
GetMobile April 2016 | Volume 20, Issue 24 5April 2016 | Volume 20, Issue 2 GetMobile

[MAKERS]

Rohit Ramesh and Prabal Dutta University of Michigan

EMBEDDED
DEVELOPMENT TOOLS
REVISITED:
Verification
and Generation
from the
Top Down
We envision a future where any programmer can
automatically generate an embedded device from
application code. A future in which a professional
embedded engineer can “sketch” out a partial device
design and automation can complete it, in which
a hobbyist can write a program and, in a matter of
days, receive a custom hardware in the mail. Building
this future requires us to rethink the embedded
development process and redesign the tools we use.

Il
lu

s
tr

a
ti

o
n

,
is

to
c
k
p

h
o

to
.c

o
m

Editors: Prabal Dutta and Iqbal Mohomed

T he transition towards co-design tools
over the last few decades has brought
embedded system development to a

fork in the road. Our current path involves
piecing together co-design features in an
ad-hoc and unprincipled manner by making
incremental changes to existing development
tools. Instead, we should proceed down
a second path, taking the opportunity to
radically redesign the architecture of our
embedded development tools. We propose
single model development tools that support

co-design and verification workflows, and
also enable entirely new innovations and
manufacturing processes. The first road is
easier to travel, but the second road will take
us to a whole new world.

Embedded devices make up a 140
billion dollar market that includes medical
electronics, factory control systems,
automotive computers, and the Internet
of Things. The complexity of embedded
applications continues to grow, making
embedded developers rely progressively

more on tools that can detect errors early
in the design process. The longer an error
goes undetected, the costlier it is to find and
correct, so improved verification tools can
dramatically decrease the cost and increase
the speed of embedded development.

Despite the importance of verification,
modern embedded tools have difficulty
verifying systems holistically. This is because
modern tools split the development process
into three design domains: the source code,
for the device’s control logic; the schematic,

GetMobile April 2016 | Volume 20, Issue 26 7April 2016 | Volume 20, Issue 2 GetMobile

[MAKERS]

MANAGING EMBEDDED SYSTEM
COMPLEXITY THROUGH STRICT
VERIFICATION SEMANTICS
As embedded systems grow more complex,
developer error becomes more likely and
more costly. Managing this complexity
requires development tools that can quickly
catch developer errors before the cost of
correcting them grows. Like most forms
of engineering, embedded development is
a cycle of designing, building, and testing.
The hardware fabrication stage of this cycle
usually takes days or weeks, depending
on how much one is willing to pay. On
the other hand, reprogramming existing

hardware takes minutes and is inexpensive.
Hardware errors are costly, while software
errors are cheap. This dynamic, where costs
are concentrated in hardware fabrication,
means developer tools that detect hardware
errors can significantly lower the costs of
embedded development.

However, to substantially reduce a
developer’s workload, tools need to do more
than detect a subset of individual hardware
errors – they need to provide reliable
guarantees of correctness. Modern tools
tend to be permissive verifiers, which only
throw errors when they are confident that
the design is broken. When a permissive

verifier reports no hardware errors, it does
not mean that the device’s hardware will
work. Lacking this guarantee, engineers
need to check the design manually to find
errors outside the scope of their tools. This
is particularly problematic for inexperienced
embedded developers, who are both the
least likely to know what errors they must
check for and the most likely to make those
errors. Permissive verification does not serve
developers or students well, at best detecting
some errors sooner while leaving behind a
large amount of manual labor.

Embedded development tools should
instead provide strict verification, which
guarantees that the device’s hardware
is correct if no errors are raised. Strict
verification’s strong guarantee means that if
no errors are found, the developer’s work is
finished. The downside is that strict verifiers
will show errors for some correct designs,
because the verifier cannot understand the
design. However, we believe that manually
examining a finite list for false positives is
easier than checking an entire design for an
unknown error, especially as devices grow
more complex. Strict verifiers can also act as
guides for students and developers, pointing
them towards potential issues and telling
them when development can stop.

