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class Blinky:
  mcu = Block(MagicMcu)
  led = Block(IndicatorLed)

  connect(mcu.io0, led.io)

  connect(mcu.gnd, led.gnd)

class IndicatorLed:
  io = Port(DigitalSink)
  led = Block(Led)
  res = Block(Resistor(
    res=in.voltage / 10mA))
  connect(io, led.anode)
  ...
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Figure 1: Left: an overview of our integrated development environment (IDE) approach for tooling to support working with 
circuit board-level hardware description languages (HDLs). This consists of the traditional text editor (left half of the IDE), and a 
block diagram visualization of the compiled HDL (right half of the IDE). Edit actions on the block diagram, such as creating connections 
between ports shown in blue, generate the corresponding lines of code in the HDL and update the visualization without incurring the latency 
of a full recompile. The HDL code, including that inserted from block diagram edit actions, can also be freely edited to preserve the full 
power and fexibility of the base HDL. User-triggered updates recompile the HDL, and changes such as the connection shown in orange, 
are visible in the block diagram and available for editing. Right: As a reference, the equivalent design in a mainstream schematic 
editor. Comparatively, schematics often require the system designer to work at the lowest level of abstraction (instead of re-using library 
components like IndicatorLed) and manually handle component calculations (like the resistor) which are both tedious and do not preserve 
design intent. 

ABSTRACT 
In many engineering disciplines such as circuit board, chip, and 
mechanical design, a hardware description language (HDL) ap-
proach provides important benefts over direct manipulation inter-
faces by supporting concepts like abstraction and generator meta-
programming. While several such HDLs have emerged recently and 
promised power and fexibility, they also present challenges – espe-
cially to designers familiar with current graphical workfows. In this 
work, we investigate an IDE approach to provide a graphical editor 
for a board-level circuit design HDL. Unlike GUI builders which 
convert an entire diagram to code, we instead propose generating 
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equivalent HDL from individual graphical edit actions. By keeping 
code as the primary design input, we preserve the full power of the 
underlying HDL, while remaining useful even to advanced users. 
We discuss our concept, design considerations such as performance, 
system implementation, and report on the results of an exploratory 
remote user study with four experienced hardware designers. 

CCS CONCEPTS 
• Software and its engineering → Integrated and visual de-
velopment environments; • Hardware → PCB design and lay-
out; Hardware description languages and compilation; • Human-
centered computing → Graphical user interfaces. 

KEYWORDS 
integrated development environment (IDE), hardware description 
language (HDL), printed circuit board (PCB) design 
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1 INTRODUCTION 
Printed circuit boards (PCBs) are foundational to modern electron-
ics, and are usually designed with electronics design automation 
(EDA) tools. In current mainstream practices [18], these tools have 
two main components: schematic capture for designing the circuit, 
and board layout for transforming the abstract circuit to a physical 
design. While both of these steps are necessary for transforming an 
idea into reality, here we will focus on the circuit design problem. 

One issue with modern schematic tools is that they present a 
very low-level design abstraction, that of individual components 
and wires. While this provides high fexibility in design, it also 
creates problems for users. For novices and hobbyists, these tools 
require them to have an understanding of low-level electrical en-
gineering details in order to build a working board. For experts 
and professionals, the low-level abstractions can be tedious and 
inefcient, requiring every degree of freedom to be resolved even 
when there is a large acceptable design space. 

One recent approach to address these shortcomings are board-
level hardware description languages (HDLs) [17], such as shown on 
the left half of the IDE concept in Figure 1. Much like software engi-
neering, these languages enable a tiered approach to design through 
the use of libraries and abstraction: system-level designs can be 
made up of high-level library components which do not require 
deep electrical engineering knowledge to use, with those compo-
nents being defned by more expert users who can encapsulate their 
knowledge and design process as generators with executable code. 
An example of the latter is the code for the IndicatorLed block in 
Figure 1, which calculates the needed resistance and automates a 
process that is otherwise manual in schematic design. 

Yet, an HDL approach also comes with a diferent set of issues, 
primarily in the added requirement for programming in a spe-
cialized language. Furthermore, while both HDLs and schematics 

can ultimately be views on similar underlying data, each repre-
sentation emphasizes diferent information and provides diferent 
afordances for understanding and manipulating a design [3]. For 
example, while an HDL might enable loops to quickly generate ar-
rays of components, the circuit connectivity is much more obvious 
in a block diagram. Finally, as HDLs depend on libraries that encap-
sulate expert knowledge, it will be essential to make contribution 
as easy as possible for the experts who are typically familiar with 
schematic-based tools. 

In this paper, we present a novel approach to bridging schematic-
and HDL-based workfows. Our approach is centered on interactive 
block diagrams that are synchronized with HDL code: code edits are 
refected in diagram updates, and diagrams can be edited to modify 
code. Our work relates to visual editors for other domains such as 
GUI editors with code generation. However, our approach difers 
in that code remains the primary design input, and modifcations 
from the GUI and direct text edits can be arbitrarily interleaved. 
This preserves the fexibility of the underlying HDL. 

Overall, we contribute an IDE implementing these techniques, 
both as a tool to concretely support board design, and more gener-
ally as another design point in the space of similar tools [9, 22] that 
bring programming power to domains beyond software. The IDE is 
designed to work with Polymorphic Blocks [17], our open-source 
board-level HDL. Furthermore, we contribute an evaluation in the 
form of a qualitative and remote user study with four participants, 
from which we draw takeaways and recommendations for similar 
tools. We found that even though some participants preferred to 
write HDL by direct text edits instead of through the block diagram 
interface, the tight visualization loop was benefcial to all users. 
Furthermore, participants were able to blend use of the block dia-
gram interface with textual HDL edits, suggesting that this mixed 
IDE approach is viable and even if not all possible code edits are 
supported from the GUI. 

