggest that informationflow
techniques will be of limited use against future malware that has been designed
with the intent of evading these defenses.

1 Introduction
Information flow analyis has long been recognized as an important technique for de-
fending against attacks on confidentiality as well as integrity [6,8]. Over the past quarter
century, information flow research has been concentrated onstatic analysis techniques,
since they can detectcovert channels(e.g., so-called implicit information flows) missed
by runtime monitoring techniques.

Static analyses for information-flow have been developed inthe context of high-
level, type-safe languages, so they cannot be directly applied to the vast majority of
COTS software that is available only in binary form. Worse, software obfuscation and
encryption techniques commonly employed in malware (as well as some benign soft-
ware for intellectual property protection) render any kindof static analysis very difficult,
if not outright impossible. Even in the absence of obfuscation, binaries are notoriously
hard to analyze: even the basic step of accurate disassemblydoes not have solutions
that are robust enough to work on large x86 binaries. As a result, production-grade
tools that operate on binaries rely on dynamic (rather than static) analyis and instru-
mentation [3,7,17,25].



Prompted by the need to work with binaries, several researchers have recently devel-
oped dynamic information-flow techniques for COTS binaries[10,15,33]. These tech-
niques have enabled accurate detection of a wide range of attacks on trusted software4

including those based on memory corruption [15,33], format-string bugs, command or
SQL injection [2,27,40], cross-site scripting [37], and soon. More recently, researchers
have reported significant successes in applying dynamic information flow techniques on
existing malware, both from the perspective of understanding their behavior [1], and de-
tecting runtime violation of policies [13,31]. Although dynamic taint analysis technique
is quite robust for protecting trusted software, its application to untrusted (and poten-
tially malicious) software is subject to a slew of evasion techniques that significantly
limit its utility. We point out that understanding the limitations of defensive techniques
is not just an academic exercise, but a problem with important practical consequences:
emerging malware does not just employ variants of its payloads by using metamor-
phic/polymorphic techniques, but instead has begun to embed complex evasion tech-
niques to detect monitoring environments as a means to protect its “intellectual prop-
erty” from being discovered. For instance, W32/MyDoom [19] and W32/Ratos [35]
adopt self-checking and code execution timing techniques to determine whether they
are under analysis or not. Likewise, self-modifying techniques — among others —
are used as well (W32/HIV [18]) to make malware debugging sessions harder [34,36].
Thus, a necessary first step for developing resilient defenses is that of understanding the
weaknesses and limitations of existing defenses. This is the motivation of our work. We
have organized our discussion into three major sections as follows, depending on the
context in which information flow is being used.

Stand-alone malware. When applied to malware, a natural question is whether the
covert channels that were ignored by dynamic techniques could be exploited by adap-
tive malware to thwart information-flow based defenses. These covert channels were
ignored in the context of trusted software since their “capacity” was deemed too small
to pose a significant threat. More importantly, attackers donot have any control over the
code of trusted software, and hence cannot influence the presence or capacity of these
channels. In contrast, malware writers can deliberately embed covert channels since
they have complete control over malware code. In this paper,we first show that it is
indeed very easy for malware writers to insert such covert channels into their software.
These evasion techniques are simple enough that they can be incorporated manually,
or using simple, automated program transformation techniques. We show that it is very
difficult to defeat these evasion techniques, unless very conservative reasoning is em-
ployed, e.g., assuming that any information read by a program could leak to any of its
outputs. Unfortunately, such weak assumptions can greatlylimit the purposes to which
dynamic information flow analysis can be used, e.g., Stinsonet al. [31] use information
flow analysis to detect “remote-control” behavior of bots, which is identified when ar-
guments to security-critical system calls are tainted. If aconservative notion of tainting
is used, then all programs that communicate over the networkwould have to be flagged
as “bots,” which would defeat the purpose of that analysis.

Malware plug-ins. Next, we consider recent evolution in software deployment mod-
els that has favored the use of plug-in based architechtures. Browser helper objects

4 In this paper, the term “trusted software” is used to refer to software thatis trusted to be benign.



(BHOs), which constitute one of the most common forms of malware in existence to-
day, belong to this category. Other examples includes document viewer plug-ins, media
codecs, and so on. We describe several novel attacks that arepossible in the context of
plug-ins:

– Attacks on integrity of taint information.Malware can achieve its goal indirectly
by modifying the variables used by its host application, e.g., modifying a file name
variable in the host application so that it points to a file that it wants to overwrite. Al-
ternatively, it may be able to bypass instrumentation code inserted for taint-tracking
by corrupting program control-flow.

– Attacks based on violating application binary interface,whereby malware violates
assumptions such as those involving stack layout and register usage between callers
and callees.

– Race-condition attacks on taint metadata.Finally, we describe attacks where mal-
ware races with benign host application to write security-sensitive data. In a success-
ful attack, malware is able to control the value of this data,while the taint status of
the data reflects the write operation of benign code.

While conservative notions of tainting could potentially beused to thwart these at-
tacks [30], this would restrict the applicability of information-flow techniques even
more.

Analyzing future behavior of malware. Today’s malware is often packaged with
software that seems to provide legitimate functionality, with malicious behavior ex-
posed only under certain “trigger conditions,” e.g., when acommand is received from a
remote site controlled by an attacker. Moreover, malware may incorporate anti-analysis
features so that malicious paths are avoided when executed within an analysis environ-
ment. To uncover such malicious behavior, it is necessary todevelop techniques that can
reason about program paths that are not exercised during monitoring. While one may
attempt to force execution of all program paths, such an approach is likely to be very
expensive, and more likely to suffer from semantic inconsistencies that may arise due to
forcing execution down branches that aren’t taken during execution. A more selective
approach has been proposed by Moseret al. [1] that explores paths guarded by tainted
data, rather than all paths. This technique has been quite successful in the context of ex-
isting malware. The heart of this approach is a technique that uses a decision procedure
to discover memory locations that could become tainted as a result of program execu-
tion, and explores branches that are guarded by such data. InSection 4, we show that
these trigger discovery mechanisms (and more generally, the technique for discovering
which data items can become tainted) can be easily evaded by purposefully embedding
memory errors in malicious code.