In order to support strict verification,
development tools need to capture relation-
ships between design domains, something
that modern tools are ill-equipped to do.
Consider an embedded device whose
software reads data from a port connected
to a thermometer, but accidentally treats
that data as input from a microphone. A
software-only verifier can see that the pro-
gram expects the port to act as an interface
to an audio stream. A hardware-only verifier
can see that the port is capable of supplying
temperature data because it is connected
to a thermometer. The mismatch between
interface and capability only becomes visible
when both pieces of information are taken
together. When modern embedded develop-
ment tools split the design domains, they
discard the information needed to connect
a software interface to the corresponding
hardware capability.

Strict verification also needs access
to rich metadata that specifies what each
component does and what resources it
requires to function. For instance, checking
that a thermometer will function requires

[MAKERS]

for the device’s electrical connectivity; and
the PCB layout, for the device’s physical
structure. This split keeps modern tools
from providing strong guarantees to
developers about the correctness of their
designs, and forces developers to spend time
manually collating metadata and checking
for errors over long design-build-test cycles.

The need for holistic system verifica-
tion has led to the increased importance of
co-design development tools [3]. Co-design
tools explicitly model the relationships be-
tween the different domains of an embedded
system. The ability to capture the interac-
tions and dependencies between different
domains makes co-design tools well-suited
for optimization, simulation, and verifica-
tion of complex cyber-physical systems.

However, it is not clear how to best
incorporate co-design into the embedded
development tools that we already have.
The most common current approach
opportunistically implements individual co-
design features by stitching together parts
of domain-specific tools, and produces only
incremental improvements. Our alternative
approach takes a step back to fundamentally
restructure embedded development tools to
support holistic verification. We believe this
approach is likely to pay large dividends.

We propose refactored architectures
that follow a single model paradigm. Single
model tools create a unified view of an
embedded system by consolidating the
design domains that modern tools hold
separate. This architecture captures the
inter-domain constraints and dependencies
that are usually manually maintained. While
this makes verification much easier, it comes
with a high startup cost. The single model
approach relies upon a powerful formal
representation of the embedded design space
that must be carefully crafted. In addition,
single model tools require an extensive
component library expressed within that
formalism, compiled from the components’
specifications and other metadata.

Though single model tools require more
up-front effort to implement, the potential
benefits are tremendous. Not only do single
model tools support holistic verification of
complete embedded systems; they can also
combine with advances in programming
language research to enable a revolutionary
new embedded development process called
automatic device generation.

Automatic device generation (ADG)
compiles high-level application logic into
embedded hardware. ADG transforms the
problem of hardware development into
a software development problem. This
opens up hardware development to anyone
who can code, dramatically expanding
the labor market and lowering the cost
of hardware innovation. ADG will allow
even novice programmers to quickly
prototype new embedded applications.
This has implications for a broad range
of people. Hobbyists could satisfy a wide
variety of niche needs with small-batch
manufacturing. Scientists could pursue

research that needs embedded control
systems or sensor networks without
the need to learn an additional field of
engineering. Professional embedded
engineers could design the critical features
of new devices, generate the rest of their
systems, and move quickly to testing.

We believe that holistic verification
and automatic device generation will have
a major impact on embedded system
innovation, and thus on society. However,
both rely on fundamental changes to
embedded development tools. If we take the
time to revisit embedded development tools
now, we can ensure a prosperous tomorrow.

FIGURE 1. The Architectures of Modern and Single Model Tools

(a) The architecture of modern tools
Each editor uses its own internal representation for its portion of the design. This stovepiped
structure makes it difficult to create the global view of a device’s design needed for strict
verification. In addition, metadata needed during development is held outside the development
tools, and forces the developer to manually incorporate that information into the design process.
Other development chains, like those for FPGAs or PSoCs, would generally form parallel stovepipes
that further fracture the development process.