2 RELATED WORK 
As a project covering electronics and programming environments, 
we relate to a large body of prior work on electronics design, hard-
ware description languages in general, and live programming. 

2.1 Electronics Design 
Academically, there has been much work on board-level electron-
ics in the HCI community. Broadly speaking, the same level of 
component-and-wire based circuit design is often prototyped on 
solderless breadboards, and a thread of work exists on augmented 
breadboards [4, 14, 36, 37]. For boards specifcally, there is an-
other thread of work on debugging and prototyping assist technol-
ogy [32, 33] as well as examining how to scale from prototype to 
production [12]. 

As for design tools, much prior work revolves around synthesiz-
ing devices from a high-level specifcation. Both Embedded Design 
Generation [27] and Echidna [25, 26] start with user-defned func-
tional components like sensors and motors, and perform interface-
driven synthesis to complete the rest of the device. Trigger Action 
Circuits [2] works at a higher, behavioral and datafow level, and 
produces a breadboarding diagram. EDASolver [5] also synthesizes 
circuits from specifcations, though details have not been published. 
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Related to both breadboarding and circuit boards is Fritzing [15], 
which provides both views of a circuit to bridge concepts for novices. 
AutoFritz [19] builds on top of that with data-driven circuit auto-
complete suggestions. 

The current dominant paradigm [18] of interactive schematic 
capture can be seen in both open-source [13] and commercial 
tools [1, 23], and has been around for almost half a century [20] with 
little fundamental modifcations. Here, users draw schematics on 
a virtual canvas by placing components and connecting their pins 
together, ofering both benefts and drawbacks of very low-level 
design. While much continuing commercial work appears to focus 
on layout-related issues like autorouting and signal integrity [23], 
there has also been some work related to the circuit itself, such as 
Valydate [24] which automates parts of schematic review. 

A recent paradigm is module-based board design, as with Spark-
fun À La Carte [31] and Geppetto [8]. These provide a mixed 
schematic and layout view, with users working with high-level 
modules that represent a subcircuit, and placing its bounding box 
on a physical board view. However, details have not been published, 
so their internal models, library creation process, and algorithms 
are not known. Related is MorphSensor [39], which provides a 
3D design view for fexible PCBs. It, too, has a module-based fow 
with mixed schematic and physical views, though avoids the circuit 
design problem by importing schematics from mainstream tools. 

Overall, one trend of recent tools is that they are library-based 
and model components at a more detailed level than mainstream 
tools. Yet, these projects do not really address library creation by 
end users, a step necessary to achieve scalability and generality 
beyond what a team of tool developers could feasibly do. 

2.2 Hardware Description Languages 
Polymorphic Blocks [17] attempts to address this problem by pro-
viding a hardware description language (HDL) interface suitable 
for writing system-level designs and library components. Library 
reusability is further supported by adapting programming language 
concepts like type hierarchies and polymorphism, such as by hav-
ing an abstract buck converter component that can be implemented 
by concrete sub-types like subcircuits around specifc chips. Fur-
thermore, the code aspect of an HDL approach enables writing 
generators that can encode a design methodology for a family of 
designs instead of a static instance, such as by sizing the buck 
converter given higher-level parameters. 

Though powerful, this textual interface is very diferent than 
mainstream schematic capture tools. While Polymorphic Blocks 
included a Visualization and Refnement Interface that provided a 
block diagram visualization of the compiled HDL, this was not inte-
grated into the text editor, required a lengthy compilation delay on 
each update, and could not generate edits to the HDL. In particular, 
we note that all participants from the user study asked for a tighter 
HDL editing and block diagram visualization loop, which is what 
we address in this work. 

In the broader context, Polymorphic Blocks was inspired by work 
on Chisel [11], a generator HDL for digital logic for chip design. We 
note that HDLs like Verilog and VHDL are currently the dominant 
approach to digital logic design in the chip industry. Although 
visualizers exist for digital logic designs and diagrams are often 

used to express microarchitectural designs, visualizations are not 
commonly part of digital logic HDL fows. Yet, aspects of this work 
may be applicable to the digital logic domain. 

There is also a thread of work addressing the lengthy, often 
hours-long latency for chip tools to produce results from a HDL 
change – a bottleneck on productivity. Strategies include improving 
synthesis performance [35] and simulation performance [29, 30], 
such as through partitioning and incremental compilation. While 
board-level designs are orders of magnitude less complex than chip 
designs, we do adopt similar techniques to reduce latency. 

2.3 Live Programming 
Our work is related to live programming in programming languages, 
where code being written is continuously run with results displayed 
to the user. These tools can help connect the more abstract repre-
sentation of code to concrete examples [6], which users might fnd 
easier to work with or to help navigate execution contexts [21]. 
Prior empirical research [16] further indicates that simpler liveness 
tools were frequently used, and even small amounts of liveness can 
have disproportionate impact — which is what we attempt to do 
here. 

One critical aspect of live programming systems is the latency be-
tween code change and visible efects [28]. Prior work has discussed 
possible techniques to reduce latency [21, 34], such as predictively 
starting to compute results or returning speculative results. As 
our underlying HDL’s compiler is not performant enough to fully 
recompile every change at interactive rates, our system relies on 
speculative results to preserve a smooth interaction fow. 