Paper organization. Sections 2 through 4 describe our evasion techniques, organized
along the lines described above. Where possible, mitigationof these evasions and their
implications on information flow analyses are faced as well.A summary of related work
is provided in Section 5, followed by concluding remarks in Section 6.



2 Stand-Alone Untrusted Applications

For the sake of concreteness, we discuss the impact of evasion attacks, as well as mit-
igation measures, in the context of the “remote control” behavior detection technique
presented by Stinsonet al. [31], although the evasion techniques themselves are appli-
cable against other defenses as well, e.g., dynamic spywaredetection [13].

Stinsonet al.observed that bots receive commands from a central site (“bot-herder”)
and carry them out. This typically manifests a flow of information from an input op-
eration (e.g., aread system call) to an output operation (e.g., the file named in an
open system call). Their implementation relied oncontent-based tainting:i.e., taint
was assumed betweenx and y if their values matched (identical or had large com-
mon substrings) or if their storage locations overlapped. As noted by the paper authors,
content-based tainting is particularly vulnerable: it caneasily be evaded using simple
encoding/decoding operations, e.g., by XOR’ing the data with a mask value before its
use. However, the authors suggest that a more traditional implementation of runtime
information flow tracking [15] would provide “thorough coverage” and hence render
attacks much harder. Below, we describe simple evasion measures that allow malware
to “drive a truck” through the gaps in most dynamic taint-tracking techniques, and pro-
ceed to discuss possible mitigation mechanisms and their implications.

2.1 Background: Evasion using Control Dependence and Implicit Flows

Dynamic information flow techniques that operate on trustedsoftware tend to focus on
explicit flowsthat take place via assignments. It is well known that information can flow
from a variabley to another variablex without any explicit assignments. Indeed, a num-
ber of covert channels for information flow have been identified by previous research
in this area. We demonstrate the ease of constructing evasion attacks using these covert
channels. We focus on two forms of non-explicit flow, namely,control dependences and
implicit flows.

Control dependence arises when a variable is assigned within an if-then-else state-
ment whose condition involves a sensitive (tainted5) variable, e.g.,

if (y = 1) then x := 1; elsex := 0; endif

Clearly, the value ofx is dependent ony, even though there is no assignment of the latter
to the former. In particular, the above code snippet enablescopying of a single bit from
y to x without using assignments. Using ann-way branch (e.g., a switch statement with
n cases) will allow copying oflog n bits. A malware writer can propagate an arbitrarily
large amount of information without using explicit flows by simply enclosing the above
code snippet within a loop.

Implicit flows arise by virtue of semantic relationships that exist between the values
of variables in a program, e.g., consider the following codesnippet that allows copying
of one bit of data from a sensitive variabley to w without using explicit flows or control
dependences:

5 Typically, the term “taint” is used in the context of integrity, while “sensitive” isused in the
context of confidentiality.



1. x := 0; z := 0;
2. if (y = 1) then x := 1; elsez := 1; endif
3. if (x = 0) then w := 0; endif
4. if (z = 0) then w := 1; endif

At line 2, if y = 1 thenx is marked sensitive because of control-dependent assignment
in the then-clause. Since there is no assignment toz in the then-clause of line 2, it is not
marked sensitive. Moreover, the condition at line 3 will nothold becausex was assigned
a value of 1 at line 2. But the condition at line 4 holds, sow is assigned the value of
1, but it is not marked sensitive sincez is not sensitive at this point. Now, consider the
case wheny = 0. Following a similar line of reasoning, it can be seen thatw will be
assigned the value0 at line 3, but it will not be marked sensitive. Thus, in both cases,w
gets the same value asy, but it is not marked as sensitive.

As with control dependences, a malware writer can copy an arbitrarily large number
of bits using nothing but implicit flow by simply enclosing the above code within a loop.
It is thus trivial for a malware writer to evade taint-tracking techniques that track only
direct data dependencies and control dependencies.

2.2 Difficulty of Mitigating Evasion Attacks

To thwart control-dependence-based evasion, a taint-tracking technique can be enhanced
to track control dependences. This is easy to do, even in binaries, by associating ataint
labelwith theprogram counter (PC)[13]6. Unfortunately, this will lead to an increase in
false positives, i.e., many benign programs will be flagged as exhibiting remote-control
behavior. To illustrate this, consider the following code snippet that might be included
in a program that periodically downloads data from the network, and saves it in differ-
ent files based on the format of the data. Such code may be used in programs such as
weather or stock ticker applets:

int n = read(network, y, 1);
if (∗y == ’t’)

fp = fopen(”data.txt”, ”w”);
else if(∗y = ’i’)

fp = fopen(”data.jpg”, ”w”);

Note that there is a control dependence between data read over the network and
the file name opened, so a technique that flags bots (or other malware) based on such
dependence would report a false alarm. More generally, input validation checks can
often raise false positives, as in the following example:

6 Specifically, the PC is tainted within the body of a conditional if the condition involves tainted
variables. Moreover, targets of assignments become tainted wheneverthe PC is tainted. Finally,
the taint label of the PC is restored at the merge point following a conditionalbranch.



int n = read(network, y,sizeof(y));
if (sanity check(y)){

fp = fopen(”data”, ”w”);
...

}
else{

... // report error
}

In the context of benign software, false positives due to control dependence tracking
can be managed using developer annotations (so-called endorsement or declassification
annotations). We obviously cannot rely on developer annotations in untrusted software;
it is also impractical for code consumers, even if they are knowledgeable programmers
or system administrators, to understand and annotate untrusted code, especially when it
is distributed in the form of binaries.

Mitigating implicit-flow based evasion is even harder. It has been shown that purely
dynamic techniques cannot detect implicit flows [39]. This is because, as illustrated by
the implicit flow example above, it is necessary to reason about assignments that take
place onunexecutedprogram branches. On binaries, this amounts to identifyingthe
memory locations that may be updated on program branches that are not taken. Several
features of untrusted COTS binaries combine to make this problem intractable:
– Address arithmetic involving values that are difficult to compute statically
– Indirect data references and indirect calls
– Lack of information about types of objects
– Absence of size information for stack-allocated and staticobjects (i.e., variables)
– Possibility that malicious code may violate low-level conventions and requirements

regarding the use of stack, registers, control-flow, etc.
As a result, it is unlikely that implicit flows can be accurately tracked for the vast ma-
jority of today’s untrusted software that gets distributedas x86 binaries.

