
Weaving Schematics and Code: Interactive Visual Editing for
Hardware Description Languages

Richard Lin Rohit Ramesh Nikhil Jain
richard.lin@berkeley.edu rkr@berkeley.edu nikhil.jain@berkeley.edu

University of California, Berkeley University of California, Berkeley University of California, Berkeley

Josephine Koe Ryan Nuqui Prabal Dutta
koe@berkeley.edu ryannuqui@berkeley.edu prabal@berkeley.edu

University of California, Berkeley University of California, Berkeley University of California, Berkeley

Björn Hartmann
bjoern@berkeley.edu

University of California, Berkeley

class Blinky:
 mcu = Block(MagicMcu)
 led = Block(IndicatorLed)

 connect(mcu.io0, led.io)

 connect(mcu.gnd, led.gnd)

class IndicatorLed:
 io = Port(DigitalSink)
 led = Block(Led)
 res = Block(Resistor(
 res=in.voltage / 10mA))
 connect(io, led.anode)
 ...

mcu
MagicMcu

led
IndicatorLed

io0
io1
io2
io3

gnd

gnd

io

Led
led

anode
cathode

Resistor
res

a
b

Update visualization
from HDL changes

Generate HDL from block edits
HDL Code View Block Diagram Visualization

U1

MagicMcu

D1

R1 1k

Schematic Equivalent
(for reference)

Quick-update visualization
with speculative effects

Figure 1: Left: an overview of our integrated development environment (IDE) approach for tooling to support working with
circuit board-level hardware description languages (HDLs). This consists of the traditional text editor (left half of the IDE), and a
block diagram visualization of the compiled HDL (right half of the IDE). Edit actions on the block diagram, such as creating connections
between ports shown in blue, generate the corresponding lines of code in the HDL and update the visualization without incurring the latency
of a full recompile. The HDL code, including that inserted from block diagram edit actions, can also be freely edited to preserve the full
power and fexibility of the base HDL. User-triggered updates recompile the HDL, and changes such as the connection shown in orange,
are visible in the block diagram and available for editing. Right: As a reference, the equivalent design in a mainstream schematic
editor. Comparatively, schematics often require the system designer to work at the lowest level of abstraction (instead of re-using library
components like IndicatorLed) and manually handle component calculations (like the resistor) which are both tedious and do not preserve
design intent.

ABSTRACT
In many engineering disciplines such as circuit board, chip, and
mechanical design, a hardware description language (HDL) ap-
proach provides important benefts over direct manipulation inter-
faces by supporting concepts like abstraction and generator meta-
programming. While several such HDLs have emerged recently and
promised power and fexibility, they also present challenges – espe-
cially to designers familiar with current graphical workfows. In this
work, we investigate an IDE approach to provide a graphical editor
for a board-level circuit design HDL. Unlike GUI builders which
convert an entire diagram to code, we instead propose generating

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474804

1039

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474804

UIST ’21, October 10–14, 2021, Virtual Event, USA Lin and Ramesh, et al.

equivalent HDL from individual graphical edit actions. By keeping
code as the primary design input, we preserve the full power of the
underlying HDL, while remaining useful even to advanced users.
We discuss our concept, design considerations such as performance,
system implementation, and report on the results of an exploratory
remote user study with four experienced hardware designers.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; • Hardware → PCB design and lay-
out; Hardware description languages and compilation; • Human-
centered computing → Graphical user interfaces.

KEYWORDS
integrated development environment (IDE), hardware description
language (HDL), printed circuit board (PCB) design

ACM Reference Format:
Richard Lin, Rohit Ramesh, Nikhil Jain, Josephine Koe, Ryan Nuqui, Prabal
Dutta, and Björn Hartmann. 2021. Weaving Schematics and Code: Inter-
active Visual Editing for Hardware Description Languages. In The 34th
Annual ACM Symposium on User Interface Software and Technology (UIST
’21), October 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3472749.3474804

1 INTRODUCTION
Printed circuit boards (PCBs) are foundational to modern electron-
ics, and are usually designed with electronics design automation
(EDA) tools. In current mainstream practices [18], these tools have
two main components: schematic capture for designing the circuit,
and board layout for transforming the abstract circuit to a physical
design. While both of these steps are necessary for transforming an
idea into reality, here we will focus on the circuit design problem.

One issue with modern schematic tools is that they present a
very low-level design abstraction, that of individual components
and wires. While this provides high fexibility in design, it also
creates problems for users. For novices and hobbyists, these tools
require them to have an understanding of low-level electrical en-
gineering details in order to build a working board. For experts
and professionals, the low-level abstractions can be tedious and
inefcient, requiring every degree of freedom to be resolved even
when there is a large acceptable design space.