Beyond one-way visualization, work has also examined output 
direct manipulation – how these visual representations could be 
manipulated to write code in specifc domains. One recent example 
is Sketch-n-Sketch [9], which provides a graphical editor for a 
custom language for 2D graphics. Other examples include such 
editors for string manipulation and diagramming [22]. 

However, perhaps the most often used similar class of tools are 
graphical user interface (GUI) builders, where users can defne their 
GUI graphically through direct manipulation interactions such as 
drag-and-drop. These tools similarly aim to provide an interface 
that is closer to the domain than the equivalent GUI construction 
code they generate. Yet, the code generated often is not stylistically 
clean or even meant to be directly edited [38] – perhaps fne for a 
GUI with defned integration points and static structure, but less so 
for an HDL where programming the structure is the point. 

In this larger context, we aim to develop tools that can harness 
the power and fexibility of an HDL, but with an interface that is 
closer to how circuits are designed today: schematics and block 
diagrams. We hope this schematic-like representation can provide 
a complementary view for editing the HDL, and furthermore a 
graphical interface may make HDLs more accessible to a broader 
community of hardware engineers, device designers, and hobbyists 
with more limited programming expertise. We further diferentiate 
our work through the emphasis on practicality and fexibility by 
supporting a Python-embedded HDL instead of a fully custom 
programming language and co-existing with free-form textual edits 
to the HDL. 
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1 class BlinkyExample(SimpleBoardTop):

2 def __init__(self) -> None:

3 super().__init__()

4 self.jack = self.Block(PowerBarrelJack(voltage_out=3.3*Volt(tol=0.05)))

5
6 with self.implicit_connect(

7 ImplicitConnect(self.jack.pwr, [Power]),

8 ImplicitConnect(self.jack.gnd, [Common]),

9 ) as imp:

10 self.mcu = imp.Block(Lpc1549_48())

11 self.led = imp.Block(IndicatorLed())

12
13 self.connect(self.mcu.digital[0], self.led.signal)

14
15 def refinements(self) -> Refinements:

16 return super().refinements() + Refinements(

17 instance_refinements=[

18 (['jack'], Pj_102a),

19 ])

Figure 2: Example project code which consists of a PJ-102A bar-
rel jack, a LPC1549JBD48 microcontroller, and an indicator LED. 

1 class Lf21215tmr_Device(FootprintBlock):

2 def __init__(self) -> None:

3 super().__init__()

4 self.vcc = self.Port(

5 VoltageSink(voltage_limits=(1.8, 5.5)*Volt, current_draw=(0, 1.5)*uAmp),

6 [Power]

7 )

8
9 self.gnd = self.Port(Ground(), [Common])

10
11 self.vout = self.Port(DigitalSource.from_supply(

12 self.gnd, self.vcc, output_threshold_offset=(0.2, -0.3)

13 ))

14
15 self.footprint(

16 'U', 'Package_TO_SOT_SMD:SOT-23',

17 {

18 '1': self.vcc,

19 '2': self.vout,

20 '3': self.gnd,

21 },

22 mfr='Littelfuse', part='LF21215TMR',

23 )

magnetic feld sensor. 

3 BACKGROUND 
As our IDE is designed to work with Polymorphic Blocks [17], a 
novel HDL that has not yet seen widespread adoption, we will 
briefy recap the HDL in this section to provide readers with a 
more concrete understanding of what our IDE does. While our 
IDE integrates ongoing development on Polymorphic Blocks, the 
fundamental concept remains true to the original paper. The main 
user-facing changes are moving the refnement data into the user 
HDL (from the separate Visualization and Refnement Interface) 
and changing to a directed constraints model. 

Overall, Polymorphic Blocks is a Python-embedded domain spe-
cifc language with object-oriented features. Classes represent re-
usable block templates and objects are individual instances of those 
blocks. The abstraction capabilities provided by this framework 
allow the HDL to be used for both constructing top-level designs 
and writing part defnitions. Examples of both are presented in the 
rest of this section. 

3.1 Top-Level Design 
The example code in Figure 2 (and its corresponding block diagram 
visualization shown in the IDE screenshot in Figure 4) demonstrate 
how blocks and connections are instantiated in the HDL in a top-
level design that powers and controls an LED light. Lines 4, 10, 
and 11 respectively instantiate and name Block objects for a barrel 
jack, microcontroller, and indicator LED. Some component blocks 
additionally have assignable parameters, such as the target output 
voltage of the barrel jack in line 4, allowing for more powerful 
design correctness checks. 

Line 13 demonstrates use of the connect(...) function to con-
nect a digital IO port on the mcu block to the signal port of led. 
Lines 6 - 13 demonstrate implicit_connect, a syntactic sugar con-
struct to simplify certain types of common connections, like for 
power and ground. In short, this works by matching the tags such 
as Power and Common (ground) in lines 7 - 8 with the tags specifed 
in components’ ports (not shown) 

Lines 15 - 19 further refne the abstract PowerBarrelJack in-
stantiated in line 4 to be the specifc and concrete subtype, the 

Figure 3: Example part defnition of a Lf21215TMR digital 

PJ-102A. In this manner, users can initially instantiate Blocks of 
an abstract type to preserve potential alternatives, then later refne 
them to a more specifc subtype depending on design requirements. 

