MBUS: A SYSTEM INTEGRATION BUS
FOR THE MODULAR MICROSCALE
COMPUTING CLASS

MBUS IS A NEW INTERCHIP INTERCONNECT MADE OF TWO “SHOOT-THROUGH" RINGS

Pat Pannuto
University of Michigan

Yoonmyung Lee
Sungkyunkwan University

Ye-Sheng Kuo
ZhiYoong Foo
Benjamin Kempke
Gyouho Kim

Ronald G. Dreslinski
David Blaauw
Prabal Dutta
University of Michigan

THAT RESOLVES FUNDAMENTAL SIZE AND POWER ISSUES THAT PREVENT THE DESIGN OF

COMPOSABLE MICROSCALE SYSTEMS. MBUS INTRODUCES POWER-OBLIVIOUS

COMMUNICATION, WHICH GUARANTEES MESSAGE RECEPTION REGARDLESS OF THE

RECIPIENT'S POWER STATE. THIS DISENTANGLES POWER MANAGEMENT FROM

COMMUNICATION, GREATLY SIMPLIFYING THE CREATION OF VIABLE, MODULAR, AND

HETEROGENEQUS SYSTEMS THAT OPERATE ON THE ORDER OF NANOWATTS.

e o o o o o Bell's law follows the trend from
mainframes to desktops to mobile phones
and predicts the emergence of a new class of
computing roughly every decade. Today, we
see the emergence of the wearable class: centi-
meter-scale, wireless, battery-powered devi-
ces. We look ahead to the next generation,
the microscale computing class, and make
the critical observation that even if we scale
all the components, the processor, the radio,
sensors, and so on, we still will not be able to
produce viable microscale systems.

The problem is rooted in the interconnect
technologies used to synthesize systems. Micro-
scale systems such as the pressure sensor in
Figure 1 by their definition introduce unprece-
dented constraints on size, which in turn intro-
duces unprecedented constraints on available
energy. Since their invention around the early
1980s, the Serial Peripheral Interface (SPI) and
Inter-Integrated Circuit (I°C) buses have

Published by the IEEE Computer Society

served as the interconnects for the vast majority
of embedded designs. In the creation of modu-
lar, microscale systems, we discover that the
area demands of SPI and the energy demands
of I>C render them fundamentally unusable
for composing the next class of computing,

To address these limitations, we introduce
MBus, a new interchip interconnect designed
for the composition of current and future
microscale and resource-constrained sys-
tems." MBus connects components with a
pair of “shoot-through” rings, CLK and
DATA, and delivers a superset of the features
from I’C and SPI but at lower power, with a
fixed area and pin count, using fully synthe-
sizable logic, and minimal protocol overhead.
We designed MBus from the ground up, lev-
eraging a principled approach that begins by
identifying the key properties of interconnect
technologies from extant and newly emerging

embedded designs.

0272-1732/16/$33.00 © 2016 IEEE

Because existing technologies have worked
for so long, litde to no work outlines the
design space and requirements for the inter-
chip networks of embedded devices. Our first
major contribution was to fill this void and
present an analysis of the requirements and
desirable features we identified from nearly a
decade of designing microscale systems. From
this discussion emerged a new constraint,
unique to the new but growing class of hyper-
power-conscious systems of a “power-aware”
interconnect.

With power awareness, MBus takes a chal-
lenging circuits problem and a challenging
systems problem and creates an architectural
solution. To preserve precious energy, micro-
scale systems completely shut off unused com-
ponents. This is not the traditional dark
silicon, which still leaks static power while
unclocked. This is “pitch-black” silicon that
draws no power but also preserves no state. In
circuit design, cold-booting pitch-black,
clockless silicon is a challenging problem. The
MBus protocol adds explicit support for wak-
ing powered-off nodes, enabling circuit
designers to leave fewer than 50 gates powered
for maximal energy savings. When designing
systems, tracking every components power
state can become a challenging distributed
state problem. Because MBus controls each
component’s power state, it can provide the
appearance that components are always on
simply by waking them before delivering mes-
sages. This lets MBus member nodes be power
oblivious, which greatly simplifies the system
design and enables traditional components
that have no power awareness to seamlessly
benefit from the power-saving capabilities of
power-conscious elements.

We have implemented MBus front ends
on more than a dozen distinct chips and used
these components to compose half a dozen
different systems. From empirical measure-
ments, MBus requires only 22.6 pJ/bit/chip
on average, and its efficient transmission-level
acknowledgements provide a 90 to 99 per-
cent reduction in overhead for long messages.