One recent approach to address these shortcomings are board-
level hardware description languages (HDLs) [17], such as shown on
the left half of the IDE concept in Figure 1. Much like software engi-
neering, these languages enable a tiered approach to design through
the use of libraries and abstraction: system-level designs can be
made up of high-level library components which do not require
deep electrical engineering knowledge to use, with those compo-
nents being defned by more expert users who can encapsulate their
knowledge and design process as generators with executable code.
An example of the latter is the code for the IndicatorLed block in
Figure 1, which calculates the needed resistance and automates a
process that is otherwise manual in schematic design.

Yet, an HDL approach also comes with a diferent set of issues,
primarily in the added requirement for programming in a spe-
cialized language. Furthermore, while both HDLs and schematics

can ultimately be views on similar underlying data, each repre-
sentation emphasizes diferent information and provides diferent
afordances for understanding and manipulating a design [3]. For
example, while an HDL might enable loops to quickly generate ar-
rays of components, the circuit connectivity is much more obvious
in a block diagram. Finally, as HDLs depend on libraries that encap-
sulate expert knowledge, it will be essential to make contribution
as easy as possible for the experts who are typically familiar with
schematic-based tools.

In this paper, we present a novel approach to bridging schematic-
and HDL-based workfows. Our approach is centered on interactive
block diagrams that are synchronized with HDL code: code edits are
refected in diagram updates, and diagrams can be edited to modify
code. Our work relates to visual editors for other domains such as
GUI editors with code generation. However, our approach difers
in that code remains the primary design input, and modifcations
from the GUI and direct text edits can be arbitrarily interleaved.
This preserves the fexibility of the underlying HDL.

Overall, we contribute an IDE implementing these techniques,
both as a tool to concretely support board design, and more gener-
ally as another design point in the space of similar tools [9, 22] that
bring programming power to domains beyond software. The IDE is
designed to work with Polymorphic Blocks [17], our open-source
board-level HDL. Furthermore, we contribute an evaluation in the
form of a qualitative and remote user study with four participants,
from which we draw takeaways and recommendations for similar
tools. We found that even though some participants preferred to
write HDL by direct text edits instead of through the block diagram
interface, the tight visualization loop was benefcial to all users.
Furthermore, participants were able to blend use of the block dia-
gram interface with textual HDL edits, suggesting that this mixed
IDE approach is viable and even if not all possible code edits are
supported from the GUI.

2 RELATED WORK
As a project covering electronics and programming environments,
we relate to a large body of prior work on electronics design, hard-
ware description languages in general, and live programming.

2.1 Electronics Design
Academically, there has been much work on board-level electron-
ics in the HCI community. Broadly speaking, the same level of
component-and-wire based circuit design is often prototyped on
solderless breadboards, and a thread of work exists on augmented
breadboards [4, 14, 36, 37]. For boards specifcally, there is an-
other thread of work on debugging and prototyping assist technol-
ogy [32, 33] as well as examining how to scale from prototype to
production [12].

As for design tools, much prior work revolves around synthesiz-
ing devices from a high-level specifcation. Both Embedded Design
Generation [27] and Echidna [25, 26] start with user-defned func-
tional components like sensors and motors, and perform interface-
driven synthesis to complete the rest of the device. Trigger Action
Circuits [2] works at a higher, behavioral and datafow level, and
produces a breadboarding diagram. EDASolver [5] also synthesizes
circuits from specifcations, though details have not been published.

1040

https://doi.org/10.1145/3472749.3474804

Weaving Schematics and Code: Interactive Visual Editing for Hardware Description Languages UIST ’21, October 10–14, 2021, Virtual Event, USA

Related to both breadboarding and circuit boards is Fritzing [15],
which provides both views of a circuit to bridge concepts for novices.
AutoFritz [19] builds on top of that with data-driven circuit auto-
complete suggestions.

The current dominant paradigm [18] of interactive schematic
capture can be seen in both open-source [13] and commercial
tools [1, 23], and has been around for almost half a century [20] with
little fundamental modifcations. Here, users draw schematics on
a virtual canvas by placing components and connecting their pins
together, ofering both benefts and drawbacks of very low-level
design. While much continuing commercial work appears to focus
on layout-related issues like autorouting and signal integrity [23],
there has also been some work related to the circuit itself, such as
Valydate [24] which automates parts of schematic review.

A recent paradigm is module-based board design, as with Spark-
fun À La Carte [31] and Geppetto [8]. These provide a mixed
schematic and layout view, with users working with high-level
modules that represent a subcircuit, and placing its bounding box
on a physical board view. However, details have not been published,
so their internal models, library creation process, and algorithms
are not known. Related is MorphSensor [39], which provides a
3D design view for fexible PCBs. It, too, has a module-based fow
with mixed schematic and physical views, though avoids the circuit
design problem by importing schematics from mainstream tools.

Overall, one trend of recent tools is that they are library-based
and model components at a more detailed level than mainstream
tools. Yet, these projects do not really address library creation by
end users, a step necessary to achieve scalability and generality
beyond what a team of tool developers could feasibly do.