3.2 Defning Library Blocks 
Figure 3 is an example part defnition of a LF21215TMR digital 
magnetic feld sensor device. Parts are defned similarly to top-level 
designs, and could have internal blocks and connections in the same 
way. In this case, however, there is only an associated footprint and 
pinning as shown on lines 15 - 23. 

The Lf21215tmr_Device class also defnes its exterior ports. 
Lines 4 - 13 instantiates the ports vcc of type VoltageSink (volt-
age input), gnd of type Ground, and vout of type DigitalSource 
(digital output) with defned voltage and current parameters. These 
forms the external interface of this device, abstracting away other 
elements as internal details. Lines 4 - 9 additionally show the 
component-side usage of implicit connection tags Power and Common 
on their respective ports. 

4 SYSTEM DESCRIPTION 
Although there are many possible ways to bridge HDL code and 
schematics, our system is motivated by two underlying principles: 

(1) Preserve the full power of the underlying HDL, while rec-
ognizing that board design tends to be highly iterative [18]. 
This precludes approaches that do not allow users to freely 
move between code and schematic workfows, such as single-
shot code generation from schematics (like GUI builders) in 
which continued editing from the schematic view may be 
difcult after modifcation of the generated HDL. We further 
note that as there are likely programming constructs for 
which there is no (useful) corresponding graphical represen-
tation, the visualization will necessarily be a subset of the 
HDL. 

(2) Interfaces based in current practices. While this means sup-
porting a schematic-like interface for HDL editing, it also 
means boundaries on what be may less useful in a graphical 
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Library View and Footprint Editor
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Figure 4: The IDE, implemented as an extension for IntelliJ, has several major views: (a) a code editor for the hardware description 
language, (b) an interactive block diagram editor that corresponds to the compiled HDL, (c) a tree view of the same compiled HDL, and (d) a 
library view for browsing available blocks. 

editor. For instance, although a LabVIEW-style [10] interface 
may support programming constructs such as arithmetic and 
control fow as blocks in a purely graphical environment, 
code is overwhelmingly the more common way to express 
this kind of logic. 

From these principles, we built a system that takes an "HDL frst" 
approach, where the HDL code is the primary and authoritative 
design artifact. Tooling then provides support for understanding, 
navigating, and producing this code through an IDE metaphor built 
around a schematic-like view of the compiled output design as 
shown in Figure 4. More concretely, the block diagram view pro-
vides users with a visual representation of the HDL, and, combined 
with the library view, provides for schematic-like GUI edit actions 
that generate into corresponding HDL. However, we explicitly do 
not support the more code-like parameterization operations. Fur-
thermore, as a prototype, we chose to focus on the basics and do 
not support syntactic sugar constructs like implicit connects or 
refactoring operations like delete and rename. 

In the rest of this section, we will introduce our system in more 
detail through how a hypothetical user might build the example 
device in the prior section, starting from an empty top-level design. 

4.1 Block Diagram Edit Actions 
Like with schematic capture tools, the user starts with adding parts 
to the design by searching libraries. In our system, the library view 
on the bottom right lists available components as a tree, organized 
by the type hierarchy which encodes both categorical (e.g., power 

converters, sensors) and structural (e.g., three ported DC-DC con-
verter) dimensions. The textbox above provides search and fltering 
by simple string matching. 

Since each edit occurs within the HDL, our user frst starts by 
moving the caret to where code should be inserted, at the begin-
ning of def __init__(...):. Then, to add a microcontroller, they 
would frst enter microcontroller in the library flter textbox, 
which brings up the microcontroller category in the library tree. 
Within that category, our user chooses the Lpc1549_48, double-
clicks it to insert the block instantiation line at the caret, and pro-
vides a name in the pop-up prompt. 

Alternatively, right-clicking (instead of double-clicking) brings 
up the context menu which provides suggested locations for code 
insertion independent of the caret position. For block inserts, one 
such option is appending to the end of the __init__ method. 

Simultaneously, the block diagram updates with the visual rep-
resentation of the newly added block. To preserve fow with GUI 
operations, this is not the result of a full recompile, but is instead a 
speculative efect: the system assumes (regardless of context, such 
as if the caret was within an if block or for loop) that exactly 
one instance of the block would have been created. These blocks 
are indicated with a hatched fll, and additionally do not contain 
an internal implementation. However, their ports are valid, which 
allows connections to be made to them without re-compiling. 

If our user instantiated a block with a required parameter, such 
as the voltage_out specifcation for a barrel jack, the unflled 
keyword argument appears on the instantiation line. As with pa-
rameterization in general, the user must write this in HDL, here by 
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Figure 5: The connection interface, showing legal connections 
(by type) from the microcontroller’s digital IO, with other pins 
dimmed out. Additionally, unconnected-but-required pins are high-
lighted in red, while the hatched fll indicates the preview status of 
both the LED and LPC1549 blocks inserted in the GUI as well as 
the modifed status of the block they were inserted in. 

providing an output voltage target of 3.3*Volt(tol=0.05) as in 
line 4 of the example in Figure 2. 

After repeating the instantiation fow with the LED, our user can 
then start connecting blocks. As shown in Figure 5, unconnected-
but-required ports are marked with a red fll, and the user starts with 
one such port, the LED’s signal input pin. Double-clicking the pin 
starts the connect tool, which dims the rest of the schematic except 
for ports that have compatible types, as also shown in Figure 5. The 
user chooses the only such available pin on the microcontroller, a 
digital IO line, then double-clicks again to commit the connection. 
For connects, names are optional and may be left blank. 