Shortcomings of Existing Interconnects

The SPI bus is conceptually very simple.
Direct, single-ended connections run between
a master and peripheral devices. For efficiency,

Figure 1. Microscale pressure sensing
system on the edge of a US nickel.
Microscale systems, and the techniques
such as 3D-stacking employed to realize
their size, introduce volume and surface
area constraints that lead to extremely
limited energy storage, energy harvesting,
and I/O capabilities.

the clock and data wires (SCLK, MOSI,
MISO) are shared among all peripherals, with
only one distinct chip select line running to
each slave device. As we push toward smaller
and more I/O-constrained devices, however, it
is this multitude of chip selects that becomes
the issue.

In a modular system with a variable (and
unknown until system design time) number
of components, it is difficult to choose the
right number of chip select lines a priori—
too few impede modularity and too many
violate the area constraints of microscale
systems. Furthermore, the master/slave archi-
tecture actually makes I/O twice as problem-
atic. A subtle, yet critical, implication of a
single-master design is that all communica-
tion is master-initiated. For a sensor to signal
the microcontroller (that is, an interrupt), it
requires a second dedicated wire, a resource
that is unavailable to microscale systems.

Another drawback of the master/slave
architecture is that all communication between
slave devices must go through the master
node. This more than doubles the communi-
cation cost for slave-to-slave transmissions:
every message is sent twice, plus the extra
energy cost of running the central controller.
Owing primarily to I/O constraints, SPI and
its derivatives are fundamentally incompatible
with size-constrained microsystems.

The other primary embedded interconnect
technology, the I>?C bus, requires only two

MAY/June 2016 H

TOP PICKS

4 |EEE MICRO

wires, clock and data (SCL and SDA), inde-
pendent of the number of connected devices.
Each wire is an open-collector circuit, con-
nected to each device. This turns each bus line
into a wired-AND; one or many devices can
drive a 0 on the bus, but if nothing actively
drives low, then pull-up resistors pull each line
high. This approach has the advantages of
decentralized arbitration and multitiered pri-
ority. The pull-up resistors, however, are not
energy efficient and result in designs that have
up to three orders of magnitude worse energy
per bit than MBus.

To illustrate, consider an idealized I*C con-
figuration running at 1.2 V that we try to opti-
mize for energy consumption. I*C typically
requires the pull-up resistor be sized to accom-
modate 400 pF of total bus capacitance, but
let us relax that to 50 pF for microscale sys-
tems; fast mode I°C has a 400 kHz clock and
must reach 80 percent Vpp in 300 ns, but let
us relax that (eliminate setup and hold time)
to the full halfcycle (1.25 ps). This relaxed
I>C bus requires a pull-up resistor no greater
than 15.5 kQ. To generate the bus clock, this
resistor is shorted to ground for a half-period,
dumping the charge in the bus wires, pads,
and FET gates (23 pJ) and dissipating power
in the resistor (116 pJ). The clock line then
floats for a half-cycle and the resistor pulls it
high (35 pJ). Thus, generating the clock alone
draws 69.6 pW. Eliminating the switching
power—the 23 p]/bit charging and discharg-
ing of the wire, pad, and gate capacitance—
requires complex adiabatic clocks, which are
outside the scope of our design. MBus finds its
energy gains by eliminating the 151 p]/bit lost
to the pull-up resistor.

In an earlier generation, we attempted to
modify I’C, replacing the energy-hungry
pull-up resistors with a low-energy bus-
keeper circuit that preserves the last value,
similar to ?C’s ultrafast mode.” Although
this improved energy, pushing it down to 88
pJ/bit (four times that of MBus), the design
required manual, process-specific tuning for
each fabricated chip—not an appealing prop-
erty for a general-purpose bus. Furthermore,
although the design attempted to preserve
commercial interoperability, in practice,
actual interoperation required a field-
programmable gate array to translate between
actual I?C and the “I’C — like” bus. MBus

eschews the “partial compatibility” that
I>C — like buses provide and uses the clean
break to reconsider the primitives provided
by the system interface, allowing the addition
of features such as power-oblivious commu-
nication, broadcast messages, and efficient
transaction-level acknowledgments.

Interconnect Requirements

Having found show-stopping limitations with
existing interconnect technology, we decided
to turn the problem on its head. Drawing
from our experience as embedded system and
microscale system developers, we drew up a list
of key properties that we identified for the sys-
tem interconnect of ultraconstrained systems
(see Table 1). Although these properties will
eventually guide our development of MBus,
they stand independent of the MBus design as
an architectural summary of the demands for
an interconnect for microscale systems.