2.3 Implications

Evasion measures described above can be mitigated by treating (a) all data written by
untrusted code as tainted (i.e., not trustworthy), and (b) all data written by untrusted
code as sensitive if any of the data it has read is sensitive. For stand-alone applications,
these assumptions mean that all data output by an untrusted process is tainted, and
moreover, is sensitive if the process input any sensitive data. In other words, this choice
means that fine-grained taint-tracking (or information flowanalysis) is not providing
any benefit over a coarse-grained, conservative technique that operates at the granularity
of processes, and does not track any of the internal actions of a process.

In the context of detecting remote-control behavior, we observe that in the absence
of evasion measures, the use of dynamic information flow techniques enables us to dis-
tinguish between malicious behavior, which involves the use of security-critical system
call arguments that directly depend on untrusted data, and benign behavior. The use
of evasion techniques can easily fool taint-tracking techniques that only reason about
explicit flows. If the technique is enhanced to reason about control dependences, eva-



sion resistance is improved, but as illustrated by the examples above, many more false
positives are bound to be reported, thus significantly diminishing the ability of the tech-
nique to distinguish between malicious and benign behaviors. If we further enhance
evasion resistance to address all implicit flows, we will have to treat all data used by an
untrusted application to be tainted, thereby completely losing the ability to distinguish
between benign and malicious behavior.

In summary, the emergence of practical dynamic taint-tracking techniques for bina-
ries enabled high-precision exploit detection on trusted code. This was possible because
the presence of explicit information flow from untrusted source to a security-critical
sink indicated the ability of an attacker to exert a high degree of control over opera-
tions that have a high risk of compromising the target application — a level of control
that was unlikely to be intended by the application developer. It seemed that a similar
logic could be applied to untrusted code, i.e., a clear distinction could be made between
acceptable uses of tainted data that are likely to be found inbenign applications from
malicious uses found in malware. The discussion so far showsthat this selectivity is lost
once malware writers adapt to evade information flow techniques.

3 Analyzing Runtime Behavior of Shared-Memory Extensions
A significant fraction of today’s malware is packaged as an extension to some larger
piece of software such as browser or the OS kernel. Browsers are an especially attrac-
tive target for malware authors because of their ubiquitoususe in end-user financial
transactions. Thus, an attacker who can subvert a browser can steal information such as
bank account passwords that can subsequently be used to steal money.

Most browsers support software extensions, commonly referred to as browser helper
objects (BHOs)7 that add additional functionality such as better GUI services, automatic
form filling, and viewing various forms of multimedia content. Due to the growing
trend among users of installing off-the-shelf BHOs for these purposes, stealthy malware
often gets installed on user systems as BHOs. These malicious BHOs exhibit common
spyware behaviour such as stealing user credentials and compromising host OS integrity
for evading detection and easier installation of future malware.

Recent works [13] have proposed the idea of using information flow-based ap-
proaches to track the flow of confidential data such as cookies, passwords and cre-
dentials in form-data as it gets processed by web browser, and to detect any leakage
of such data by malware masquerading as benign BHOs loaded inthe address space
of the browser. The crux of the problem is to selectively identify malware’s actions.
They use anattribution mechanism to attribute actions that access system resources to
trusted and untrusted contexts. System calls or operationsmade directly by the BHO or
by a host browser function called on its behalf, belong to theuntrusted context, while
those by the host browser itself belong to the trusted context. To identify untrusted con-
text, their scheme identifies host function invocations that are called by the untrusted
code in addition to identifying execution of untrusted codeitself. In the untrusted con-
text, any sensitive data processed is flagged “suspicious”,and presence of such data at

7 Depending on the browser, browser extensions are named in different ways. Internet Explorer
uses the term BHOs, while Gecko-based browsers (e.g., FireFox) use the term plug-ins. We
will use the two terms interchangeably throughout the paper.



output operations such as the system calls that perform writes to networks and files,
raises alarms signalling leakage of confidential data effected by the BHO. Although
these methods are successful in analysis and detection of current malware, they are not
carefully designed to detect adaptive malware that employsevasion techniques against
the specific mechanisms proposed in these defenses. Below, we present several such
evasion attacks. We remind our readers that the techniques presented in the previous
section continue to be available to malware that operates within the address space of a
(benign) host application. In this section, our focus is on additional evasion techniques
that become possible due to this shared address-space.

3.1 Attacks using arbitrary memory corruption

Corruption of untainted/insensitive data to effect leakage. By corrupting the mem-
ory used by its host application, a malicious plug-in can induce the host application to
carry out its tasks outside the untrusted context. For instance, a privacy-braching mal-
waredoes notnecessarily need to read the confidential data itself to leakit to external
network interfaces. Instead, it could corrupt the data usedby the browser (i.e., the host
application) so that the browser would itself leak this information. We now present a
simple idea of an attack that avoids direct manipulation of any sensitive data or point-
ers – instead, it corrupts higher level untainted pointers that point to the sensitive data.
Consider a pointer variablep in the browser code that points to data items that are to be
transmitted over the network. By corrupting such pointers to point to intended sensitive
data, sayx, stored within the browser memory, a BHO can arrange for sensitive data
x to be transmitted over the network on its behalf undetected.Similarly, a BHO may
corrupt a file descriptor as well, so that any write operationusing this file pointer will
result in the transmission of sensitive data over the network. Such vulnerable pointers
and data buffers needed for the above attack occur commonly in large systems, and are
easily forgeable because of the high degree of address spacesharing between the host
browser and extensions.