Similarly with the block insert action, the connect statement 
is inserted at the caret, and the connection is immediately though 
speculatively made on the block diagram. As required ports are 
connected, the red error fll also goes away. 

Our user then initiates a recompile through the Update button, 
and a second or two later, the recompilation completes and diagram 
updates. The hatched fll disappears, but the diagram is otherwise 
unchanged as the speculative efects matched the HDL. 

All edit actions are guarded by basic checks, such as for name 
legality and insert position. Connect insertion further checks that 
the referenced blocks and ports are declared before the insertion 
point. These checks are performed before the action is invoked, so 
an invalid caret location would result in a greyed out context menu 
item. For double-click actions, an error message pops up instead. 

We currently do not support deletion actions in the graphical ed-
itor, as accurate static analysis of Python code is difcult. However, 
the right-click context menu for block diagram objects has options 
to navigate to the line of code where a block is instantiated or a 
port is connected to assist in textual edits. 

Code-to-block diagram navigation is also supported. Where a 
line of code may correspond to several objects in the block diagram 
(such as within a block instantiated multiple times), a disambigua-
tion list pops up for the user to choose from. 

Figure 6: Inspection of the resistor in the IndicatorLed 
block, showing both the actual resistance of the selected part and 
its specifcation or requested resistance, which in turn was derived 
from the connected voltage source. 

4.2 Design-wide Edits 
After inserting and connecting the rest of the circuit, the design now 
includes an abstract barrel jack block that requires a refnement. 

Our user starts by selecting the abstract block in the diagram 
view. As with the block insertion fow, they search for barrel jacks 
in the library browser, and choose a Pj_102a barrel jack receptacle. 
The right-click context menu provides options to refne either the 
selected block instance, or all blocks of its class. 

Because refnements are written in the top-level design’s class 
and commonly as a single return statement like in lines 15-19 of 
Figure 2, there is no need for caret positioning. Since the code does 
not have a refnements function yet, the entire code block is gener-
ated, including the selected refnement. However, if a refnements 
block already existed, the selected refnement would be appended 
at the end of the list. 

This feature expects refnements to be written with this spe-
cifc structure in order to insert new refnements. While meta-
programming refnements using arbitrary code may have advan-
tages in some cases, we believe that the required refnements struc-
ture will suit most applications. 

Speculative efects do not apply to refnements. While refne-
ments can change parameters throughout the entire design as well 
as the implementation of the refned block, refnements do not 
change the ports on the refned block itself and so do not impact 
following edit operations. 

4.3 Inspection 
At this point, there are several blocks in the design, and our user 
may be interested in the details of the generated design. For example, 
to understand what was inside the IndicatorLed, our user double-
clicks into it. This allows navigating a potentially complex design 
by viewing one level of hierarchy at a time. Otherwise, standard 
mousewheel-to-zoom and drag-to-pan interfaces support moving 
around the diagram. 

Our user may be curious about the value of the resistor in this 
LED-resistor circuit, especially since it was automatically chosen. 
They mouse-over the part to show additional details, producing the 
popup shown in Figure 6 containing summary data of the object in 
question. 

In general, summary views exist for common blocks (such as 
showing component values for resistors, capacitors, and induc-
tors, or showing ratios for resistive dividers) and common connec-
tions (such as showing voltage thresholds between digital ports, or 
impedances between analog ports). While the same information is 
also available through a tree view of the entire design showing all 
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Figure 7: The IDE’s footprint assignment and pinning inter-
face. The footprint browser on the right shows the available KiCad 
footprints, while the footprint preview on the left allows assign-
ment of mappings between footprint pads and block ports. All edit 
actions generate HDL. 

parameters and constraints, this avoids information overload with 
a human-curated description at an appropriate level of detail. 

4.4 Library Creation and Edits 
Where existing libraries are insufcient, end-users need to create 
custom block defnitions. To model the magnetic sensor component 
in Figure 3, our user starts by choosing a base class from the library 
browser, in this case the FootprintBlock class that allows an as-
sociated PCB footprint. The context menu provides an option to 
create a new subclass, which inserts the class template at the caret. 

As blocks are written similarly to top-level designs, the same 
block diagram based sub-block instantiation and connection inter-
actions also apply here. However, non-top-level blocks additionally 
support ports, which are inserted similarly to blocks: by position-
ing the caret, searching for a port type in the library browser, and 
giving it a name. 

To associate the PCB footprint, our user switches over to the 
KiCad tab shown in Figure 7. Similarly to the library browser, 
they start by searching for an SOT-23 device using the flter box, 
then double-click the specifc footprint from the list to insert the 
footprint statement at the caret. 

The footprint itself also appears on the left side of the tab. From 
here, our user could double-click on a pad to bring up a list of 
connect-able ports, then choose one to update the footprint state-
ment with the selected port to pad mapping. Similarly to block 
insertion and connect, efects of each action are shown specula-
tively on the footprint interface. The fnal footprint code looks like 
lines 15-23 of Figure 3. 

5 SYSTEM IMPLEMENTATION 
The block diagram view and library browser and footprint tabs are 
built as a tool window plugin for the IntelliJ Community Edition IDE 
with the PyCharm Community plugin. The plugin itself is written in 
Scala and uses the Swing GUI toolkit to work with IntelliJ. The entire 
project is open sourced at https://github.com/BerkeleyHCI/edg-ide. 