(b) The single model architecture
Instead of a stovepiped structure, each editor now modifies the shared device model. The device
model also serves as a global view of a device’s design, which can be used by the verification
engine. Much of metadata needed for embedded development has been pulled into a component
library, reducing the need for external metadata. Despite these changes to the development
tools, the broader embedded development process stays largely the same for developers and
fabricators.

GetMobile April 2016 | Volume 20, Issue 28 9April 2016 | Volume 20, Issue 2 GetMobile

[MAKERS]

verification tools to know which pins are
connected to power, what voltage the
component requires, and the format in
which it sends data. Modern development
tools do not carry most of this information,
so developers must trawl through
datasheets, manuals, and numerous other
sources to gather it. If verification tools
had access to rich metadata, engineers
could save the time they spend manually
searching for metadata and verifying that
components are correctly connected.

Modern development tools – whose
architecture is shown in Figure 1(a) –
cannot be simply augmented to support
strict verification. Each design domain
is given its own internal representation
and file format, which are not directly
connected. In addition, the metadata
available to existing tools is poor, serving
mainly as a set of common design elements
with human-readable labels. The design
of modern tools assumes that the design
domains are independent and relies on the
engineers to make sure the complete design
is internally consistent. The ensuing variety
of backend representations makes it difficult
to incorporate a global design view, rich
metadata, and strict verification into the
architecture of modern design tools.

AN EMBEDDED DEVELOPMENT
TOOL ARCHITECTURE FOR
STRICTLY VERIFIABLE CO-DESIGN
In order to build a useful strict verifier, we
need a new development tool architecture
that unifies disparate design domains into
a single model view. The architecture that
we advocate – shown in Figure 1(b) – is
divided into three major parts. The device
model is the core of the single model model
architecture and stores design information
that is currently split between source code,
schematics, and PCB layouts. The component
library acts as a searchable store of software
and hardware, all annotated with rich
metadata and ready to be used within the

investment in single model tools and
research efforts to improve them.

Single model tools are the next major
step in embedded development. They fit
directly into the modern development
process, because they reuse user interfaces
and output formats. Research and
development work is needed to create these
tools, but that work builds on existing
knowledge and infrastructure. By providing
a basis for strict verification, single model
tools will make developers more efficient,
reduce hardware errors, and provide a solid
foundation for more advanced tools.

AUTOMATIC GENERATION
OF EMBEDDED DEVICES
Single model tools provide numerous
benefits, but also provide the building blocks
for more powerful development processes.
Cloud computing, commodity hardware, and
better distributed systems are making access
to large amounts of compute power cheaper
than ever. These trends, when combined
with verification tools and component
libraries, will allow valuable engineer time
to be replaced with cheap compute cycles.
Embedded device generation will allow
engineers to design the most important
portions of an embedded device before filling
in missing portions with automated searches.

We envision device generation iterating
over a partial device model, adding
components and removing errors. At
each step, verification errors identify what
keeps the design from functioning. The
component library will have parts that can
fix these errors, creating a set of new partial
designs. The verifier can vet the new designs,
removing those that cannot be fixed. This
new set of designs will be a step closer to
completion, and repeating the process will
lead to a design that passes verification
entirely. This device generation process pulls
from the component library and thus cannot
write any of the unique control logic for
a device. However, device generation will
automatically add supporting infrastructure
like power management systems, ports for
programming, or connections for data.

This is fundamentally a search process,
which allows us to draw on the rich body
of work on search quality and search
optimization. Machine learning techniques
can be used to examine existing designs
and extract common patterns for reuse.

Developers can choose heuristics to bias
the search and modify the design priorities
of device generation. Divide-and-conquer
approaches can turn a monolithic search
into multiple smaller problems. These
techniques make device generation feasible,
and allow it to automate large parts of the
embedded development process.

