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EMBEDDED  
DEVELOPMENT TOOLS  
REVISITED:  
Verification  
and Generation  
from the  
Top Down 
We envision a future where any programmer can 
automatically generate an embedded device from 
application code. A future in which a professional 
embedded engineer can “sketch” out a partial device 
design and automation can complete it, in which 
a hobbyist can write a program and, in a matter of 
days, receive a custom hardware in the mail. Building 
this future requires us to rethink the embedded 
development process and redesign the tools we use.
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T he transition towards co-design tools 
over the last few decades has brought 
embedded system development to a 

fork in the road. Our current path involves 
piecing together co-design features in an 
ad-hoc and unprincipled manner by making 
incremental changes to existing development 
tools. Instead, we should proceed down 
a second path, taking the opportunity to 
radically redesign the architecture of our 
embedded development tools. We propose 
single model development tools that support 

co-design and verification workflows, and 
also enable entirely new innovations and 
manufacturing processes. The first road is 
easier to travel, but the second road will take 
us to a whole new world. 

Embedded devices make up a 140 
billion dollar market that includes medical 
electronics, factory control systems, 
automotive computers, and the Internet 
of Things. The complexity of embedded 
applications continues to grow, making 
embedded developers rely progressively 

more on tools that can detect errors early 
in the design process. The longer an error 
goes undetected, the costlier it is to find and 
correct, so improved verification tools can 
dramatically decrease the cost and increase 
the speed of embedded development. 

Despite the importance of verification, 
modern embedded tools have difficulty 
verifying systems holistically. This is because 
modern tools split the development process 
into three design domains: the source code, 
for the device’s control logic; the schematic, 
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MANAGING EMBEDDED SYSTEM 
COMPLEXITY THROUGH STRICT 
VERIFICATION SEMANTICS 
As embedded systems grow more complex, 
developer error becomes more likely and 
more costly. Managing this complexity 
requires development tools that can quickly 
catch developer errors before the cost of 
correcting them grows. Like most forms 
of engineering, embedded development is 
a cycle of designing, building, and testing. 
The hardware fabrication stage of this cycle 
usually takes days or weeks, depending 
on how much one is willing to pay. On 
the other hand, reprogramming existing 

hardware takes minutes and is inexpensive. 
Hardware errors are costly, while software 
errors are cheap. This dynamic, where costs 
are concentrated in hardware fabrication, 
means developer tools that detect hardware 
errors can significantly lower the costs of 
embedded development. 

However, to substantially reduce a 
developer’s workload, tools need to do more 
than detect a subset of individual hardware 
errors – they need to provide reliable 
guarantees of correctness. Modern tools 
tend to be permissive verifiers, which only 
throw errors when they are confident that 
the design is broken. When a permissive 

verifier reports no hardware errors, it does 
not mean that the device’s hardware will 
work. Lacking this guarantee, engineers 
need to check the design manually to find 
errors outside the scope of their tools. This 
is particularly problematic for inexperienced 
embedded developers, who are both the 
least likely to know what errors they must 
check for and the most likely to make those 
errors. Permissive verification does not serve 
developers or students well, at best detecting 
some errors sooner while leaving behind a 
large amount of manual labor. 

Embedded development tools should 
instead provide strict verification, which 
guarantees that the device’s hardware 
is correct if no errors are raised. Strict 
verification’s strong guarantee means that if 
no errors are found, the developer’s work is 
finished. The downside is that strict verifiers 
will show errors for some correct designs, 
because the verifier cannot understand the 
design. However, we believe that manually 
examining a finite list for false positives is 
easier than checking an entire design for an 
unknown error, especially as devices grow 
more complex. Strict verifiers can also act as 
guides for students and developers, pointing 
them towards potential issues and telling 
them when development can stop. 

In order to support strict verification, 
development tools need to capture relation-
ships between design domains, something 
that modern tools are ill-equipped to do. 
Consider an embedded device whose 
software reads data from a port connected 
to a thermometer, but accidentally treats 
that data as input from a microphone. A 
software-only verifier can see that the pro-
gram expects the port to act as an interface 
to an audio stream. A hardware-only verifier 
can see that the port is capable of supplying 
temperature data because it is connected 
to a thermometer. The mismatch between 
interface and capability only becomes visible 
when both pieces of information are taken 
together. When modern embedded develop-
ment tools split the design domains, they 
discard the information needed to connect 
a software interface to the corresponding 
hardware capability. 