Synthesizahle

To facilitate widespread adoption, we require
a process-agnostic solution, a block of “pure”
HDL with no process-specific custom macros.
Our previous [*C variant required process-
specific tuning of custom ratioed logic, adding
cost, complexity, and risk to every chip.”

Low Wire Count

With submillimeter-scale systems, the area
cost required to place bonding pads (35 to 65
um wide) on one edge or around the perime-
ter of a chip limits the system’s ability to scale.
Although advancements such as through-
silicon vias help, many popular processes do not

support them (such as IBM130 or TSMC65).

Address Space

A bus must provide a means of addressing
each element, for example, with hardware
support (such as SPI chip selects) or explicit
addresses (such as I>C). If addresses are used,
they must both support a large number of
possible devices (a naive search of DigiKey
returns over 2'° I°C-capable devices) and
minimize overhead on each transmission.

Low Standhy Power
Resource-constrained systems spend most of
their time in standby, so standby inefficiencies

Table 1. Population-independent area, ultra-low-power operation, synthesizability, an area-free global name-
space, and interrupt support are fundamental requirements for a microscale interconnect.

Key properties Inter-Integrated Serial Peripheral Universal Asynchronous Lee-1°C? MBus
Critical Circuit (1°C) Interface (SPI) Receiver Transmitter (UART)

|/O pads (nnodes) 2/4 3+n 2xn 2/4 4
Standby power Low Low Low Low Low
Active power High Low Low Med Low
Synthesizable Yes Yes Yes No Yes
Globally unique addresses 128 — — 128 224
Multimaster (interrupt) Yes No No Yes Yes
Desirable
Broadcast messages No Option No No Yes
Data independent Yes Yes Yes Yes Yes
Power aware No No No No Yes
Hardware acknowledgments ~ Yes No No Yes Yes
Bits overhead (nbyte message) 10+ n 2 (2-3) xn 10+n 190r 43

are magnified. Existing interconnects are well-
suited to this, so any new bus must draw less
than 100 pW to be competitive.

Low Active Power

Microscale systems have extremely con-
strained power budgets. Our most con-
strained system is powered by a 0.5 pAh
battery and targets a total system active power
budget of less than 40 W (and idle power of
20 nW). For reference, recall that the ideal-
ized I*C clock alone uses 69.6 £W. Although
any absolute number will be system depend-
ent, to allow an Amdahl-balanced system
design, we target an upper limit of 20 W
total active power draw for the system
interconnect.

Data-Independent Behavior

Protocols that use dedicated symbols to com-
municate special cases (such as an end-of-
message indicator) require byte stuffing,
which in pathological cases can double a mes-
sage’s length. This affects the ability to reason
about protocol performance both in energy
and time, and in real-time systems can lead
to violations of timing requirements or
require artificially high provisioning,

Fault Tolerance

It must be impossible for the bus to enter a
“locked-up” state due to any transient faults.
These faults include spontaneous bit flips or

other glitches, but cannot necessarily account
for permanent failures such as faulty hardware.

Interrupts

To facilitate a diverse and unpredictable set
of devices and system applications, any device
must be able to initiate a transmission to any
other device at any time. This requires either
an efficient, non-polling-based interrupt
mechanism or a true multimaster design.

Efficient Acknowledgments

Many applications require reliable message
transport. This feature can be directy sup-
ported by the bus protocol in hardware or as
an optional software feature if it can be made
sufficiently low-overhead.

Power Aware
Unlike deep sleep, which still loses energy to
static leakage, a power-gated circuit loses all
state. Ultraconstrained systems need to fre-
quently cold boot and shut down subcircuits
without affecting active areas. To power on a
power-gated circuit reliably and without
introducing glitches can be a challenging cir-
cuit-design problem, but it is made much
simpler with a reliable clock source.
Aggressively low-power designs have no
clock sources in their lowest-power state,
however, so every design requires a custom
wakeup circuit to generate these edges, add-
ing cost and complexity. For systems

MAY/June 2016

TOP PICKS

ﬁ |EEE MICRO

Doutr \Pin CLKour CLKpy
N
NI
% %

))
w

[iecaor |

Figure 2. MBus physical topology. An MBus
system consists of a mediator node and one
or more member nodes, connected in two
“shoot-through” rings, CLK and DATA.

developers, managing the system’s power
state as various subcomponents try to quickly
power one another on and off becomes a
challenging distributed state problem.