2.2 Hardware Description Languages
Polymorphic Blocks [17] attempts to address this problem by pro-
viding a hardware description language (HDL) interface suitable
for writing system-level designs and library components. Library
reusability is further supported by adapting programming language
concepts like type hierarchies and polymorphism, such as by hav-
ing an abstract buck converter component that can be implemented
by concrete sub-types like subcircuits around specifc chips. Fur-
thermore, the code aspect of an HDL approach enables writing
generators that can encode a design methodology for a family of
designs instead of a static instance, such as by sizing the buck
converter given higher-level parameters.

Though powerful, this textual interface is very diferent than
mainstream schematic capture tools. While Polymorphic Blocks
included a Visualization and Refnement Interface that provided a
block diagram visualization of the compiled HDL, this was not inte-
grated into the text editor, required a lengthy compilation delay on
each update, and could not generate edits to the HDL. In particular,
we note that all participants from the user study asked for a tighter
HDL editing and block diagram visualization loop, which is what
we address in this work.

In the broader context, Polymorphic Blocks was inspired by work
on Chisel [11], a generator HDL for digital logic for chip design. We
note that HDLs like Verilog and VHDL are currently the dominant
approach to digital logic design in the chip industry. Although
visualizers exist for digital logic designs and diagrams are often

used to express microarchitectural designs, visualizations are not
commonly part of digital logic HDL fows. Yet, aspects of this work
may be applicable to the digital logic domain.

There is also a thread of work addressing the lengthy, often
hours-long latency for chip tools to produce results from a HDL
change – a bottleneck on productivity. Strategies include improving
synthesis performance [35] and simulation performance [29, 30],
such as through partitioning and incremental compilation. While
board-level designs are orders of magnitude less complex than chip
designs, we do adopt similar techniques to reduce latency.

2.3 Live Programming
Our work is related to live programming in programming languages,
where code being written is continuously run with results displayed
to the user. These tools can help connect the more abstract repre-
sentation of code to concrete examples [6], which users might fnd
easier to work with or to help navigate execution contexts [21].
Prior empirical research [16] further indicates that simpler liveness
tools were frequently used, and even small amounts of liveness can
have disproportionate impact — which is what we attempt to do
here.

One critical aspect of live programming systems is the latency be-
tween code change and visible efects [28]. Prior work has discussed
possible techniques to reduce latency [21, 34], such as predictively
starting to compute results or returning speculative results. As
our underlying HDL’s compiler is not performant enough to fully
recompile every change at interactive rates, our system relies on
speculative results to preserve a smooth interaction fow.

Beyond one-way visualization, work has also examined output
direct manipulation – how these visual representations could be
manipulated to write code in specifc domains. One recent example
is Sketch-n-Sketch [9], which provides a graphical editor for a
custom language for 2D graphics. Other examples include such
editors for string manipulation and diagramming [22].

However, perhaps the most often used similar class of tools are
graphical user interface (GUI) builders, where users can defne their
GUI graphically through direct manipulation interactions such as
drag-and-drop. These tools similarly aim to provide an interface
that is closer to the domain than the equivalent GUI construction
code they generate. Yet, the code generated often is not stylistically
clean or even meant to be directly edited [38] – perhaps fne for a
GUI with defned integration points and static structure, but less so
for an HDL where programming the structure is the point.

In this larger context, we aim to develop tools that can harness
the power and fexibility of an HDL, but with an interface that is
closer to how circuits are designed today: schematics and block
diagrams. We hope this schematic-like representation can provide
a complementary view for editing the HDL, and furthermore a
graphical interface may make HDLs more accessible to a broader
community of hardware engineers, device designers, and hobbyists
with more limited programming expertise. We further diferentiate
our work through the emphasis on practicality and fexibility by
supporting a Python-embedded HDL instead of a fully custom
programming language and co-existing with free-form textual edits
to the HDL.

1041

UIST ’21, October 10–14, 2021, Virtual Event, USA Lin and Ramesh, et al.

1 class BlinkyExample(SimpleBoardTop):

2 def __init__(self) -> None:

3 super().__init__()

4 self.jack = self.Block(PowerBarrelJack(voltage_out=3.3*Volt(tol=0.05)))

5
6 with self.implicit_connect(

7 ImplicitConnect(self.jack.pwr, [Power]),

8 ImplicitConnect(self.jack.gnd, [Common]),

9) as imp:

10 self.mcu = imp.Block(Lpc1549_48())

11 self.led = imp.Block(IndicatorLed())

12
13 self.connect(self.mcu.digital[0], self.led.signal)

14
15 def refinements(self) -> Refinements:

16 return super().refinements() + Refinements(

17 instance_refinements=[

18 (['jack'], Pj_102a),

19])

Figure 2: Example project code which consists of a PJ-102A bar-
rel jack, a LPC1549JBD48 microcontroller, and an indicator LED.