The IDE operates in part on Polymorphic Blocks’ compiled de-
signs which are defned in (and serialized with) Protocol Bufers. 
A Python stub "server" program handles HDL re-compilation re-
quests from the IDE and communicates through gRPC, built on top 
of Protocol Bufers. This overall architecture is shown in Figure 8. 

To speed up re-compilation, the IDE keeps a cached version of 
compiled library blocks used in the current design and listens for 
changes to the code of these classes. On a change, it invalidates the 
cached versions. For simplicity and to keep the system responsive, 
analysis only considers the class hierarchy and would miss other 
dependencies, such as changes to global functions. As a last resort, 
the user can also manually clear caches. 

5.1 Code Analysis and Edits 
For functionality dealing with code, the IDE uses IntelliJ’s Project 
Structure Interface (PSI), which is a combination of parse tree (AST) 
like data structure combined with navigation and analysis tools. 

As an example of analysis functionality, the invalidate-cache-on-
modify invalidates the edited class and all derived subclasses by 
using the PSI’s fnd-subclasses-of function. Parameters for block and 
port classes are found by inspecting the class’s __init__ arguments 
(including varargs *args and **kwargs arguments) and tracing 
those through super().__init__ calls if such a call is the frst 
statement. 

Code edits are similarly performed using PSI write operations, 
by building up the PSI tree representation of the text to be inserted, 
then either inserting it as a new node or replacing an existing node. 
A code formatter automatically manages stylistic aspects of the 
inserted code (for example, inserting line breaks on long lines). 

5.2 Block Diagram Visualization 
The block diagram layout algorithm is functionally similar to the 
structure used by Polymorphic Blocks: start with the design as a set 
of hierarchy blocks, ports, and connections, infer the connection 
directions by port type (for example, a voltage source is an edge 
tail while a voltage sink is an edge head), simplify internal pseudo-
blocks (like port type adapters) into direct connections, and replace 
high-fanout connections (for example, a voltage source connected 
to four voltage sinks) with tunnels or named nets. To simplify 
editing, we also remove disconnected array ports except for one to 
allocate a new port. This is structured as a series of transformations 
on a hierarchy block data structure, which is fnally passed to ELK’s 
[7] “layered” algorithm for layout to obtain the fnal positioning 
and size data of graphical elements. 

6 USER STUDY: METHODOLOGY 
As our system’s workfow is a diferent way of working with code 
and a very diferent way of constructing hardware (compared to 
mainstream schematic fows), we felt it important to get user feed-
back to understand how these tools might actually be used. To that 
end, we ran a small user study in which participants complete a 
pre-defned project with our IDE. This structure tries to balance 
realism (ecological validity), decoupling observations about the 
underlying HDL from the IDE interface, and use of participants’ 
time. 

Because we are examining a prototype IDE and novel concepts 
which may not have the degree of interface and interaction polish 
as a fnal product, our study’s goals lean more towards qualitative 
feedback and usage observations to drive ideas for iteration, rather 
than a more quantitative and evaluative approach that we do not 
believe is appropriate at this stage. 
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Code Editorclass Blinky:
  mcu = Block(MagicMcu)
  led = Block(Led)
  connect(mcu.io0,
          led.io)
  connect(mcu.gnd,
          led.gnd)
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Figure 8: Overall architecture of our system. HDL source code is compiled into a internal block model, which creates the user-facing 
block diagram through automatic layout. Edit actions and some static analyses are done through an AST-like view (IntelliJ’s Project Structure 
Interface, or PSI) of the underlying HDL and speculatively update the compiled block model. 

6.1 Participants 
We recruited four participants through personal referrals, with the 
goal of sampling for range by having participants of diferent skill 
levels and motivations for PCB design. As a baseline, we required 
intermediate familiarity with PCB design and Python – support-
ing complete novices is currently out of scope. Two participants 
built PCBs primarily for personal and hobby reasons (one electrical 
engineering undergraduate, one professional software engineer), 
while the other two participants designed PCBs professionally (one 
graduate student researcher and one industry engineer). Two partic-
ipants had prior experience with the Polymorphic Blocks HDL, and 
all participants had at least some familiarity with HDLs in general 
such as Verilog. 

Participants were compensated with gift cards at $50 an hour. 

6.2 Structure 
This study was conducted entirely by videoconference. Each par-
ticipant accessed a fresh virtual machine (VM) running our IDE 
through the remote-desktop application X2go. 

We encouraged participants to share their VM window over 
videoconference so we could watch their progress (which all did). 
While these sessions were not recorded, we took notes on partici-
pants’ fows, specifcally where they chose to use the IDE or not. 
Additionally, as coding practically often relies on community ref-
erences like StackOverfow that do not yet exist for this HDL, we 
would answer any questions from participants. 

The frst part of the study consisted of a tutorial session to fa-
miliarize participants with the IDE and HDL. Participants worked 
through a tutorial document which involved building a slightly ex-
panded version of the BlinkyExample design from Figures 2 and 3. 
While the document hand-held participants through individual GUI 
edit actions, it also described the resulting code so participants 
could understand the generated HDL. The tutorial also described 
some common but code-only syntactic sugar constructs like implicit 
connects and included refactoring exercises using them. 

In the second part of the study, participants used the IDE to build 
a predetermined mini-project from a specifcation document. This 
project was an USB-powered ambient light sensor with a visual 
readout (such as through an LCD). The required USB connector, 
display, microcontroller, and power converter blocks were included 
in the library, and multiple options existed for each (such as having 
a choice between micro-B and Type-C USB connectors). 