By adding power awareness to the intercon-
nect fabric, we can eliminate difficult challenges
for both systems engineers and circuit design-
ers. The system interconnect should provide a
clean abstraction for sending messages—that is,
one that ensures receipt independent of the tar-
get device type or immediate power state.
Because the interconnect is responsible for
alerting a component that it needs to boot in
the first place, it should also provide assistance
to the booting device’s wakeup circuitry.

Interoperahility

Not all systems are severely resource or energy
constrained, yet they might still wish to use
chips designed for ultra-low-power applica-
tions. Any interconnect must bridge the gap
between power conscious and power oblivi-
ous—no notion of power gating and no speci-
alized constructs to support it—devices to
avoid fracturing the component ecosystem
and to enable reuse across all device classes.

MBus Design

Working from the requirements outlined for
the interconnect of microscale systems, we
developed a new interconnect system: MBus.

Topology

To meet the wire count requirement, the bus
topology must be independent of the num-
ber of nodes—that is, adding another node
cannot require adding a new wire. Because
many nodes thus share the same wires, MBus
requires a scheme to avoid conflicts, driving
the same line high and low. Some form of
token-passing or leader-based protocol viola-
tes the efficient interrupt requirement,
requiring the leader to poll to find the inter-
rupter. MBus prevents conflicts by using two
rings, CLK and DATA, as shown in Figure 2.
To minimize active power, MBus clocks all
bus logic off the bus clock itself, obviating
the need for a local oscillator on each node.
With no local clock, the rings are “shoot-
through”: signals pass through only a mini-
mal amount of combinational logic from one
node to the next.

Clock Generation

MBus introduces one special node, the medi-
ator, which is responsible for generating the
MBus clock and resolving arbitration. Every
MBus system must have exactly one media-
tor, either attached to a core device (such as a
microcontroller device) or as a stand-alone
component (similar to the pull-up resistors
in I*C). For ultra-low-power designs, MBus
power gates all but the forwarding drivers
(the wire controller) and a minimalist
wakeup front end (the sleep controller). The
mediator must therefore be capable of self-
starting. In an ultra-low-power design, some-
thing must have the capability to self-start;
the mediator allows that self-start require-
ment to be contained within a single, reus-
able component.

Arhitration

In the idle state, all nodes forward high CLK
and DATA signals around the rings. A node
requests the bus by breaking the chain and
driving its DATAquT low. This propagates
around the DATA ring until it reaches the
mediator, which does not forward DATA dur-
ing arbitration. The falling edge on DATA
triggers the mediator self-start, which begins
toggling CLK as soon as it is active. At the
first rising edge of CLK, any arbitrating nodes
sample their DATAy line. If DATAy is high,

Bus clk

Data in

i Loses arbitra:tion
: b/c DATAR'= 0 = /1

Datain ———————\

[\« Wins priority:arbitration —

© .
x\\\ @‘\\\q\; '\O\\i Qﬁ@ Q;AQ) «;\4% \6% Q“\AQ)’\
N CQ SO 2) ?; i
R Q RS Q\Q} Q@ Q¥ QQ’\\ \{Q’\\ 3
‘ I ‘ ; ; ‘
: : /N £\ N 1 :
| Wigs arbitration b/c DATAy = 1 a(:) ()\—/ (:)<— Priority requested, ...\ ———————
Data out : «Drive bus request : . | back off : VI
: [: N/ \V/ Begin forwarding ===~ |
i i | | Does not | i '
Datain ———\ : : forward 1 : L
| 1 1 1 /_\ 1

1A
i
!
l {

: : = — .| :
Data out ‘®<— Drive bus request Drive |pnonty rks\q;ést N @ U Brive B0 =)
/

Data in ﬁé\\
Data out |

_i /< Does not forward

|
|

Begin forwarding — \—/'
, : :

0 «— Mediator wakeup — 1 2 3 4 5

(@]
~
@

Figure 3. MBus arbitration. To begin a transaction, one or more nodes pull down on DATAqyT. Here, we show node 1 and
node 3 requesting the bus at nearly the same time (node 1 shortly after node 3). Node 1 initially wins arbitration, but node 3
uses the priority arbitration cycle to claim the bus. The propagation delay of the data line between nodes is exaggerated to
show the shoot-through nature of MBus. Momentary glitches caused by nodes transitioning from driving to forwarding are

resolved before the next rising clock edge.

the node has won arbitration; otherwise, it
has lost.