1 class Lf21215tmr_Device(FootprintBlock):

2 def __init__(self) -> None:

3 super().__init__()

4 self.vcc = self.Port(

5 VoltageSink(voltage_limits=(1.8, 5.5)*Volt, current_draw=(0, 1.5)*uAmp),

6 [Power]

7)

8
9 self.gnd = self.Port(Ground(), [Common])

10
11 self.vout = self.Port(DigitalSource.from_supply(

12 self.gnd, self.vcc, output_threshold_offset=(0.2, -0.3)

13))

14
15 self.footprint(

16 'U', 'Package_TO_SOT_SMD:SOT-23',

17 {

18 '1': self.vcc,

19 '2': self.vout,

20 '3': self.gnd,

21 },

22 mfr='Littelfuse', part='LF21215TMR',

23)

magnetic feld sensor.

3 BACKGROUND
As our IDE is designed to work with Polymorphic Blocks [17], a
novel HDL that has not yet seen widespread adoption, we will
briefy recap the HDL in this section to provide readers with a
more concrete understanding of what our IDE does. While our
IDE integrates ongoing development on Polymorphic Blocks, the
fundamental concept remains true to the original paper. The main
user-facing changes are moving the refnement data into the user
HDL (from the separate Visualization and Refnement Interface)
and changing to a directed constraints model.

Overall, Polymorphic Blocks is a Python-embedded domain spe-
cifc language with object-oriented features. Classes represent re-
usable block templates and objects are individual instances of those
blocks. The abstraction capabilities provided by this framework
allow the HDL to be used for both constructing top-level designs
and writing part defnitions. Examples of both are presented in the
rest of this section.

3.1 Top-Level Design
The example code in Figure 2 (and its corresponding block diagram
visualization shown in the IDE screenshot in Figure 4) demonstrate
how blocks and connections are instantiated in the HDL in a top-
level design that powers and controls an LED light. Lines 4, 10,
and 11 respectively instantiate and name Block objects for a barrel
jack, microcontroller, and indicator LED. Some component blocks
additionally have assignable parameters, such as the target output
voltage of the barrel jack in line 4, allowing for more powerful
design correctness checks.

Line 13 demonstrates use of the connect(...) function to con-
nect a digital IO port on the mcu block to the signal port of led.
Lines 6 - 13 demonstrate implicit_connect, a syntactic sugar con-
struct to simplify certain types of common connections, like for
power and ground. In short, this works by matching the tags such
as Power and Common (ground) in lines 7 - 8 with the tags specifed
in components’ ports (not shown)

Lines 15 - 19 further refne the abstract PowerBarrelJack in-
stantiated in line 4 to be the specifc and concrete subtype, the

Figure 3: Example part defnition of a Lf21215TMR digital

PJ-102A. In this manner, users can initially instantiate Blocks of
an abstract type to preserve potential alternatives, then later refne
them to a more specifc subtype depending on design requirements.

3.2 Defning Library Blocks
Figure 3 is an example part defnition of a LF21215TMR digital
magnetic feld sensor device. Parts are defned similarly to top-level
designs, and could have internal blocks and connections in the same
way. In this case, however, there is only an associated footprint and
pinning as shown on lines 15 - 23.

The Lf21215tmr_Device class also defnes its exterior ports.
Lines 4 - 13 instantiates the ports vcc of type VoltageSink (volt-
age input), gnd of type Ground, and vout of type DigitalSource
(digital output) with defned voltage and current parameters. These
forms the external interface of this device, abstracting away other
elements as internal details. Lines 4 - 9 additionally show the
component-side usage of implicit connection tags Power and Common
on their respective ports.

4 SYSTEM DESCRIPTION
Although there are many possible ways to bridge HDL code and
schematics, our system is motivated by two underlying principles:

(1) Preserve the full power of the underlying HDL, while rec-
ognizing that board design tends to be highly iterative [18].
This precludes approaches that do not allow users to freely
move between code and schematic workfows, such as single-
shot code generation from schematics (like GUI builders) in
which continued editing from the schematic view may be
difcult after modifcation of the generated HDL. We further
note that as there are likely programming constructs for
which there is no (useful) corresponding graphical represen-
tation, the visualization will necessarily be a subset of the
HDL.

(2) Interfaces based in current practices. While this means sup-
porting a schematic-like interface for HDL editing, it also
means boundaries on what be may less useful in a graphical

1042

Weaving Schematics and Code: Interactive Visual Editing for Hardware Description Languages UIST ’21, October 10–14, 2021, Virtual Event, USA

Code Editor Block Diagram Editor

Library View and Footprint Editor

a
⮟

b
⮟

c
⮝

Design Tree d
⮝

Figure 4: The IDE, implemented as an extension for IntelliJ, has several major views: (a) a code editor for the hardware description
language, (b) an interactive block diagram editor that corresponds to the compiled HDL, (c) a tree view of the same compiled HDL, and (d) a
library view for browsing available blocks.

editor. For instance, although a LabVIEW-style [10] interface
may support programming constructs such as arithmetic and
control fow as blocks in a purely graphical environment,
code is overwhelmingly the more common way to express
this kind of logic.