GENERATING HARDWARE
FROM SOFTWARE
Single model tools and device generation
will allow the creation of new embedded
device languages. These languages will look
like modern embedded software, but act as
self-contained descriptions for embedded
devices, compiling into a finished device
model. Device languages will reduce the
problem of hardware development into
one of software development and will allow
anyone who can code to design hardware.

Modern embedded software is written as
a description of what a processor does, rather
than a description of what an embedded
device will do. Instead of a developer
specifying that the status LED should turn
on, the developer has to describe what an
output pin on the microcontroller does
as well as ensuring that manipulating the
output pin changes the state of the LED. This
perspective forces embedded developers to
design much of a device’s hardware before
writing the software and before device
generation tools can complete their work.

We envision new high-level embedded
design languages that change this,
allowing software to act as a self-contained
specification that device generation tools
can use directly. Consider the example in
Figure 2 for a simple temperature controller.
This program has two major components:
a declaration of the necessary components
and the runtime logic needed to control
them. While this is a simple example, the
component declarations illustrate how a
developer specifies the type of component
needed and the properties that component
must have. This means the developer does
not need to choose a specific thermometer
or heater, and device generation can
automate that choice.

The control logic in Figure 2 looks like
modern embedded software, if that software
was built with well-designed libraries and
used good variable names. The key difference
between the two is semantic, with the

new languages taking over what are now
developer tasks. Writing modern embedded
code requires the developer to find the
libraries and drivers for the components
they use as well as initialize them with
information about how those components
connect to the microcontroller. High-level
embedded design languages will instead have
common interfaces for major component
types and allow device generation tools to
choose the necessary libraries and generate
their initialization code.

Figure 2 is how we envision the earliest
versions of these languages, but they can
grow to be much more powerful. Early
device languages will likely use a hub-and-
spoke model, with all the code running on

device model as part of an embedded design.
The verification system examines the device
model to determine whether each design
is viable before passing any errors to the
appropriate editor. The editors, instead of
acting in separate design domains, all act as
windows into the device model showing the
same slices of each design as modern editors.

There are several properties that device
models must have in order to support ef-
ficient design practices, minimize developer
work, and be used with strict verification
tools. Device models need to be modular
and composable so that developers can
design embedded sub-systems once and
reuse them in future designs. Device models
should use existing embedded program-
ming languages and support existing source
code. Finally, device models need to allow
all elements of each design to be annotated
with metadata that can be used by the veri-
fier. Work in cyber-physical systems [2] and
data structures can be incorporated into the
design of device models to provide these
properties while accurately capturing the
entire structure of an embedded device.

We envision single model verification as
a system that layers constraints onto a device
model. These constraints capture properties
that an embedded device must have in order
to function correctly. The verification system
will be made of three parts. Verification
plugins capture one aspect of embedded
development, encoding limitations within
its domain as a set of constraints attached
to a device model. For instance, a bus-
management plugin may add a constraint
to the device model specifying that “No two
devices on this bus may share an address.”
The verification engine executes plugins
against a device model while collecting the
generated constraints into a monolithic
constraint satisfaction problem. The veri-
fication engine then solves the constraint
satisfaction problem before forwarding any
unsatisfiable constraints to the developer as
errors. The verification framework defines a

specification for plugins and define how the
verification engine operates. The framework
acts as the mathematical glue for verification,
defining how plugins are written, how they
are combined and evaluated, and proving
that the process as a whole is sound.

Implementation work for single model
tools can be minimized through reuse of
existing systems and careful design. Existing
compilers can use code within the device
model after it is stripped of annotations and
metadata. In order to provide a familiar
interface for embedded professionals, the
frontends on modern tools can be directly
incorporated into single model tools. The
component library can use templating
and inheritance to allow large classes of
common components to be added quickly.
Verification can be built incrementally,
with new plugins each making the verifier
more accurate. Single model tools can be
designed to minimize implementation
effort, making them a feasible project for
the academic community.