This arbitration scheme introduces a
topologically dependent priority on MBus
nodes. To afford physically low-priority
nodes an opportunity to send low-latency
messages, MBus adds a priority arbitration
cycle after arbitration. The priority arbitra-
tion scheme is similar, except it is the arbitra-
tion winner that does not forward DATA and
nodes pull DATAqyT high to issue a priority
request. Figure 3 shows a waveform of arbi-
tration and priority arbitration.

Hierarchical Wakeup

For maximum power efficiency, MBus on a
power-gated node leaves only a minimalist,
highly optimized front end on continuously.
To receive an MBus transmission, however,
the power-gated node’s bus controller must
first be activated. The key insight that enables
MBus’s power-oblivious properties is that a
power-gated node can use the edges on the
CLK line from arbitration to drive the
wakeup circuitry of the bus controller.
Because arbitration occurs before every mes-
sage, all bus controllers in the ring are active
by the addressing phase and can determine
whether the message is destined for this

node. MBus does not wake the rest of the
node until its address matches. This ensures
that a message powers on only the destination
node. This design lets any node transmit to
any other node at any time while ensuring
that the receiving node (and only the receiv-
ing node) will be powered on to receive the
message.

Addresses

MBus uses an addressing scheme to direct
transmissions and divides addresses into two
components: a prefix and a functional unit
ID (FU-ID). A prefix uniquely addresses a
physical MBus interface (one of the actual
chips in the system), whereas FU-IDs are
used to address chip subcomponents. FU-
IDs are 4 bits, allowing for up to 16 subcom-
ponents behind each physical MBus front
end. MBus reserves prefix 0 for broadcast
messages. On a shared bus, broadcast mes-
sages are cheap to implement in hardware
but expensive (linear in system size) to emu-
late in software, motivating hardware broad-
cast support. MBus repurposes the FU-ID of
broadcast messages as broadcast channel
identifiers, which lets nodes listen to only the
broadcast messages they support or are inter-
ested in.

MAY/June 2016]

TOP PICKS

H |EEE MICRO

Prefix Assignment

To retain the efficiency afforded by short
addresses while allowing for a diverse ecosys-
tem of unique components, MBus uses run-
time enumeration to assign 4-bit short
prefixes. Enumeration is a series of broadcast
messages containing short prefixes that can
be sent by any node (although in practice,
most likely by a microcontroller). All unas-
signed nodes attempt to reply with an identi-
fication message, and the arbitration winner
is assigned the enumerated short prefix. A
side effect of this enumeration protocol is
that a node’s short prefix encodes its topologi-
cal priority. Enumeration is performed once,
when the system is first powered. As an opti-
mization, devices can assign themselves a
static short prefix, akin to I*C addressing, so
that, if there are no conflicts, enumeration
can be skipped.

Every chip design is assigned a unique,
20-bit full prefix. Full prefixes let nodes refer
to one another with static addresses at the
cost of 16 bits of additional overhead per
message. The short prefix 0xF is reserved to
indicate full addresses, leaving MBus with 14
usable short prefixes per system. Chips can be
addressed using either short or full addresses
interchangeably. It is sometimes advanta-
geous for a system to have two copies of the
same chip (for example, memory), which
requires short prefixes and enumeration to
disambiguate.

Sending Data

MBus transmitters drive data on the falling
edge of CLK, and receivers latch data on the
rising edge of CLK. Although standard flops
can be clocked only on one edge (rising or
falling), only the internal data FIFO needs to
be clocked on the falling edge, so this does
not violate the synthesizability requirement.
This allows for identical setup and hold mar-
gins, easing interoperability when driving
unknown loads (for more details, see our
CICC paper’).

At the end of a message, the receiver
acknowledges or rejects the entire message. In
MBus, any node can terminate any message at
any time, even a forwarder. The transmitter
might end the message when it is finished, or
the receiver might interject midmessage to

indicate an error, such as a buffer overrun.
Thus, by not interjecting, a receiver implicitly
acknowledges every byte. This is less powerful
than I*C acknowledgments, which can detect
a dead receiver after the first byte, but is more
efficient during error-free operation and
allows MBus to scale to long (multi-kilobyte)
messages with a fixed, length-independent
overhead.