From these principles, we built a system that takes an "HDL frst"
approach, where the HDL code is the primary and authoritative
design artifact. Tooling then provides support for understanding,
navigating, and producing this code through an IDE metaphor built
around a schematic-like view of the compiled output design as
shown in Figure 4. More concretely, the block diagram view pro-
vides users with a visual representation of the HDL, and, combined
with the library view, provides for schematic-like GUI edit actions
that generate into corresponding HDL. However, we explicitly do
not support the more code-like parameterization operations. Fur-
thermore, as a prototype, we chose to focus on the basics and do
not support syntactic sugar constructs like implicit connects or
refactoring operations like delete and rename.

In the rest of this section, we will introduce our system in more
detail through how a hypothetical user might build the example
device in the prior section, starting from an empty top-level design.

4.1 Block Diagram Edit Actions
Like with schematic capture tools, the user starts with adding parts
to the design by searching libraries. In our system, the library view
on the bottom right lists available components as a tree, organized
by the type hierarchy which encodes both categorical (e.g., power

converters, sensors) and structural (e.g., three ported DC-DC con-
verter) dimensions. The textbox above provides search and fltering
by simple string matching.

Since each edit occurs within the HDL, our user frst starts by
moving the caret to where code should be inserted, at the begin-
ning of def __init__(...):. Then, to add a microcontroller, they
would frst enter microcontroller in the library flter textbox,
which brings up the microcontroller category in the library tree.
Within that category, our user chooses the Lpc1549_48, double-
clicks it to insert the block instantiation line at the caret, and pro-
vides a name in the pop-up prompt.

Alternatively, right-clicking (instead of double-clicking) brings
up the context menu which provides suggested locations for code
insertion independent of the caret position. For block inserts, one
such option is appending to the end of the __init__ method.

Simultaneously, the block diagram updates with the visual rep-
resentation of the newly added block. To preserve fow with GUI
operations, this is not the result of a full recompile, but is instead a
speculative efect: the system assumes (regardless of context, such
as if the caret was within an if block or for loop) that exactly
one instance of the block would have been created. These blocks
are indicated with a hatched fll, and additionally do not contain
an internal implementation. However, their ports are valid, which
allows connections to be made to them without re-compiling.

If our user instantiated a block with a required parameter, such
as the voltage_out specifcation for a barrel jack, the unflled
keyword argument appears on the instantiation line. As with pa-
rameterization in general, the user must write this in HDL, here by

1043

UIST ’21, October 10–14, 2021, Virtual Event, USA Lin and Ramesh, et al.

Figure 5: The connection interface, showing legal connections
(by type) from the microcontroller’s digital IO, with other pins
dimmed out. Additionally, unconnected-but-required pins are high-
lighted in red, while the hatched fll indicates the preview status of
both the LED and LPC1549 blocks inserted in the GUI as well as
the modifed status of the block they were inserted in.

providing an output voltage target of 3.3*Volt(tol=0.05) as in
line 4 of the example in Figure 2.

After repeating the instantiation fow with the LED, our user can
then start connecting blocks. As shown in Figure 5, unconnected-
but-required ports are marked with a red fll, and the user starts with
one such port, the LED’s signal input pin. Double-clicking the pin
starts the connect tool, which dims the rest of the schematic except
for ports that have compatible types, as also shown in Figure 5. The
user chooses the only such available pin on the microcontroller, a
digital IO line, then double-clicks again to commit the connection.
For connects, names are optional and may be left blank.

Similarly with the block insert action, the connect statement
is inserted at the caret, and the connection is immediately though
speculatively made on the block diagram. As required ports are
connected, the red error fll also goes away.

Our user then initiates a recompile through the Update button,
and a second or two later, the recompilation completes and diagram
updates. The hatched fll disappears, but the diagram is otherwise
unchanged as the speculative efects matched the HDL.

All edit actions are guarded by basic checks, such as for name
legality and insert position. Connect insertion further checks that
the referenced blocks and ports are declared before the insertion
point. These checks are performed before the action is invoked, so
an invalid caret location would result in a greyed out context menu
item. For double-click actions, an error message pops up instead.

We currently do not support deletion actions in the graphical ed-
itor, as accurate static analysis of Python code is difcult. However,
the right-click context menu for block diagram objects has options
to navigate to the line of code where a block is instantiated or a
port is connected to assist in textual edits.

Code-to-block diagram navigation is also supported. Where a
line of code may correspond to several objects in the block diagram
(such as within a block instantiated multiple times), a disambigua-
tion list pops up for the user to choose from.

Figure 6: Inspection of the resistor in the IndicatorLed
block, showing both the actual resistance of the selected part and
its specifcation or requested resistance, which in turn was derived
from the connected voltage source.

4.2 Design-wide Edits
After inserting and connecting the rest of the circuit, the design now
includes an abstract barrel jack block that requires a refnement.