After the system-level design was completed, participants then 
modeled the BH1620FVC analog light sensor and application sub-
circuit before integrating it into their overall system. This task 
included automatically calculating the current-to-voltage load re-
sistor value based on the high-level input parameters of maximum 
illuminance and maximum output voltage. 

Participants were free to use (or not use) the IDE to build this 
project, based on their preferences or what felt natural. This gave 
us the opportunity to observe what features were found useful, and 
how these features worked in the larger picture of circuit design. 

The study ended with a semi-structured interview, covering over-
all thoughts of the HDL and IDE, comparisons against schematic 
capture fows, and specifc thoughts on the block diagram edit 
actions, visualization updates, automatic layout, and inspection 
interface. Interviews were framed as constructive feedback and we 
encouraged participants to be frank about the system’s strengths 
and shortcomings to reduce efects of acquiescence bias. Interviews 
were audio recorded (with participants’ consent) and lasted an 
average of 1 hour and 34 minutes. 

Our user study procedure guide, the tutorial document, and the 
project specifcation document are included in the supplemental 
materials. 

7 USER STUDY: RESULTS 
Participants spent an average of 60 minutes to complete the tutorial, 
19 minutes to build the system-level design of their project, and 
52 minutes to build the light sensor part model and subcircuit. We 
note that we expected the subcircuit modeling to take signifcantly 
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longer because of the additional need to understand the component 
datasheet, the HDL’s electronics model at a deeper level, and the 
parameterization system – things outside the scope of the IDE. 
Furthermore, as library parts are designed to fully encapsulate 
details, it is much simpler to instantiate and connect them. 

7.1 Individual Flows 
Overall, participants had diverse fows as a result of individual 
preferences, and while they all made use of the IDE in writing 
HDL, they difered in what features they used and preferred. Fur-
thermore, all participants also directly edited textual HDL, such 
as to make use of syntactic sugar operations unavailable in IDE 
(all participants), to refactor and rearrange GUI-generated block 
instantiations and connects (also all participants), or as the primary 
way to produce HDL (P03 and P04). In the rest of this section, we 
report on individual fows and preferences. 

P01 started by sketching out the system architecture block dia-
gram, then instantiated the blocks with GUI actions and connected 
them with a mix of text editing and GUI actions. Overall, P01 felt 
the IDE approach was a good in-between for schematics and HDL, 
but still requires users to have a baseline competence with both 
code and circuits. 

P02 similarly instantiated blocks and made connections from 
GUI actions, but as a more iterative process including refactoring 
inserted blocks. P02 specifcally noted the helpfulness of the connect 
interface view fltering by legal connections, and also felt the IDE 
was a good coupling of code and diagrams. 

P03, on the other hand, used text edits to instantiate some blocks 
and all connects, noting a preference for copy-paste coding. Uniquely, 
P03 made the connections to the display by writing a for-loop it-
erating through a list of ports. While P03 did not feel the block 
diagram generated edits were useful, the library browser was noted 
for its discoverability of parts and the block visualization was noted 
for its discoverability of connections. 

P04 similarly also preferred text edits for block instantiation and 
connection, noting “not being a code snippets person”. However, 
P04 also mentioned the tightly-integrated block diagram as an 
invaluable reference of what needed to be connected. 

7.2 Edit Actions 
Where participants used the GUI to write code, they almost al-
ways used the caret-based actions instead of the other insertion 
points suggested in the context menu. P04 noted that this list of 
alternatives was confusing. 

Participants did criticize our interface as being clunky (P02), 
such as by requiring multiple selections (both a caret position and 
navigating to the edited block in the block diagram, P03) or being 
very sensitive to caret location (P04). In a broader sense, both P01 
and P03 mentioned preserving fow by staying in one interface 
instead of jumping between text and block diagram. However, these 
may be more issues of our specifc prototype implementation, and it 
may be possible that tweaks to the interface specifcs could produce 
a more usable fow. 

On the other hand, P04 called out the footprint and pinning inter-
face as something done well, because it directly matches the visual 

presentation often provided by component documentation. Partic-
ipants additionally suggested diferent interfaces for edit actions, 
such as drag-and-drop for block instantiation (P01), click-and-drag 
for making connections (P04), or improving the existing IDE auto-
complete with awareness of the HDL (for example, presenting only 
connectable ports; P03). 

As a completely diferent interface, P01 also suggested an import 
fow from existing schematic tools, both to use existing libraries 
written in mainstream tools, and to support users who are more 
familiar and comfortable working with mainstream tools. 

7.3 Block Diagram Visualization 
For the automatically generated block diagrams, the overall con-
sensus was that it was very usable for writing HDL including rea-
sonable adherence to convention, but still had many rough edges. 
All participants suggested more usage of symbols, such as ground 
symbols for the ground connections or part symbols instead of the 
simple rectangles for blocks. P03 additionally suggested symbols as 
a way to manage complexity when zoomed out: dense text could 
fade out and the entire block could be replaced with a symbol. 

P01, P02, P03 all discussed ideas for manual layout constraints, 
such as grouping blocks together, but also acknowledged it is a 
hard problem without clear solutions. P04, on the other hand, felt 
that a tool for creating presentation-grade diagrams may be out of 
scope here. 

Finally, P01 and P02 mentioned layout considerations: P01’s 
schematic capture fow takes into account rough layout foorplan-
ning when placing symbols, while P02 felt disconnected from the 
physical (footprint) view though also believed that more stuf on 
the block diagram could be cluttering. 