Optimistic assumptions about data originating from untrusted code. Another at-
tack involves using seemingly harmless data, such as constants, which are treated as
untainted by most techniques [13,42], as a means of corrupting browser data structures
to leak information. Treating constants or any data under the control of the malware is
problematic, since these may be addresses. The attack involves overwriting an untainted
pointerp, that may initially point to a sensitive datas, with an untainted value such as
the attacker controlled address constantm. When the browser usesm for a critical oper-
ation, such as determine the destination to send certain sensitive information, this threat
becomes very significant.

A real attack. We now present a real example that illustrates how an untrusted com-
ponent which is loaded in the address space of a host application can corrupt data
pointer to violate a confidentiality policy of preventing leakage of any sensitive in-
formation, such ascookies. The example has been tested on Lynx, a textual browser
which does not have a proper plugin framework support8. However, it uses libraries
to enhance its functionalities and, as they are loaded into Lynx’s address space, it is

8 Lynx has been chosen merely because we are interested in keeping the examples as simple as
possible, where possible.



possible to compare these libraries to untrusted components. In fact, the result herein
considered is generic enough to be reported to a different browser application (e.g.,
Internet Explorer, FireFox) with a full-blown plug-in framework.

typedef struct cookie{
...
char ∗domain;// pointer to the domain this cookie belongs to
...

} cookie;

typedef struct HList {
void ∗object;
HTList ∗next;

} HTList;
...
extern HTList ∗cookie list; // declared by the core of the browser
...
void changedomain(void) { // untrusted plugin functions

HTList ∗p = cookielist; // untainted ptr−− the list itself is not tainted
char ∗new domain = strdup(”evil.com”);// untainted string
for (; p; p = p−>next){ // iterating over an untainted list gives untainted ptrs

cookie∗tmp = (cookie∗)p−>object;// tmp takes the address of a cookie object−− untainted
tmp−>domain = newdomain;// changing an untainted pointer with an untainted address

}
}

The attack consists of modifying the domain name in the cookie. In Lynx, all cached
cookies are stored in a linked-listcookie_list (note thatcookie_list is not
sensitive as only the sequence of bytes containing cookies value is). Later on, when
the browser has to send a cookie, the domain is compared usinghost_compare (not
shown) which callsstringcasecmp. Now, any plug-in can traverse the linked list,
and write its intended URL to thedomain pointer field in cookie record, subverting
the Same Origin Policy. On enticing the user to visit a malicious web site, such as
evil.com, these cookies will now automatically be sent to the attacker web site. The
point to note in this example is that thedomain pointer will be untainted; the object
it points to will be tainted or sensitive. These higher levelpointers themselves are not
sensitive, therefore they can be corrupted without raisingsuspicion though such attacks
have severe implications.

Implications

The above example an shows how confidential data can leak without reading it. The
approach proposed in [13] does not deal with this. Recall that sensitive data, if directly
read and copied to the external interfaces, will cause it be marked “suspicious” in [13]
and hence detected. Consequently, overwriting thedomain pointer with an attacker
chosen address value (which is untainted) causes nosuspicious flag(to use the termi-
nology used in [13]) to be set.

To detect the aforementioned evasion attacks, an information flow technique needs
to incorporate at least the following two features. First, in order to detect the effect of
pointer corruption (of pointers such as those used to point to data buffers), the technique
must treat data dereferenced by (trusted) browser code using a tainted pointer as if it
is directly accessed by untrusted code. Second, it must recognize corruption of point-
ers with constant values. Otherwise, the above attack will succeed since it overwrites a
pointer variable with a constant value that corresponds to the memory location of sensi-



tive data9. It is unclear how to extend the taint propagation itself in such a way that could
be strengthened to deal with these attacks, without raisingfalse positives. Considering
every write performed by the untrusted BHO to be tainted, as suggested previously
(therefore, considering everything written by the untrusted BHO as “suspicious”), may
be a too conservative strategy yielding high false positives in the cases where plug-
ins access sensitive data but do not leak it. Applying this idea of conservative tainting
specifically to recognize control attribution as done in [41] seems reasonable, but may
raise significant false positives when applied to identify all data possibly controlled by
the plugin.

3.2 Attacking Mechanisms Used to Determine Execution Context

For using runtime information flow based malware detection for shared memory plu-
gins, it is necessary to distinguish the execution of untrusted extension code from that
of trusted host application code. Otherwise, we will have toapply the exact same poli-
cies on both contexts, which reduces to treating the entire application as untrusted (or
trusted). To make this distinction, an information flow approach needs to keep track of
code executioncontext. The logic used for maintaining this context is one obvious target
for evasion attacks: if this logic can be confused, then it becomes possible for untrusted
code to execute with the privileges of trusted code. A more subtle attack involves data
that gets exchanged between the two contexts. Since execution in trusted context af-
fords more privileges, untrusted code may attempt to achieve its objectives indirectly
by corrupting data (e.g., contents of registers and the stack) that gets communicated
from untrusted execution context to the trusted context.

Although the targets of evasion attack described above are generally independent
of implementation details, the specifics of an evasion attacks will need to rely on these
details. Below, we describe how such evasion attacks can work in the specific context
of [13].

Attacking Context-Switch Logic

To distinguish between trusted and untrusted context, the approach proposed in [13]
uses the following algorithm. The system checks whether thecode to be executed be-
longs to the BHO code region. If so, then it records the value of the current stack pointer,
espsaved, and then the instruction is executed. Whenever the instruction pointer points
outside the code region of the BHO, a decision has to be made todetermine whether
the instruction has to be executed on behalf of the BHO (i.e.,untrusted context) or not
(i.e., trusted context). The technique implicitly assumesthat on IA-32 the stack grows
downwards, the activation records are pushed on the stack, the stack data belonging
to the caller is left unchanged by the callee, and that the callee function cleans up its
activation leaving the stack pointer restored after its invocation – all assumptions which
are reasonable for benign code only.

Here, their technique checks if the value of the current stack pointer,espcurrent, is
less thanespsaved then it attributes the host function call to the untrusted context. On
the other end, if the condition does not hold, it assumes thatthe last untrusted BHO

9 Such pointers reside often enough on global variables, whose locationscan be predicted in
advance and hard-coded as constants in the malware.



code stack frame has been popped off the stack and the execution context does not
belong to the BHO anymore. This attribution mechanism allows valid (benign) context
switches (from untrusted to trusted context) at call/return function boundaries, more
specifically, when the last BHO functionf is about to return and there are not other
browser functions invoked byf .