Our user starts by selecting the abstract block in the diagram
view. As with the block insertion fow, they search for barrel jacks
in the library browser, and choose a Pj_102a barrel jack receptacle.
The right-click context menu provides options to refne either the
selected block instance, or all blocks of its class.

Because refnements are written in the top-level design’s class
and commonly as a single return statement like in lines 15-19 of
Figure 2, there is no need for caret positioning. Since the code does
not have a refnements function yet, the entire code block is gener-
ated, including the selected refnement. However, if a refnements
block already existed, the selected refnement would be appended
at the end of the list.

This feature expects refnements to be written with this spe-
cifc structure in order to insert new refnements. While meta-
programming refnements using arbitrary code may have advan-
tages in some cases, we believe that the required refnements struc-
ture will suit most applications.

Speculative efects do not apply to refnements. While refne-
ments can change parameters throughout the entire design as well
as the implementation of the refned block, refnements do not
change the ports on the refned block itself and so do not impact
following edit operations.

4.3 Inspection
At this point, there are several blocks in the design, and our user
may be interested in the details of the generated design. For example,
to understand what was inside the IndicatorLed, our user double-
clicks into it. This allows navigating a potentially complex design
by viewing one level of hierarchy at a time. Otherwise, standard
mousewheel-to-zoom and drag-to-pan interfaces support moving
around the diagram.

Our user may be curious about the value of the resistor in this
LED-resistor circuit, especially since it was automatically chosen.
They mouse-over the part to show additional details, producing the
popup shown in Figure 6 containing summary data of the object in
question.

In general, summary views exist for common blocks (such as
showing component values for resistors, capacitors, and induc-
tors, or showing ratios for resistive dividers) and common connec-
tions (such as showing voltage thresholds between digital ports, or
impedances between analog ports). While the same information is
also available through a tree view of the entire design showing all

1044

https://3.3*Volt(tol=0.05

Weaving Schematics and Code: Interactive Visual Editing for Hardware Description Languages UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 7: The IDE’s footprint assignment and pinning inter-
face. The footprint browser on the right shows the available KiCad
footprints, while the footprint preview on the left allows assign-
ment of mappings between footprint pads and block ports. All edit
actions generate HDL.

parameters and constraints, this avoids information overload with
a human-curated description at an appropriate level of detail.

4.4 Library Creation and Edits
Where existing libraries are insufcient, end-users need to create
custom block defnitions. To model the magnetic sensor component
in Figure 3, our user starts by choosing a base class from the library
browser, in this case the FootprintBlock class that allows an as-
sociated PCB footprint. The context menu provides an option to
create a new subclass, which inserts the class template at the caret.

As blocks are written similarly to top-level designs, the same
block diagram based sub-block instantiation and connection inter-
actions also apply here. However, non-top-level blocks additionally
support ports, which are inserted similarly to blocks: by position-
ing the caret, searching for a port type in the library browser, and
giving it a name.

To associate the PCB footprint, our user switches over to the
KiCad tab shown in Figure 7. Similarly to the library browser,
they start by searching for an SOT-23 device using the flter box,
then double-click the specifc footprint from the list to insert the
footprint statement at the caret.

The footprint itself also appears on the left side of the tab. From
here, our user could double-click on a pad to bring up a list of
connect-able ports, then choose one to update the footprint state-
ment with the selected port to pad mapping. Similarly to block
insertion and connect, efects of each action are shown specula-
tively on the footprint interface. The fnal footprint code looks like
lines 15-23 of Figure 3.

5 SYSTEM IMPLEMENTATION
The block diagram view and library browser and footprint tabs are
built as a tool window plugin for the IntelliJ Community Edition IDE
with the PyCharm Community plugin. The plugin itself is written in
Scala and uses the Swing GUI toolkit to work with IntelliJ. The entire
project is open sourced at https://github.com/BerkeleyHCI/edg-ide.

The IDE operates in part on Polymorphic Blocks’ compiled de-
signs which are defned in (and serialized with) Protocol Bufers.
A Python stub "server" program handles HDL re-compilation re-
quests from the IDE and communicates through gRPC, built on top
of Protocol Bufers. This overall architecture is shown in Figure 8.

To speed up re-compilation, the IDE keeps a cached version of
compiled library blocks used in the current design and listens for
changes to the code of these classes. On a change, it invalidates the
cached versions. For simplicity and to keep the system responsive,
analysis only considers the class hierarchy and would miss other
dependencies, such as changes to global functions. As a last resort,
the user can also manually clear caches.

5.1 Code Analysis and Edits
For functionality dealing with code, the IDE uses IntelliJ’s Project
Structure Interface (PSI), which is a combination of parse tree (AST)
like data structure combined with navigation and analysis tools.