Strict verification also needs access 
to rich metadata that specifies what each 
component does and what resources it 
requires to function. For instance, checking 
that a thermometer will function requires 
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for the device’s electrical connectivity; and 
the PCB layout, for the device’s physical 
structure. This split keeps modern tools 
from providing strong guarantees to 
developers about the correctness of their 
designs, and forces developers to spend time 
manually collating metadata and checking 
for errors over long design-build-test cycles. 

The need for holistic system verifica-
tion has led to the increased importance of 
co-design development tools [3]. Co-design 
tools explicitly model the relationships be-
tween the different domains of an embedded 
system. The ability to capture the interac-
tions and dependencies between different 
domains makes co-design tools well-suited 
for optimization, simulation, and verifica-
tion of complex cyber-physical systems. 

However, it is not clear how to best 
incorporate co-design into the embedded 
development tools that we already have. 
The most common current approach 
opportunistically implements individual co-
design features by stitching together parts 
of domain-specific tools, and produces only 
incremental improvements. Our alternative 
approach takes a step back to fundamentally 
restructure embedded development tools to 
support holistic verification. We believe this 
approach is likely to pay large dividends. 

We propose refactored architectures 
that follow a single model paradigm. Single 
model tools create a unified view of an 
embedded system by consolidating the 
design domains that modern tools hold 
separate. This architecture captures the 
inter-domain constraints and dependencies 
that are usually manually maintained. While 
this makes verification much easier, it comes 
with a high startup cost. The single model 
approach relies upon a powerful formal 
representation of the embedded design space 
that must be carefully crafted. In addition, 
single model tools require an extensive 
component library expressed within that 
formalism, compiled from the components’ 
specifications and other metadata. 

Though single model tools require more 
up-front effort to implement, the potential 
benefits are tremendous. Not only do single 
model tools support holistic verification of 
complete embedded systems; they can also 
combine with advances in programming 
language research to enable a revolutionary 
new embedded development process called 
automatic device generation. 

Automatic device generation (ADG) 
compiles high-level application logic into 
embedded hardware. ADG transforms the 
problem of hardware development into 
a software development problem. This 
opens up hardware development to anyone 
who can code, dramatically expanding 
the labor market and lowering the cost 
of hardware innovation. ADG will allow 
even novice programmers to quickly 
prototype new embedded applications. 
This has implications for a broad range 
of people. Hobbyists could satisfy a wide 
variety of niche needs with small-batch 
manufacturing. Scientists could pursue 

research that needs embedded control 
systems or sensor networks without 
the need to learn an additional field of 
engineering. Professional embedded 
engineers could design the critical features 
of new devices, generate the rest of their 
systems, and move quickly to testing. 

We believe that holistic verification 
and automatic device generation will have 
a major impact on embedded system 
innovation, and thus on society. However, 
both rely on fundamental changes to 
embedded development tools. If we take the 
time to revisit embedded development tools 
now, we can ensure a prosperous tomorrow. 

FIGURE 1. The Architectures of Modern and Single Model Tools

(a) The architecture of modern tools 
Each editor uses its own internal representation for its portion of the design. This stovepiped 
structure makes it difficult to create the global view of a device’s design needed for strict 
verification. In addition, metadata needed during development is held outside the development 
tools, and forces the developer to manually incorporate that information into the design process. 
Other development chains, like those for FPGAs or PSoCs, would generally form parallel stovepipes 
that further fracture the development process. 

(b) The single model architecture
Instead of a stovepiped structure, each editor now modifies the shared device model. The device 
model also serves as a global view of a device’s design, which can be used by the verification 
engine. Much of metadata needed for embedded development has been pulled into a component 
library, reducing the need for external metadata. Despite these changes to the development 
tools, the broader embedded development process stays largely the same for developers and 
fabricators. 
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verification tools to know which pins are 
connected to power, what voltage the 
component requires, and the format in 
which it sends data. Modern development 
tools do not carry most of this information, 
so developers must trawl through 
datasheets, manuals, and numerous other 
sources to gather it. If verification tools 
had access to rich metadata, engineers 
could save the time they spend manually 
searching for metadata and verifying that 
components are correctly connected.