Elements of single model tools can also
provide a foundation for other short-term
improvements. The verification engine
can search through the component library
for parts that bring the device closer to
completion, acting as auto-complete for
embedded designs. The device model
contains information that can be used by
auto-placement and auto-routing tools to
capture the same PCB design intuition that
developers use. The device model can also
act as a framework for simple co-simulation,
automatically merging analog and digital
simulations to create a holistic device
simulation.

Open formats and specifications are
key to the adoption of the single model
architecture. Early implementations can be
built on top of open source development
tools like KiCAD and Fritzing, allowing
their users to quickly take advantage of
better verification without changing their
workflows. Likewise, an open component
library would allow hobbyists and
professionals to contribute parts and create
a robust ecosystem for less experienced
users. This process can allow an single
model tool ecosystem to grow large enough
that parts manufacturers are incentivize to
contribute. Open standards for the device
model, component library, and verification
framework can catalyze both commercial

[MAKERS]

FIGURE 2. This program acts as a self-
contained specification and implementation
for a temperature controller. The initial
section acts as a declaration of the
components the controller must contain,
as well as the properties those components
must have. The second section is a
description of how the device should act,
written as if the declared components had
a well-defined generic software API. The
program as a whole acts as a specification
that embedded device generation tools
attempt to satisfy when generating a device.

AUTOMATIC DEVICE GENERATION (ADG)
WILL ALLOW EVEN NOVICE PROGRAMMERS
TO QUICKLY PROTOTYPE NEW EMBEDDED
APPLICATIONS.

Donna
Iqbal, Prabal: Does this sentence make sense?
This process can allow an single model tool ecosystem to grow large enough that parts manufacturers are incentivize to contribute.

GetMobile April 2016 | Volume 20, Issue 210 11April 2016 | Volume 20, Issue 2 GetMobile

[MAKERS] [EXPERIMENTAL METHODS]

a single microcontroller that is connected
to all the peripherals. However, research
in heterogeneous computing has already
created tools that improve speed and
efficiency by dividing code between CPUs,
GPUs, and FPGAs. [1] Future device
languages can incorporate these tools to
explore a more complex space of device
architectures in search of the fastest or
cheapest implementation. The example
we provide uses a run-loop and polling
to control the temperature controller, but
even early device languages will be able
to support interrupt-driven applications.
Future languages can expand on this
and use tools from PL theory to create
programming models that allow developers
to express precise constraints on timing [6]
or energy usage [5].

In order to be successful, device specifi-
cation languages need to be easy for novices
to learn and powerful enough for advanced
users. We can accomplish this by pulling
from the experience of the computer science
community. Embedded microcontrollers
like the Arduino have spurred the develop-
ment of easy-to-use programming idioms
and design patterns. These conventions
allow those without formal training to
learn embedded development skills quickly
while continuing to make progress on the
projects that impelled them to learn. Device
specification languages can use tools from
programming language design to create
a robust framework for change over time
[4] that can incorporate new technolo-
gies as they appear. Tools from type theory
can allow expert users to express complex
relationships between software and hard-
ware while being invisible to novices. These
languages can be constructed to provide a
usable human-centric interface to the
complexities of device generation and
verification frameworks.

This work will also enable a number
of new tools and technologies. Device
languages act as an implicit description
of an embedded device and, before
compilation even occurs, these descriptions
could be used by simulation tools. While
these simulations will not capture the exact
functioning of each component as it will
have not yet been chosen, they can be part
of a high-speed virtual prototyping process.
Designers could don their VR goggles and
play with dozens of wildly-different versions

of a device before moving to a physical
prototype which will save time and lead
to better products. Device fabricators also
benefit, as they could work more efficiently
and reduce costs for makers by working
directly with device language code. When a
maker creates a design, they could submit
that code to a number of fabricators. Each
fabricator can compile it using only the
parts they have in stock, in order to provide
the fastest service and lowest price possible.