As an example of analysis functionality, the invalidate-cache-on-
modify invalidates the edited class and all derived subclasses by
using the PSI’s fnd-subclasses-of function. Parameters for block and
port classes are found by inspecting the class’s __init__ arguments
(including varargs *args and **kwargs arguments) and tracing
those through super().__init__ calls if such a call is the frst
statement.

Code edits are similarly performed using PSI write operations,
by building up the PSI tree representation of the text to be inserted,
then either inserting it as a new node or replacing an existing node.
A code formatter automatically manages stylistic aspects of the
inserted code (for example, inserting line breaks on long lines).

5.2 Block Diagram Visualization
The block diagram layout algorithm is functionally similar to the
structure used by Polymorphic Blocks: start with the design as a set
of hierarchy blocks, ports, and connections, infer the connection
directions by port type (for example, a voltage source is an edge
tail while a voltage sink is an edge head), simplify internal pseudo-
blocks (like port type adapters) into direct connections, and replace
high-fanout connections (for example, a voltage source connected
to four voltage sinks) with tunnels or named nets. To simplify
editing, we also remove disconnected array ports except for one to
allocate a new port. This is structured as a series of transformations
on a hierarchy block data structure, which is fnally passed to ELK’s
[7] “layered” algorithm for layout to obtain the fnal positioning
and size data of graphical elements.

6 USER STUDY: METHODOLOGY
As our system’s workfow is a diferent way of working with code
and a very diferent way of constructing hardware (compared to
mainstream schematic fows), we felt it important to get user feed-
back to understand how these tools might actually be used. To that
end, we ran a small user study in which participants complete a
pre-defned project with our IDE. This structure tries to balance
realism (ecological validity), decoupling observations about the
underlying HDL from the IDE interface, and use of participants’
time.

Because we are examining a prototype IDE and novel concepts
which may not have the degree of interface and interaction polish
as a fnal product, our study’s goals lean more towards qualitative
feedback and usage observations to drive ideas for iteration, rather
than a more quantitative and evaluative approach that we do not
believe is appropriate at this stage.

1045

https://github.com/BerkeleyHCI/edg-ide

UIST ’21, October 10–14, 2021, Virtual Event, USA Lin and Ramesh, et al.

Code Editorclass Blinky:
 mcu = Block(MagicMcu)
 led = Block(Led)
 connect(mcu.io0,
 led.io)
 connect(mcu.gnd,
 led.gnd)

Block Diagram Editor

Direct Text
Edits

AST
Tools

IDE

HDL
Compiler

Edit
ActionsStatic

Analyses

AST Edits

Speculative
Update

Automatic
Layout

GUI
Actions

Recompile

Compiled
Block
Model

HDL
Source

File

Figure 8: Overall architecture of our system. HDL source code is compiled into a internal block model, which creates the user-facing
block diagram through automatic layout. Edit actions and some static analyses are done through an AST-like view (IntelliJ’s Project Structure
Interface, or PSI) of the underlying HDL and speculatively update the compiled block model.

6.1 Participants
We recruited four participants through personal referrals, with the
goal of sampling for range by having participants of diferent skill
levels and motivations for PCB design. As a baseline, we required
intermediate familiarity with PCB design and Python – support-
ing complete novices is currently out of scope. Two participants
built PCBs primarily for personal and hobby reasons (one electrical
engineering undergraduate, one professional software engineer),
while the other two participants designed PCBs professionally (one
graduate student researcher and one industry engineer). Two partic-
ipants had prior experience with the Polymorphic Blocks HDL, and
all participants had at least some familiarity with HDLs in general
such as Verilog.

Participants were compensated with gift cards at $50 an hour.

6.2 Structure
This study was conducted entirely by videoconference. Each par-
ticipant accessed a fresh virtual machine (VM) running our IDE
through the remote-desktop application X2go.

We encouraged participants to share their VM window over
videoconference so we could watch their progress (which all did).
While these sessions were not recorded, we took notes on partici-
pants’ fows, specifcally where they chose to use the IDE or not.
Additionally, as coding practically often relies on community ref-
erences like StackOverfow that do not yet exist for this HDL, we
would answer any questions from participants.

The frst part of the study consisted of a tutorial session to fa-
miliarize participants with the IDE and HDL. Participants worked
through a tutorial document which involved building a slightly ex-
panded version of the BlinkyExample design from Figures 2 and 3.
While the document hand-held participants through individual GUI
edit actions, it also described the resulting code so participants
could understand the generated HDL. The tutorial also described
some common but code-only syntactic sugar constructs like implicit
connects and included refactoring exercises using them.

In the second part of the study, participants used the IDE to build
a predetermined mini-project from a specifcation document. This
project was an USB-powered ambient light sensor with a visual
readout (such as through an LCD). The required USB connector,
display, microcontroller, and power converter blocks were included
in the library, and multiple options existed for each (such as having
a choice between micro-B and Type-C USB connectors).

After the system-level design was completed, participants then
modeled the BH1620FVC analog light sensor and application sub-
circuit before integrating it into their overall system. This task
included automatically calculating the current-to-voltage load re-
sistor value based on the high-level input parameters of maximum
illuminance and maximum output voltage.