Modern development tools – whose 
architecture is shown in Figure 1(a) – 
cannot be simply augmented to support 
strict verification. Each design domain 
is given its own internal representation 
and file format, which are not directly 
connected. In addition, the metadata 
available to existing tools is poor, serving 
mainly as a set of common design elements 
with human-readable labels. The design 
of modern tools assumes that the design 
domains are independent and relies on the 
engineers to make sure the complete design 
is internally consistent. The ensuing variety 
of backend representations makes it difficult 
to incorporate a global design view, rich 
metadata, and strict verification into the 
architecture of modern design tools.  

AN EMBEDDED DEVELOPMENT 
TOOL ARCHITECTURE FOR 
STRICTLY VERIFIABLE CO-DESIGN 
In order to build a useful strict verifier, we 
need a new development tool architecture 
that unifies disparate design domains into 
a single model view. The architecture that 
we advocate – shown in Figure 1(b) – is 
divided into three major parts. The device 
model is the core of the single model model 
architecture and stores design information 
that is currently split between source code, 
schematics, and PCB layouts. The component 
library acts as a searchable store of software 
and hardware, all annotated with rich 
metadata and ready to be used within the 

investment in single model tools and 
research efforts to improve them. 

Single model tools are the next major 
step in embedded development. They fit 
directly into the modern development 
process, because they reuse user interfaces 
and output formats. Research and 
development work is needed to create these 
tools, but that work builds on existing 
knowledge and infrastructure. By providing 
a basis for strict verification, single model 
tools will make developers more efficient, 
reduce hardware errors, and provide a solid 
foundation for more advanced tools. 

AUTOMATIC GENERATION  
OF EMBEDDED DEVICES 
Single model tools provide numerous 
benefits, but also provide the building blocks 
for more powerful development processes. 
Cloud computing, commodity hardware, and 
better distributed systems are making access 
to large amounts of compute power cheaper 
than ever. These trends, when combined 
with verification tools and component 
libraries, will allow valuable engineer time 
to be replaced with cheap compute cycles. 
Embedded device generation will allow 
engineers to design the most important 
portions of an embedded device before filling 
in missing portions with automated searches. 

We envision device generation iterating 
over a partial device model, adding 
components and removing errors. At 
each step, verification errors identify what 
keeps the design from functioning. The 
component library will have parts that can 
fix these errors, creating a set of new partial 
designs. The verifier can vet the new designs, 
removing those that cannot be fixed. This 
new set of designs will be a step closer to 
completion, and repeating the process will 
lead to a design that passes verification 
entirely. This device generation process pulls 
from the component library and thus cannot 
write any of the unique control logic for 
a device. However, device generation will 
automatically add supporting infrastructure 
like power management systems, ports for 
programming, or connections for data. 

This is fundamentally a search process, 
which allows us to draw on the rich body 
of work on search quality and search 
optimization. Machine learning techniques 
can be used to examine existing designs 
and extract common patterns for reuse. 

Developers can choose heuristics to bias 
the search and modify the design priorities 
of device generation. Divide-and-conquer 
approaches can turn a monolithic search 
into multiple smaller problems. These 
techniques make device generation feasible, 
and allow it to automate large parts of the 
embedded development process. 

GENERATING HARDWARE  
FROM SOFTWARE 
Single model tools and device generation 
will allow the creation of new embedded 
device languages. These languages will look 
like modern embedded software, but act as 
self-contained descriptions for embedded 
devices, compiling into a finished device 
model. Device languages will reduce the 
problem of hardware development into 
one of software development and will allow 
anyone who can code to design hardware. 

Modern embedded software is written as 
a description of what a processor does, rather 
than a description of what an embedded 
device will do. Instead of a developer 
specifying that the status LED should turn 
on, the developer has to describe what an 
output pin on the microcontroller does 
as well as ensuring that manipulating the 
output pin changes the state of the LED. This 
perspective forces embedded developers to 
design much of a device’s hardware before 
writing the software and before device 
generation tools can complete their work. 

We envision new high-level embedded 
design languages that change this, 
allowing software to act as a self-contained 
specification that device generation tools 
can use directly. Consider the example in 
Figure 2 for a simple temperature controller. 
This program has two major components: 
a declaration of the necessary components 
and the runtime logic needed to control 
them. While this is a simple example, the 
component declarations illustrate how a 
developer specifies the type of component 
needed and the properties that component 
must have. This means the developer does 
not need to choose a specific thermometer 
or heater, and device generation can 
automate that choice. 