Ending Messages
At any point, the bus may be interrupted by
an MBus interjection. In normal MBus oper-
ation, DATA never toggles meaningfully with-
out a CLK edge. This lets us design a reliable,
independent interjection-detection module,
essentially a saturating counter clocked by
DATA and reset by CLK. The interjection sig-
nal acts as a reset signal to the bus controller,
clearing its current state and placing it in con-
trol mode. MBus control is two cycles long
and is used to express why the bus was inter-
jected, either because the transmitter finished
sending data or to express some type of error.
The MBus interjection request mecha-
nism, holding CLK high, results in nodes
observing a varying number of clock edges
depending where they are in the ring. MBus
requires that messages be byte aligned to
resolve this potential ambiguity, potendally
requiring a small amount (up to 7 bits) of
padding to be added to MBus messages.
MBus interjections are used both for
extreme cases, such as rescuing a hung bus or
indicating receiver error, and as a regular
end-of-message signal. Any node can gener-
ate an interjection at any time. This allows
for unambiguous signaling of control func-
tions that can resynchronize a bus without
requiring out-of-band signals like chip selects
or a reset line. This further lets a node with a
latency-sensitive message interrupt an active
transaction, enabling responsiveness across a
diverse array of workloads not possible with
current buses.

Evaluation

In our ISCA paper,' we evaluated the per-
formance of the MBus protocol in theory
and practice and empirically validated the
ultra-low-power claims. MBus supports a

peak throughput of 7.1 Mbits/second for

common designs. Its implicit acknowledge-
ments make it more efficient than I?C and
the Universal Asynchronous Receiver Trans-
mitter (UART) for messages at least 9 bytes
long and only slightly (8 bits) less efficient
than I*C for 1-byte messages.

We taped out four chips (processor, radio,
temperature sensor, and image sensor) that
we composed with MBus into two distinct
systems: temperature sensing and imaging
(see Figures 4 and 5, respectively). From
power traces of the temperature sensor, we
found that MBus requires only 22.6 pJ/bit/
chip, a four-times reduction over our pre-
vious I*C-like bus and two orders of magni-
tude better than standard I*C.

We further evaluated each of the com-
posed systems, showing how MBus’s multi-
master faculties alone achieve a 7 percent
improvement in system lifetime for the tem-
perature sensor. Evaluating the image sensor
showcases how well MBus scales to handle
(relatively) large volumes of data, such as a
28.8 Kbit image. At that size, MBus can
transmit up to 238 frames per second (far
more than the imager can produce). The
message-level acknowledgements are a key to
enabling this image bandwidth, generating a
13 percent reduction in the number of bits
sent to transfer images.

MBus Limitations, Open Questions, and
Future Directions

MBus does not guarantee fairness (nor does
[>C). Making arbitration fair a priori is diffi-
cult (how should ties be broken?), and in
many cases, system designers might prefer
prioritization over fairness (for example, in
the automotive CAN bus, braking has higher
priority than windshield wipers). If mutable
priority is available, one fair scheme could
automatically rotate priority on every
message.

Using interjections to end messages per-
mits nodes to send messages of arbitrary
length. While this is useful for sending long
messages efficiently, it also has the effect of
locking the bus for a long time, which could
harm responsiveness. Although the MBus
design lends itself well to resuming an inter-
rupted transmission (both TX and RX nodes
know how far through a message they were),

Figure 4. Temperature sensing system. Our
evaluated temperature sensing system
consisting of a 2 uAH battery, a 900-MHz
near-field radio, an ARM Cortex MO
processor, and an ultra-low-power
temperature sensor, interconnected using
MBus.

(b)

Figure 5. Motion detection and imaging system. (a) Our imager made of a
900 MHz near-field radio, a 5 pAH battery, an ARM Cortex MO, and a 160-
x (160-pixel, 9-bit graysacle imager with ultra-low-power motion detection all
connected using MBus. (b) A full-resolution (28.8 Kbytes) image that was

transferred by MBus.

it is not possible to indicate to other nodes
on the bus which messages are interrupt-
friendly. One idea is to leverage one or more
functional units as well-known resumable
message destinations to indicate to all nodes
that this message can be opportunistically
interrupted. However, resumable messages
come with other challenges—nodes must
have buffers for multiple in-flight transac-
tions and preserve state across transactions,
which complicates bus controller design.