Unfortunately, relying only on this attribution mechanismis insecure. Malware may
employ simple low-level attacks that could subvert the control flow integrity of the ap-
plication at the host-extension interface leading to devastating attacks. The taint analysis
approach and the attribution mechanism employed in [13] point out that their mecha-
nism can deal with two threats that may circumvent context attribution – execution
of injected code, and attempts to adjust the stack pointer above the threshold limit by
changing the ESP register in its code. However, this attribution mechanism is not secure
enough to protect against other low-level integrity violations, such as return-into-lib(c)
style [28,32] attacks, which aim to eventually execute already present code. In fact,
the attribution mechanism proposed therein simply states that when all the functions
invoked on behalf of the BHO have returned and the last BHO function f returns, the
stack pointer is movedabovethe threshold limit enforced by the attribution mechanism
(this is done by the semantic of theret instruction) and the context switches from
BHO (i.e., untrusted) to browser (i.e., trusted).

We describe a simple attack against this technqiue in more depth. The malicious
BHO corrupts control pointers, such as return addresses pushed by the calling host
function, to point to target locations of its choice. It could additionally create a compat-
ible stack layout required for a return-into-lib(c) attackto perform intended action and
let its latest invoked function simply return. Changing control pointers such as return
address above the recorded threshold ESP, without making any modification to ESP
itself, is sufficient and touches no sensitive data. Such “returns” from untrusted code
trigger control transfers to the attacker controlled target functions, and furthermore,
with arbitrarily controlled parameters on the crafted stack layout. As no other BHO
instructions are executed after such a return, subsequent code will be executed in the
browser context fulfilling the attacker’s objectives.

Implications

To counteract such a return-into-lib(c) style attack, an information flow analysis has
surely to strength the attribution mechanism adopted whichdecide whether a piece of
code is running in a trusted or untrusted context.

Panorama [42], for instance, labels every write operation performed by a BHO for
the only purpose of being able to track dynamically generated code. Moreover, by rely-
ing on the same attribute mechanism adopted by [13], it is still vulnerable to the attack
presented in the previous section as the attribution mechanism can be circumvented.
HookFinder [41], instead, is able to catch every hook implanted into the system by an
untrusted binary. To do so, they use an approach which is similar to information flow-
based techniques: they label every write operation performed by untrusted binaries, as
they want to be able to analyze any hooking attempts (regardless it they are made by be-
nign or potentially malicious modules). This seems to be a promising approach for the
attribution problem. In fact, an extension to their strategy, as the one proposed in [30],



which marks context as untrusted whenever control transfers involve tainted pointers
resolves the issue of correctly attributing context.

Attacking Shared Data between Trusted and Untrusted Contexts

Another significant category consists of attacks that intentionally violate the semantics
of the interface between the host and the extension, and are hard to detect with any kind
of taint tracking. These attacks pertain to violation of implicit assumptions in the host
code about certain usage of shared processor state by the BHO, calling conventions
and compile-time invariants such as type safety of the exported function interface. For
instance, certain registers, which are called “callee-saved” registers, are implicitly as-
sumed to be unmodified across function invocations. In addition to the attack outlined
earlier that violates control flow integrity, there are others that could target data integrity
such as corrupting callee-saved registers. Considering everything that comes from un-
trusted context to be tainted would probably be problematic, as trusted context will
completely be polluted: browser and plug-insdo interact with each other, therefore, as
long as not sensitive data are considered, it is perfectly normal to rely on BHO-provided
data.

3.3 Attacking Meta-Data Integrity

Another possible avenue for evasion is that of corrupting meta-data maintained by a
dynamic information flow technique. Typically, meta-data consists of one or more bits
of taint per word of memory, with the entire metadata residing in a data structure (say,
an array) in memory. An obvious approach for corrupting thisdata involves malware
directly accessing the memory locations storing metadata.Most existing dynamic infor-
mation flow techniques include protection measures againstsuch attacks. Techniques
based on emulation, such as [13] can store metadata in the emulator’s memory, which
cannot be accessed by the emulated program. Other techniques such as [40] ensure that
direct accesses to metadata store will cause a memory fault.In this section we focus
our attention on indirect attacks, that is, those that manifest an inconsistency between
metadata and data values by exploiting race conditions.

Attacks Based on Data/Meta-Data Races. Dynamic information flow techniques
need to usually perform two memory updates corresponding toeach update in the orig-
inal program: one to update the original data, and the other to update the metadata
(i.e., the taint information). Apart from emulation based approaches where these two
updates can be performed “atomically” (from the perspective of emulated code), other
techniques need to rely on two distinct updates. As a result,in a multithreaded program
where two threads update the same data, it is possible for an inconsistency to arise be-
tween data and metadata values. Assume, for instance, that metadata updates precede
data updates, and consider the following interleaved execution of two threads:

Benign thread Malicious thread
------------- ----------------
t1. set tag[X] to "tainted"
t2. set tag[X] to "untainted"
t3. write untainted value to X
.
.



.
tk. write tainted value to X

Note that at the end, memory locationX contains a tainted value, but the corre-
sponding metadata indicates that it is untainted. Such an inconsistency can be avoided
by using mandatory locks to ensure that the data and metadataupdates are performed
together. But this would require acquisition and release ofa lock for each memory up-
date, thereby imposing a major performance penalty. As a result, existing information
flow tracking techniques generally ignore race conditions,assuming that it is very hard
to exploit these race conditions. This can be true for untrusted stand-alone applications,
but it is problematic, and cannot be ignored in the context ofmalware that share their
address-space with a trusted application.

To confirm our hypothesis, we experimentally measured the probability of success
for a malicious thread causing a sensitive operation without raising an alarm, against
common fine-grained taint tracking implementations known today. The motivation of
this attack is to show that, by exploiting races between dataand metadata updates op-
erations, it is possible to manipulate sensitive data without having them marked as sen-
sitive. To demonstrate the simplicity of the attack, in our experiment we used a simple
C program shown below (a) that executes as a benign thread. The sensitive operation
open (line 10 (a) column) depends on the pointerfname which is the primary target
for the attacker in this attack. We transform the benign codeto track control-dependence
and verified its correctness, since the example is small.