7.4 Refresh and Speculative Efects 
Participants had varied opinions on the manual (user-initiated) 
recompilation and block diagram update. At one extreme, P01 pre-
ferred continuous compilation to minimize the feedback loop be-
tween HDL edits and visual presentation. On the other hand, P03 felt 
that the current user-initiated scheme makes sense, crucially pre-
serving diagram stability as text is being edited. P04 was in-between, 
feeling that automatic updates could save a few keystrokes, but 
the system should be smart about detecting when the user is at a 
stopping point. 

As for speculative efects from block diagram insert or connect 
operations, participants generally did not notice the details and felt 
things seemed synchronized. 

8 DISCUSSION 
While we have built a functional but prototype IDE and obtained 
user feedback, there are important limitations of the user study to 
keep in mind when interpreting results. Yet, even if qualifed, this 
data can help focus practically useful directions for future work. 

8.1 Study Limitations 
While we believe we accomplished our goal of sampling for range 
given the diverse observed fows and feedback, the small participant 
pool does mean the feedback is not exhaustive. However, we do 
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believe it is appropriate in terms of early usability testing for a 
novel concept and for informing future work. 

Additionally, because the entire study was one session per partic-
ipant, learning efects may still be in play. If participants had used 
this system for longer, they may have tried and adopted diferent 
workfows. This may be especially important for a tool intended to 
support long-term projects and include professional users. 

8.2 Overall Takeaways 
Overall, we believe a major generalizable takeaway is that graph-
ical editing operations do not need to cover all conceivable code 
edits – here, participants were able to efectively blend use of GUI 
tooling with textual HDL edits for operations not supported by 
the GUI. Consistent with prior work [16], the simplest tools of 
visualization and library browsing were the ones that were most 
consistently used. Beyond PCB design, tools working on similar 
concepts may fnd it valuable to focus on supporting a few com-
mon workfows well before being bogged down by how to support 
trickier operations in a GUI. 

While not all participants preferred the code generation features, 
others aspects of the IDE were still useful in helping manually write 
HDL. Perhaps unsurprisingly for a prototype tool, the interactions 
were not perfect and this may have afected some participants’ 
decisions type out HDL instead, but it also does appear to be par-
tially rooted in personal preference. We believe that tools working 
with HDLs will need to acknowledge and support diverse and free-
form fows, and these user observations and feedback can provide 
starting points for further iteration. 

Furthermore, imperfect techniques that improve responsiveness, 
like speculative efects and caching, can provide the smooth in-
terface expected of direct manipulation system even with slower 
compilers. Despite both techniques having unsupported edge cases, 
which may be fundamentally difcult to resolve especially with a 
dynamic language like Python, they seemed to have worked well 
enough in practice for our (albeit somewhat limited) user study. 
More generally, it may be useful for future work to explore this time-
accuracy trade-of in more detail, as well as investigate compromise 
strategies that provide more accurate results as they become avail-
able. 

8.3 Flow for Edit Actions 
While our intent with caret editing was to disambiguate degrees of 
freedom for edit actions in a mainstream language like Python, in 
practice participants raised issues with our implementation. How-
ever, we believe that the feedback of needing a consistent fow, 
instead of jumping between HDL and GUI, provides a useful guid-
ing principle for future output-directed manipulation tools in these 
mainstream but messy languages. 

While participants did not use the edit locations in the context 
menu, avenues for future work may include how those choices can 
be unobtrusively made part of the default workfow. Perhaps users 
could be ofered the option alongside other parameters like name, 
and provided with a reasonable default option. Smarter defaults 
might be inferred according to style rules, perhaps selected by the 
user. Furthermore, a live preview of the code to be inserted may 
help users understand the choice. Edits may also be tracked (or 

bufered) by the IDE to support smooth sequences of GUI actions, 
while powerful refactoring tools can help users clean up their code 
afterward. 

8.4 Layout 
Although participants found our automatically generated block 
diagram visualization sufcient, there is still much room for im-
provement. The user feedback provides ideas for specifc features, 
though the ultimate goal would be automated schematic layout 
from a netlist. While our implementation uses a stock layout al-
gorithm for general hierarchical blocks, custom algorithms that 
understand electronics conventions may do much better. 

8.5 Performant Recompilation 
Finally, from a more engineering standpoint, speculative efects 
may require code that is similar to what would be in the compiler, 
but just diferent enough to require re-implementation. While the 
architecturally elegant solution would be to fully recompile after a 
GUI-inserted code edit, this may not always be performant enough 
to sustain a sequence of interactive GUI edits. While speculative 
efects will likely always remain a solution in general, it is worth ex-
ploring how far we can get with optimizations such as incremental 
re-compilation to avoid the complexity of speculative efects. 

9 CONCLUSION 
While recent HDL approaches for PCB design have been promis-
ing in terms of design power, the textual code interface is a de-
parture from currently mainstream schematics. In this work, we 
implemented and obtained exploratory user feedback for an IDE 
approach that aims to bridge the familiar schematics with the power 
and expressiveness of an HDL. Within the larger picture of program-
ming tools, and in contrast to similar work on GUI builders and 
structure editors, our approach emphasizes fexibility in working 
with and moving between code and block diagram views. 

We hope that fexible tooling like this can be be a best-of-both-
worlds approach to building hardware with HDLs. We believe that 
improved tooling can play a crucial part in encouraging adoption of 
HDLs, and ultimately in making easy and efcient hardware design 
accessible to everyone. 
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