As a ring with a (small) number of gates
between IN and OUT at each node, the upper
bound for clock speed is limited. However,
the design is amenable to additional DATA

MAY/June 2016 H

TOP PICKS

EEE MICRO

lines. Although this increases I/O cost, each
additional DATA line doubles the MBus pay-
load throughput. A hybrid ring of traditional
and parallel MBus nodes can be imagined,
with the DATAO line touching every node
and the additional data lines forming a
smaller ring of only parallel-capable MBus
nodes. When transmitting, the bus controller
could stripe data across as many DATA lines
as the target node has available. This parallel
MBus design is backward compatible with
traditional MBus and can even use the same,
unmodified mediator.

Impact

History has shown time and again that pro-
viding a diverse array of powerful building
blocks will enable the masses to synthesize
unique and creative things undreamed of by
the original creators. Today’s explosion of
intelligent, networked devices (the Internet
of Things) is driven, at least in part, by the
accessibility of modular components, which
let individuals pull together a custom-tail-
ored set of microcontrollers, radios, sensors,
and other parts optimized for new
applications.

In contrast to these systems, previous for-
ays into microscale design have lacked this
modularity. From our own experience, the
Michigan Lab—the
rescarch team that produced MBus and
today’s Michigan Micro Motes—in 2008
produced the Phoenix processor, then the

Integrated ~ Circuits

smallest, lowest-power computing system; it
was essentially a temperature sensor. Upon
request from collaborators in medicine, the
next project was to build a pressure sensor of
similar size and energy budget. As a conse-
quence of the tight, monolithic design, it
took nearly three years to change a tempera-
ture sensing system to a pressure sensing sys-
tem. MBus introduces critical modularity to
the microscale design space. Today, we can
develop, optimize, and debug a processor
independent of the radio, temperature, or
pressure sensor. With MBus, we can pivot
the temperature sensing stack presented in
our ISCA paper' to a pressure sensing stack
in only three months, reusing 80 percent of
the components.

MBus’s key contribution is the recogni-
tion that modularity is critical for system

design and that no existing technology can
enable modularity for microscale systems.
MBus (or perhaps a different, new intercon-
nect that respects the requirements of micro-
scale systems) is a necessary and critical
enabler for the development of the next class
of computing.

Ithough we have derived great benefit

from MBus, it is not a success if it is a
technology used exclusively by a team of
researchers at one university. For this reason,
we released the MBus specification and a
reference Verilog implementation for free to
the public domain (http://mbus.io).

Today, it is difficult if not impossible to
purchase a microcontroller without support
for SPI, I>C, or UART. In 20 years, we envi-
sion MBus joining that list. Today, we con-
tinue to develop new chips that add new
capabilities to microscale systems. Leveraging
the modularity and reusability afforded by
MBus, we can synthesize completely new sys-
tems in a fraction of the time previously
required. As technology progresses and inter-
est in the design and development of milli-
grows beyond the
research realm, we aim to establish MBus as

meter-scale systems
the solution for next-generation systems
integration.

Currently, as key core components of the
Michigan Micro Mote platform stabilize, we
are beginning the outreach effort. By provid-
ing core components with MBus front ends
such as the processor, radio, and power man-
agement to system developers, we aim to ena-
ble others to springboard rapidly into
microscale system design. By releasing MBus
itself as a free and open standard with a freely
available implementation, we aim to encour-
age its use and adoption by the emerging
microscale systems design community, lead-
ing to eventual integration with the broader
embedded systems community as microscale
systems become mainstream.

Last spring, the Michigan Micro Mote
was inducted into the Computer History
Museum as the world’s smallest computer. It
is our sincerest hope that the record does not
stand for long, and we expect that MBus will
play a key role in helping to continue to
break records in the years to come. MICRO

Acknowledgments

This work was supported in part by the Ter-
raSwarm Research Center, one of six centers
supported by the STARnet phase of the
Focus Center Research Program (FCRP), a
Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA.
This research was conducted with govern-
ment support under and awarded by the
DoD, Air Force Office of Scientific
Research, National Defense Science and
Engineering Graduate (NDSEG) Fellow-
ship, and 32 CFR 168a. This material is
based on work partially supported by the
National Science Foundation under grants
CNS-0964120, CNS-1111541, and CNS-
1350967, and generous gifts from Intel,
Qualcomm, and Texas Instruments.

References

1. P. Pannuto et al., “MBus: An Ultra-Low
Power Interconnect Bus for Next Genera-
tion Nanopower Systems,"” Proc. 42nd Int’|
Symp. Computer Architecture, 2015,
pp. 629-641.