Device specification languages
represent a fundamentally new way to
design embedded devices. By allowing any
programmer to design embedded hardware,
they empower students, professionals,
hobbyists, the creative, and the curious.
These new embedded developers will be
able to make electronic art, automate their
homes, experiment with robotics, and
gather information about their world, all
through the devices they create. Device
specification languages also allow the
creation of powerful new tools, enabling
designers to iterate faster and allowing
fabricators to work more effectively.

CONCLUSION
Embedded development can be put on
a path that leads to powerful new tools.
This process starts with the development
of single model tools, which enable a
powerful new verification system, and ways
to automate much of the design process.
The automation then sets the stage for new
programming languages and compilers
that allow pure software to be turned into
hardware designs.

Each of these steps brings its own
benefits, but together they radically
improve the embedded development
process. Hobbyists will have greater access
to embedded development with tools that
reduce the skill barrier and shrink cost.
Embedded developers can use the new tools
to catch mistakes, remove the most tedious
aspects of their job, and automate their work.
Companies can expect quicker development
cycles and lower costs, enabling them to
make better products faster.

Single model tools, strict verification,
and embedded device generation are within
our grasp. However, creating them requires
a willingness to acknowledge the problems
with modern embedded development
and to redesign our tools to correct those

issues. Our current ad-hoc, jumbled,
and incremental approach to embedded
development tools keeps us from a world in
which designing embedded hardware is fast,
easy, and cheap. We can make the correct
choices now, and bring powerful new tools
to everyone who wants to build embedded
hardware. n

Rohit Ramesh is a second-year PhD student at
the University of Michigan working with Prabal
Dutta. He received a BS in Computer Science
at the University of Maryland. His research
focuses on improving development tools and
interfaces for embedded systems with insights
from Formal Systems, Programming Language
Theory, Machine Learning, and Human
Computer Interfaces.

Prabal Dutta is an associate professor of
Electrical Engineering and Computer Science
at the University of Michigan. He holds a BS
in Electrical and Computer Engineering and
an MS in Electrical Engineering from The Ohio
State University and a PhD in Computer Science
from the University of California, Berkeley. His
research interests are in wireless, embedded
and networked systems, and their applications.

REFERENCES
[1] Joshua Auerbach et al. “A Compiler and Runtime

for Heterogeneous Computing”. In: Proceedings of
the 49th Annual Design Automation Conference.
DAC ’12. San Francisco, California: ACM, 2012,
pp. 271–276. isbn: 978-1-4503-1199-1. doi:
10.1145/2228360.22284111. url: http://doi.acm.
org/10.1145/2228360.2228411.

[2] P. Derler, E. A. Lee, and A. Sangiovanni
Vincentelli. “Modeling Cyber-Physical Systems”.
In: Proceedings of the IEEE 100.1 (2012),
pp. 13–28. issn: 0018-9219. doi: 10.1109/
JPROC.2011.21609292.

[3] R. Ernst. “Codesign of embedded systems: status
and trends”. In: IEEE Design Test of Computers
15.2 (1998), pp. 45–54. issn: 0740-7475. doi:
10.1109/54.6792073.

[4] Nathaniel Nystrom, Michael R Clarkson, et al.
“Polyglot: An extensible compiler framework for
Java”. In: Compiler Construction. Springer. 2003,
pp. 138–152.

[5] Adrian Sampson et al. “EnerJ: Approximate
data types for safe and general low-power
computation”. In: ACM SIGPLAN Notices.
Vol. 46. 6. ACM. 2011, pp. 164–174.

[6] Victor Fay Wolfe, Susan Davidson, and Insup Lee.
“RTC: Language support for real-time
concurrency”. In: Real-Time Systems 5.1 (1993),
pp. 63–87.

1 http://dx.doi.org/10.1145/2228360.2228411

2 http://dx.doi.org/10.1109/JPROC.2011.2160929

3 http://dx.doi.org/10.1109/54.679207