1 char ∗fname = NULL, oldfname = NULL;
2 void checkpreferences (){
3 ...
4 if (get pref name () == OK)
5 old fname = ”/.../.mozilla/.../pref.js”;
6 ...
7 while (...){
8 fname = oldfname;
9 if (fname){

10 fp = open (fname, ‘‘w’’);
11 ...
12 }
13 }

(a)

1void ∗maliciousthread(void ∗q) {
2while (attempts< MAX ATTEMPTS){
3fname = ”/.../.mozilla/.../cookies.txt”;
4}
5}

(b)
The attacker’s thread (b) runs in parallel with the benign thread and has access to the

global data memory pointerfname. The attacker code is transformed for taint tracking
to mark all memory it writes as “unsafe” (i.e., tainted).

We ran this synthetic example on a real machines using two different implementa-
tions of taint tracking. For conciseness, we only present the results for the taint tracking
that uses 2 bits of taint with each byte of data, similar to [40], with all taint track-
ing code inlined, as this minimizes the number of instructions for taint tracking and
hence the vulnerability window. On a quad-core Intel Xeon machine running Linux
2.6.9 SMP kernel, we found that chances that theopen system call executes with the
corresponding pointerfname marked “safe” (i.e., untainted) varies from60% − 80%
across different runs. On a uniprocessor machine, the case is even worse – the success
probability is between70%− 100%. The reason why this happens is because the trans-



formed benign thread reads the taint forfname on line8 and sets the control context
to tainted scope, before executing the original code for performing conditional compar-
ison on line9. The malicious thread tries to interleave its execution with the one of the
benign thread, trying to achieve the following ordering:

X : read taint info (fname) // safe, benign thread
...
write taint info (fname) = "unsafe"
write fname = "/home/user/.mozilla/default/.../cookies.txt"
...

Y : read (fname) // benign thread

If such an ordering occurs, the data read by the benign threadis “safe” as the benign
thread has cleared the taint previously, while the data readcontains an attacker con-
trolled value about user browser cookies. In practical settings, the window of time be-
tweenX andY varies largely based on cache performance, demand paging, and schedul-
ing behaviour of specific platform implementations. Finally, it is worth noting that the
attacker could improve the likelihood of success by increasing the scheduling priority
of the malicious thread and lower, where possible, those of benign thread.

Implications

Attacks on direct corruption of metadata has been studied before [40] and thwarted
by implementations using virtual machines and emulators which explicitly manage
the context switches between threads or processors. However, much of the design of
such metadata tracking monitors has not been carefully studied in the context of multi-
threaded implementations (or multi-processor emulators), and techniques in this section
highlight the subtle importance of these.

4 Analyzing Future Behavior of Malware
Several strategies have been proposed to analyze untrustedsoftware. Broadly speaking,
these strategies can be divided in two main categories, the ones based onstaticanaly-
sis and the others which adopt adynamicanalysis approach. While static analysis has
the potential to reason about all possible behaviors of software, the underlying com-
putational problems are hard, especially when working withbinary code. Moreover,
features such as code obfuscation, which are employed by malware as well as some
legitimate software, make it intractable in practice. As a result, most practical malware
analysis techniques have been focussed on dynamic analysis.

Unfortunately, dynamic analysis can only reason about those execution paths in a
program that are actually exercised during the analysis. Several types of malware do
not display their malicious behavior unless certain trigger conditions are present. For
instance, time bombs do not exhibit malicious behavior until a certain date or time. Bots
may not exhibit any malicious behavior until they receive a command from their master,
usually in the form of a network input.

In order to expose such trigger-based behavior, Moseret al. [1] suggested an inter-
esting dynamic technique that combines the benefits of a static and dynamic information-
flow analyses. Specifically, they taint trigger-related inputs, such as calls to obtain time,
or network reads. Then, dynamic taint-tracking is used to discover conditionals in the



program that are dependent on these inputs. When one of the twobranches of such a
conditional is about to be taken, their technique creates a checkpoint and a snapshot of
the analyzed process, and keeps exploring one of the branch.Subsequently, when the
exploration of the taken branch ends or after a timeout threshold is reached, their tech-
nique forces the execution of the unexplored branch. Such forcing requires changing the
value of a tainted variablev used in the conditional, so that the value of the condition
expression is now negated. By leveraging on adecision procedureto generate a suitable
value forv, the proposed approach also identifies any other variables in the program
whose values are dependent onv, and modifies them so that the program is in a consis-
tent state10. We observe that this analysis technique has applicabilityto certain kinds of
anti-virtualization or sandbox-detection techniques as well. For instance, suppose that
a piece of malware detects a sandbox (or a VM) based on the presence of a certain file,
process, or registry entry. The approach proposed can then taint the functions that query
for such presence, and proceed to uncover malicious code that is executed only when
the sandbox is absent.

Since the underlying problems the analysis proposed by Moser et al.has to face are
undecidable in general, their technique is incomplete, butseems to work well in prac-
tice against contemporary malware. However, this incompleteness can be exploited by
a malware writer to evade detection. For instance, as noted by the authors of [1], a con-
ditional can make use of one-way hash function. It is computationally hard to identify
values of inputs that will make such a condition true (or false). More generally, malware
authors can force the analysis to explore an unbounded number of branches, thereby
exhausting computational resources available for analysis. However, the approach pro-
posed in [1] will discover this effort, and report that the software under analysis is
suspicious. A human analyst can then take a closer look at such malware. Nonetheless,
today’s malware writer places high value on stealth, and hence would prefer alternative
anti-analysis mechanisms that do not raise suspicions, andwe describe such primitives
next.