The control logic in Figure 2 looks like 
modern embedded software, if that software 
was built with well-designed libraries and 
used good variable names. The key difference 
between the two is semantic, with the 

new languages taking over what are now 
developer tasks. Writing modern embedded 
code requires the developer to find the 
libraries and drivers for the components 
they use as well as initialize them with 
information about how those components 
connect to the microcontroller. High-level 
embedded design languages will instead have 
common interfaces for major component 
types and allow device generation tools to 
choose the necessary libraries and generate 
their initialization code. 

Figure 2 is how we envision the earliest 
versions of these languages, but they can 
grow to be much more powerful. Early 
device languages will likely use a hub-and-
spoke model, with all the code running on 

device model as part of an embedded design. 
The verification system examines the device 
model to determine whether each design 
is viable before passing any errors to the 
appropriate editor. The editors, instead of 
acting in separate design domains, all act as 
windows into the device model showing the 
same slices of each design as modern editors. 

There are several properties that device 
models must have in order to support ef-
ficient design practices, minimize developer 
work, and be used with strict verification 
tools. Device models need to be modular 
and composable so that developers can 
design embedded sub-systems once and 
reuse them in future designs. Device models 
should use existing embedded program-
ming languages and support existing source 
code. Finally, device models need to allow 
all elements of each design to be annotated 
with metadata that can be used by the veri-
fier. Work in cyber-physical systems [2] and 
data structures can be incorporated into the 
design of device models to provide these 
properties while accurately capturing the 
entire structure of an embedded device. 

We envision single model verification as 
a system that layers constraints onto a device 
model. These constraints capture properties 
that an embedded device must have in order 
to function correctly. The verification system 
will be made of three parts. Verification 
plugins capture one aspect of embedded 
development, encoding limitations within 
its domain as a set of constraints attached 
to a device model. For instance, a bus-
management plugin may add a constraint 
to the device model specifying that “No two 
devices on this bus may share an address.” 
The verification engine executes plugins 
against a device model while collecting the 
generated constraints into a monolithic 
constraint satisfaction problem. The veri- 
fication engine then solves the constraint 
satisfaction problem before forwarding any 
unsatisfiable constraints to the developer as 
errors. The verification framework defines a 

specification for plugins and define how the 
verification engine operates. The framework 
acts as the mathematical glue for verification, 
defining how plugins are written, how they 
are combined and evaluated, and proving 
that the process as a whole is sound. 

Implementation work for single model 
tools can be minimized through reuse of 
existing systems and careful design. Existing 
compilers can use code within the device 
model after it is stripped of annotations and 
metadata. In order to provide a familiar 
interface for embedded professionals, the 
frontends on modern tools can be directly 
incorporated into single model tools. The 
component library can use templating 
and inheritance to allow large classes of 
common components to be added quickly. 
Verification can be built incrementally, 
with new plugins each making the verifier 
more accurate. Single model tools can be 
designed to minimize implementation 
effort, making them a feasible project for 
the academic community. 

Elements of single model tools can also 
provide a foundation for other short-term 
improvements. The verification engine 
can search through the component library 
for parts that bring the device closer to 
completion, acting as auto-complete for 
embedded designs. The device model 
contains information that can be used by 
auto-placement and auto-routing tools to 
capture the same PCB design intuition that 
developers use. The device model can also 
act as a framework for simple co-simulation, 
automatically merging analog and digital 
simulations to create a holistic device 
simulation. 

Open formats and specifications are 
key to the adoption of the single model 
architecture. Early implementations can be 
built on top of open source development 
tools like KiCAD and Fritzing, allowing 
their users to quickly take advantage of 
better verification without changing their 
workflows. Likewise, an open component 
library would allow hobbyists and 
professionals to contribute parts and create 
a robust ecosystem for less experienced 
users. This process can allow an single 
model tool ecosystem to grow large enough 
that parts manufacturers are incentivize to 
contribute. Open standards for the device 
model, component library, and verification 
framework can catalyze both commercial 
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FIGURE 2. This program acts as a self-
contained specification and implementation 
for a temperature controller. The initial 
section acts as a declaration of the 
components the controller must contain, 
as well as the properties those components 
must have. The second section is a 
description of how the device should act, 
written as if the declared components had 
a well-defined generic software API. The 
program as a whole acts as a specification 
that embedded device generation tools 
attempt to satisfy when generating a device. 