2. Y. Lee et al, “A Modular 1 mm?® Die-
Stacked Sensing Platform with Low Power
I°C Inter-Die Communication and Multi-
Modal Energy Harvesting,” IEEE J. Solid-
State Circuits, 48, no. 1, 2013,
pp. 229-243.

3. Y.-S. Kuo et al., "MBus: A 17.5 pJ/bit/chip
Portable Interconnect Bus for Millimeter-
Scale Sensor Systems with 8 nW Standby
Power," IEEE Proc. Custom Integrated Cir-
cuits Conf., 2014; doi:10.1109/CICC.
2014.6946046.

vol.

Pat Pannuto is a PhD candidate in the Com-
puter Science and Engineering Department at
the University of Michigan. His research
interests include systems design for microscale
systems and technologies for high-fidelity
indoor localization. Pannuto received a BS in
computer engineering from the University of
Michigan. He also received the National
Defense Science & Engineering Graduate
Fellowship, the National Science Foundation
Graduate
Fellowship, and the Qualcomm Innovation

Research Fellowship Program

Fellowship. Contact him at ppannuto@
umich.edu.

Yoonmyung Lee is an assistant professor in
the Department of Semiconductor Systems
Engineering at Sungkyunkwan University.
His research interests include energy-efficient
integrated circuits design for low-power, high-
performance VLSI systems and millimeter-
scale wireless sensor systems. Lee received a
PhD in electrical engineering from the
University of Michigan. He also received a
Samsung Scholarship and Intel PhD Fellow-
ship. Contact him at yoonmyung@skku.edu.

Ye-Sheng Kuo is a research fellow in the
Computer Science and Engineering Depart-
ment at the University of Michigan. His
research interests include embedded systems,
sensor networks, and visible light communica-
tion. Kuo received a PhD in electrical engi-
neering from the University of Michigan.
Contact him at sasmkuo@umich.edu.

Zhi Yoong Foo is the Chief Executive Officer
of CubeWorks, a startup spun out of the Uni-
versity of Michigan. His research interests
include low-cost and low-power VLSI circuit
systems integration. Foo received a PhD in
electrical engineering from the University of
Michigan. Contact
umich.edu.

him

at zhiyoong@

Benjamin Kempke is a PhD candidate in
the Electrical Engineering and Computer
Science and Engineering Departments at
the University of Michigan. His research
interests include the design of low-power
and high-accuracy indoor RF localization
technologies. Kempke received an MSE in
computer science and engineering from the
University of Michigan. Contact him at
bpkempke@umich.edu.

Gyouho Kim is a research fellow in the Elec-
trical Engineering Department at the Univer-
sity of Michigan. His research interests include
ultra-low power VLSI design for energy-
constrained systems and novel sensing plat-
Kim received a PhD in electrical
engineering from the University of Michigan.

forms.
Contact him at gyouho@umich.edu.
Ronald G. Dreslinski is an assistant profes-

sor in the Computer Science and Engineering
Department at the University of Michigan.

MAy/June 2016]]

TOP PICKS

EEE MICRO

His research interests include near-threshold
computing (NTC), architectural simulator
development, and high-radix on-chip inter-
connects. Dreslinski received a PhD in com-
puter science and engineering from the Uni-
versity of Michigan. He is the winner of the
ISSCC 2011 student design contest and is the
recipient of the Young Computer Architect
Award from the IEEE Computer Society’s
Technical Committee on Computer Architec-
ture. Contact him at rdreslin@umich.edu.

David Blaauw is a professor in the Electri-
cal and Computer Engineering Department
at the University of Michigan. His research
interests include VLSI design, ultra-low
power, and high performance design.
Blaauw received a PhD in computer science
from the University of Illinois, Urbana-
Champaign. He is an IEEE Fellow. Contact

him at blaauw@umich.edu.

Prabal Dutta is an associate professor in the
Electrical Engineering and Computer Science
Department at the University of Michigan.
His research interests include design, deploy-
ment, and scaling of wireless, embedded, net-
worked, and sensory systems for applications
in health, energy, and the environment. Dutta
received a PhD in computer science from the
University of California, Berkeley. He is the
recipient of an Alfred P. Sloan Research Fel-
lowship, an NSF CAREER Award, a Popular
Science Brilliant Ten Award, and an Intel
Early Career Award. Contact him at prabal@
eecs.umich.edu.

. Selected CS articles and columns are also
Cn available for free at hitpy//ComputingNow.

computer.org.

	fig1
	table1
	fig2
	fig3
	fig4
	fig5
	ref1
	ref2
	ref3