4.1 Evasion using Memory Errors

Binary code is generally hard to analyze, as briefly pointed out in Section 2.2. Rea-
sons for this are absence of information about variables boundaries and types, which
makes many source-based analyses inapplicable to binaries. We observe that given an
arbitrary binary, it is hard to say whether it potentially contains a vulnerability such
as a memory error (e.g., buffer overflow), and to determine the precise inputs to ex-
ploit it. Exhaustively running the binary on all possible inputs is often infeasible for
benign code, leave alone malware which is expected to exploit the exponential nature
of exhaustive searches to cause the worst-case hit each run.

Motivated by this observation, we present an attack againstdynamic information
flow-based analyses used to analyze malware behavior, similar to the one presented
in [1]. We propose our attack that is able to hide malicious code from being discovered,

10 This is required, or else the program may crash or experience error conditions that would not
occur normally. For instance, consider the codey = x; if (x == 0) z = 0; else
z = 1/y; If we force the value ofx to be nonzero, theny must also take the same value or
else the program will experience a dive-by-zero exception.



and further strengthen it such that extensions to analysis employed in [1] are unable
to detect it. Our attack leverages on the introduction ofmemory errors, as shown in the
following example.

1 int trigger;
2 ...
3 void procInput(void) {
4 int ∗p = &buf[0];
5 char buf[4096];
6 ...
7 my gets(buf);
8 ...
9 ∗p = 1;

10 ...
11 if (trigger)
12 malcode();
13 }

The introduced memory error is a plain stack-based buffer overflow vulnerability11.
The attacker’s goal is to write past the end ofbuf (line 7) and corrupt the pointerp
to make it point to the variabletrigger. Eventually, the malware will settrigger
to 1 (line 9) which in turn has the effect to disclose the malicious code represented
by malcode at line 12, guarded bytrigger. It can be observed that the lack of
proper bound checking in the code snipped shown above is not to be considered as a
suspicious pattern by itself. In fact, the mere use of an unsafe function asmy_gets12

does not imply that there is a memory error. In fact, bound checking could have been
performed elsewhere by the programmer (which justifies the use of an unsafe function),
or the programmer knows that at that point the input can neverbe bigger thanbuf.

In order to disclose the malicious code during analysis, thevariabletrigger has
to eventually be marked as tainted, so that the code it guardscan be further analyzed.
The variabletrigger is never tainted unlessp, which can potentially be corrupted
with tainted data by the malware, points to it.

The problem of determining whetherp could point totrigger is undecidable
statically, thus augmentations to [1] using some form of static analysis do not help.
On the other end, one might argue that the dynamic approach proposed in [1] could
potentially accomplish thedetectionof the overflow, at least (while it is unlikely that
the correct vulnerability exploitation can be achieved). In fact, given the aforementioned
example, it is fairly easy for the analysis technique considered to generate a big-enough
input which will eventually corrupt the pointerp. Even if such a technique is employed,
we show that we can extend this example to make it even harder –if not unfeasible – to
achieve this step.

It is reasonable to ask ourselves whether it is possible to make the previous point
harder to achieve for the analyzer. That is, it would be desirable to have a functionf
that is easy to compute, but hard to reason about some properties of it. To this end,
it is possible to modify the previous example in such a way to make harder for the

11 It is important to note that there are not constraints on the type of vulnerability introduced. A
generic buffer overflow, an integer overflow, or a (custom) formatstring vulnerability would
have done as well.

12 This function resembles the well-known libcgets. The malware author can either use its own
implementation or the one provided by the C library.



analyzer to even detect whether a memory error vulnerability is present or not. The

...
int trigger;
...
void procInput(void) {

int pad, n, l;
char buf[4096+256];
int ∗p = &pad;
char ∗dst;

...
n = read(s, buf,sizeof(buf));
l = computespace(buf, n);
// make sure we have enough room
dst = alloca(l + 128);
decode(buf, l, dst);
...
∗p = 1;
...
if (trigger)

malcode();
...

}

int computespace(char ∗src,int nread){
int i, k = 0;
for (i = 0; i < nread; i++){

switch(src[i]) {
case0: k++; break;
...
case255: k++;break;

}
}
return k;

}

void decode(char ∗src,int nread,char ∗dst){
int i, j;
for (i = 0, j = 0; i < nread; i++, j++){

switch(src[i]) {
case0: dst[j] = src[i]; break;
...
case113: dst[j++] = src[i];

dst[j] = src[i];
break;

case114: dst[j] = src[i];break;
...
case255: dst[j] = src[i];break;

}
}

}

Fig. 1.Memory error hard to automatically detect which conceals malicious code.

example shown in Figure 1 represents such a situation. The actions performed by the
program can easily be found in benign programs as well. It is worth noting that the
function computespace is easy to compute, but is relatively hard to reason about
some properties of it. For instance, by looking at the sourcecode, it is easy to understand
that at the end of the computationk holds the same value as the length of the data read
into the bufferbuf. On the other end, the same reasoning can be hard to do on binaries
and in an automated way. Thus, it is hard to correlaten, the number of read bytes,
to l, the minimum number of space to allocate to be sure the function decode does
not cause overflow. The functiondecode presents a problem by itself, by deliberately
introducing the condition for an overflow to occur. In fact, it can causedst to overflow
into p if the number of bytes given as input (buf) whose ASCII value is113 exceed
a certain threshold. Only an exhaustive search over all the possible input values and
combination would deterministically trigger this memory error. Unfortunately, such an
enumeration would be extremely onerous if not impossible toperform. Similar to NP-
complete problems which are hard to solve while verificationof correct answers is easy,
it is rather simple for the attacker to provide the right input which will cause to overflow
dst so thatp can be corrupted in such a way to eventually disclose the malicious
behavior, throughtrigger. From the analysis point of view, instead, an exhaustive
search will probably start with a sequence of length1, trying all the possible255 ASCII



values. This does not cause overflow as there is a safe paddingof 128 bytes fordst.
Following this reasoning, a sequence of lengthk and255k combination have to be tried.
For instance, ak equal to64 can reach the boundaries ofdst. This, however, would
roughly require to test25563 combinations on average which is a fairly huge number.

Hiding malicious payload using interpreters. As a final point, we note that the ma-
licious payload need not even to be included in the program. It can be sent by an attacker
as needed. We can use the techniques described above to prevent the malware analyzer
from identifying this possibility.