AUTOMATIC DEVICE GENERATION (ADG) 
WILL ALLOW EVEN NOVICE PROGRAMMERS 
TO QUICKLY PROTOTYPE NEW EMBEDDED 
APPLICATIONS.

Donna
Iqbal, Prabal: Does this sentence make sense?
This process can allow an single model tool ecosystem to grow large enough that parts manufacturers are incentivize to contribute. 
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a single microcontroller that is connected 
to all the peripherals. However, research 
in heterogeneous computing has already 
created tools that improve speed and 
efficiency by dividing code between CPUs, 
GPUs, and FPGAs. [1] Future device 
languages can incorporate these tools to 
explore a more complex space of device 
architectures in search of the fastest or 
cheapest implementation. The example 
we provide uses a run-loop and polling 
to control the temperature controller, but 
even early device languages will be able 
to support interrupt-driven applications. 
Future languages can expand on this 
and use tools from PL theory to create 
programming models that allow developers 
to express precise constraints on timing [6] 
or energy usage [5]. 

In order to be successful, device specifi-
cation languages need to be easy for novices 
to learn and powerful enough for advanced 
users. We can accomplish this by pulling 
from the experience of the computer science 
community. Embedded microcontrollers 
like the Arduino have spurred the develop-
ment of easy-to-use programming idioms 
and design patterns. These conventions 
allow those without formal training to 
learn embedded development skills quickly 
while continuing to make progress on the 
projects that impelled them to learn. Device 
specification languages can use tools from 
programming language design to create 
a robust framework for change over time 
[4] that can incorporate new technolo-
gies as they appear. Tools from type theory 
can allow expert users to express complex 
relationships between software and hard-
ware while being invisible to novices. These 
languages can be constructed to provide a 
usable human-centric interface to the  
complexities of device generation and  
verification frameworks. 

This work will also enable a number 
of new tools and technologies. Device 
languages act as an implicit description 
of an embedded device and, before 
compilation even occurs, these descriptions 
could be used by simulation tools. While 
these simulations will not capture the exact 
functioning of each component as it will 
have not yet been chosen, they can be part 
of a high-speed virtual prototyping process. 
Designers could don their VR goggles and 
play with dozens of wildly-different versions 

of a device before moving to a physical 
prototype which will save time and lead 
to better products. Device fabricators also 
benefit, as they could work more efficiently 
and reduce costs for makers by working 
directly with device language code. When a 
maker creates a design, they could submit 
that code to a number of fabricators. Each 
fabricator can compile it using only the 
parts they have in stock, in order to provide 
the fastest service and lowest price possible. 

Device specification languages 
represent a fundamentally new way to 
design embedded devices. By allowing any 
programmer to design embedded hardware, 
they empower students, professionals, 
hobbyists, the creative, and the curious. 
These new embedded developers will be 
able to make electronic art, automate their 
homes, experiment with robotics, and 
gather information about their world, all 
through the devices they create. Device 
specification languages also allow the 
creation of powerful new tools, enabling 
designers to iterate faster and allowing 
fabricators to work more effectively. 

CONCLUSION 
Embedded development can be put on 
a path that leads to powerful new tools. 
This process starts with the development 
of single model tools, which enable a 
powerful new verification system, and ways 
to automate much of the design process. 
The automation then sets the stage for new 
programming languages and compilers 
that allow pure software to be turned into 
hardware designs. 

Each of these steps brings its own 
benefits, but together they radically 
improve the embedded development 
process. Hobbyists will have greater access 
to embedded development with tools that 
reduce the skill barrier and shrink cost. 
Embedded developers can use the new tools 
to catch mistakes, remove the most tedious 
aspects of their job, and automate their work. 
Companies can expect quicker development 
cycles and lower costs, enabling them to 
make better products faster. 

Single model tools, strict verification, 
and embedded device generation are within 
our grasp. However, creating them requires 
a willingness to acknowledge the problems 
with modern embedded development 
and to redesign our tools to correct those 

issues. Our current ad-hoc, jumbled, 
and incremental approach to embedded 
development tools keeps us from a world in 
which designing embedded hardware is fast, 
easy, and cheap. We can make the correct 
choices now, and bring powerful new tools 
to everyone who wants to build embedded 
hardware. n
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