One common technique for hiding payload has been based on code encryption.
Unfortunately, this technique involves a step that is relatively unusual: data written by a
program is subsequently executed. This step raises suspicion, and may prompt a careful
manual analysis by a specialist. Malware writers would prefer to avoid this additional
scrutiny, and hence would prefer to avoid this step. This canbe done relatively easily
by embedding an interpreter as the body of the functionmalcode() in the attack
described above. As a result, the body of the interpreter canescape analysis. Moreover,
note that interpreters are common in many types of software:documents viewers such as
PDF or Postscript viewers, flash players, etc, so their presence, even if discovered, may
not be unusual at all. Finally, it is relatively simple to develop a bare-bones assembly
language and write an interpreter for it. All of these factors suggest that malware writers
can, with modest effort, obfuscate execution of downloadedcode using this technique,
with the final goal to hide malicious behavior without raising any suspect.

4.2 Implications

The implications on whether dynamic information flow-basedtechniques can help to
disclose, analyze, and understand the behavior of the next-generation of malware is
similar to the ones pointed out in the rest of this paper. In fact, to detect the evasion
technique proposed in the previous section, an informationflow-based approach should
ideally be able to triggeranymemory error which may be present in the analyzed soft-
ware, and automatically exploit the vulnerability so that interesting (i.e., tainted) pre-
viously disabled conditions will be examined. In the previous section we have shown
how this could be hard – if not impossible – at all to achieve, if directly faced. Alter-
natively, information flow analyses could taintany memory location, considering all
the possible combinations, and see how information is propagated. While this would
eventually tainttrigger and thus disclose the malicious behavior, it would drop the
benefits provided by taint-tracking mechanisms which focusthe analysis oninteresting
data, aseverypaths would be forced to be explored. For instance, the resulting analysis
would be similar to the one proposed in [9] where, even if the underlying technique is
different, the end result is thateverypath can potentially be explored, which of course
is a hard task by itself. For instance, one may attempt to force execution of all program
paths, but this is likely to be very expensive, and to suffer from semantic inconsisten-
cies that may arise due to forcing execution down branches that are not taken during
execution.



5 Related Work

Information flow analysis has been researched for a long time[6,12,14,20,23,29,38].
Early research was focused on multi-level security, where fine-grained analysis was
not deemed necessary [6]. More recent work has been focused on language-based ap-
proaches, capable of tracking information flow at variable level [26]. Most of these tech-
niques have been based on static analysis, and assume considerable cooperation from
developers to provide various annotations, e.g., sensitivity labels for function param-
eters, endorsement and declassification annotations to eliminate false positives. More-
over, they typically work with simple, high-level languages, while much of security-
critical contemporary software is written in low-level languages like C that use pointers,
pointer arithmetic, and so on. Finally, it can be noted that despite their benefits static
analyses are generally vulnerable to obfuscation scheme, as recently remarked by [22].
Therefore, it is reasonable to rely on dynamic or hybrid approaches, instead. As a re-
sult, information flow tracking for such software has been primarily based on run-time
tracking of explicit flows that take place via assignments.

Recently, several different information flow-based (oftenknown as taint analysis as
they are concerned with data integrity) approaches have been proposed [11,15,16,33,40].
They give good and promising results when employed to protect benign software from
memory errors and other type of attacks [15,40], by relying on some implicit assump-
tions (e.g., no tainted code pointers should be de-referenced). The reason is because
benign software is not designed to facilitate an attacker task, while malware, as we have
seen, can be carefully crafted to embed evasion attacks, such as covert channels, and
general memory corruption.

Probably, an ideal solution would require that untrusted binaries would carry proofs
that some properties are guaranteed. This is achieved by proof-carrying code [24]. To
be successful, this technique relies on some form of collaboration between the code
producer and consumer. For instance, Medelet al. [21] and Yuet al. [43] proposed in-
formation flow analyses for typed assembly languages. Likewise, Bartheet al.provided
non-interference properties for a JVM-like language [4] and deal with timing attacks
by using ACID transactions [5], as well. Unfortunately, it is unlikely that malware writ-
ers (i.e., the code producer, in this context) are going to give this form of collaboration
which is necessary for the success of these approaches. Therefore, it is unlikely that
these strategies would soon be adopted as is in the context ofmalicious software.

Driven by the recent practical success of information flow-based techniques, several
researchers have started to propose solutions based on dynamic taint analysis to deal
with malicious or, more generally, untrusted code [1,13,31,37,42,41]. The last year,
these techniques have been facing different tasks (e.g., classification, detection, and
analysis) related to untrusted code analysis. Unfortunately, even if preliminary results
show they are successful when dealing with untrusted code that has not been designed
to stand and bypass the employed technique, as we hope the discussion in this paper
highlighted, information flow is a fragile technique that has to be supported by new
analyses to be more resilient to evasions purposely adoptedby ever-evolving malware.



6 Conclusion
Information flow analysis has been applied with significant success to the problem of
detecting attacks on trusted programs. Of late, there has been significant interest in ex-
tending these techniques to analyze the behavior of untrusted software and/or to enforce
specific behaviors. Unfortunately, attackers can modify their software so as to exploit
the weaknesses in information flow analysis techniques. As we described using several
examples, it is relatively easy to devise these attacks, andto leak significant amounts of
information (or damage system integrity) without being detected.

Mitigating the threats posed by untrusted software may require more conservative
information flow techniques than those being used today for malware analysis. For in-
stance, one could mark every memory location written by untrusted software as tainted;
or, in the context of confidentiality, prevent any confidential information from being
read by an untrusted program, or by preventing it from writing anything to public chan-
nels (e.g., network). Such approaches will undoubtedly limit the classes of untrusted
applications to which information flow analysis can be applied. Alternatively, it may be
possible to develop new information flow techniques that canbe safely applied to un-
trusted software. For instance, by reasoning about quantity of information leaked (mea-
sured in terms of number of bits), one may be able to support benign untrusted software
that leaks very small amounts of information. Finally, researchers need to develop ad-
ditional analysis techniques that can complement information flow based techniques,
e.g., combining strict memory access restrictions with information flows.
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