Participants were free to use (or not use) the IDE to build this
project, based on their preferences or what felt natural. This gave
us the opportunity to observe what features were found useful, and
how these features worked in the larger picture of circuit design.

The study ended with a semi-structured interview, covering over-
all thoughts of the HDL and IDE, comparisons against schematic
capture fows, and specifc thoughts on the block diagram edit
actions, visualization updates, automatic layout, and inspection
interface. Interviews were framed as constructive feedback and we
encouraged participants to be frank about the system’s strengths
and shortcomings to reduce efects of acquiescence bias. Interviews
were audio recorded (with participants’ consent) and lasted an
average of 1 hour and 34 minutes.

Our user study procedure guide, the tutorial document, and the
project specifcation document are included in the supplemental
materials.

7 USER STUDY: RESULTS
Participants spent an average of 60 minutes to complete the tutorial,
19 minutes to build the system-level design of their project, and
52 minutes to build the light sensor part model and subcircuit. We
note that we expected the subcircuit modeling to take signifcantly

1046

Weaving Schematics and Code: Interactive Visual Editing for Hardware Description Languages UIST ’21, October 10–14, 2021, Virtual Event, USA

longer because of the additional need to understand the component
datasheet, the HDL’s electronics model at a deeper level, and the
parameterization system – things outside the scope of the IDE.
Furthermore, as library parts are designed to fully encapsulate
details, it is much simpler to instantiate and connect them.

7.1 Individual Flows
Overall, participants had diverse fows as a result of individual
preferences, and while they all made use of the IDE in writing
HDL, they difered in what features they used and preferred. Fur-
thermore, all participants also directly edited textual HDL, such
as to make use of syntactic sugar operations unavailable in IDE
(all participants), to refactor and rearrange GUI-generated block
instantiations and connects (also all participants), or as the primary
way to produce HDL (P03 and P04). In the rest of this section, we
report on individual fows and preferences.

P01 started by sketching out the system architecture block dia-
gram, then instantiated the blocks with GUI actions and connected
them with a mix of text editing and GUI actions. Overall, P01 felt
the IDE approach was a good in-between for schematics and HDL,
but still requires users to have a baseline competence with both
code and circuits.

P02 similarly instantiated blocks and made connections from
GUI actions, but as a more iterative process including refactoring
inserted blocks. P02 specifcally noted the helpfulness of the connect
interface view fltering by legal connections, and also felt the IDE
was a good coupling of code and diagrams.

P03, on the other hand, used text edits to instantiate some blocks
and all connects, noting a preference for copy-paste coding. Uniquely,
P03 made the connections to the display by writing a for-loop it-
erating through a list of ports. While P03 did not feel the block
diagram generated edits were useful, the library browser was noted
for its discoverability of parts and the block visualization was noted
for its discoverability of connections.

P04 similarly also preferred text edits for block instantiation and
connection, noting “not being a code snippets person”. However,
P04 also mentioned the tightly-integrated block diagram as an
invaluable reference of what needed to be connected.

7.2 Edit Actions
Where participants used the GUI to write code, they almost al-
ways used the caret-based actions instead of the other insertion
points suggested in the context menu. P04 noted that this list of
alternatives was confusing.

Participants did criticize our interface as being clunky (P02),
such as by requiring multiple selections (both a caret position and
navigating to the edited block in the block diagram, P03) or being
very sensitive to caret location (P04). In a broader sense, both P01
and P03 mentioned preserving fow by staying in one interface
instead of jumping between text and block diagram. However, these
may be more issues of our specifc prototype implementation, and it
may be possible that tweaks to the interface specifcs could produce
a more usable fow.

On the other hand, P04 called out the footprint and pinning inter-
face as something done well, because it directly matches the visual

presentation often provided by component documentation. Partic-
ipants additionally suggested diferent interfaces for edit actions,
such as drag-and-drop for block instantiation (P01), click-and-drag
for making connections (P04), or improving the existing IDE auto-
complete with awareness of the HDL (for example, presenting only
connectable ports; P03).

As a completely diferent interface, P01 also suggested an import
fow from existing schematic tools, both to use existing libraries
written in mainstream tools, and to support users who are more
familiar and comfortable working with mainstream tools.

7.3 Block Diagram Visualization
For the automatically generated block diagrams, the overall con-
sensus was that it was very usable for writing HDL including rea-
sonable adherence to convention, but still had many rough edges.
All participants suggested more usage of symbols, such as ground
symbols for the ground connections or part symbols instead of the
simple rectangles for blocks. P03 additionally suggested symbols as
a way to manage complexity when zoomed out: dense text could
fade out and the entire block could be replaced with a symbol.

P01, P02, P03 all discussed ideas for manual layout constraints,
such as grouping blocks together, but also acknowledged it is a
hard problem without clear solutions. P04, on the other hand, felt
that a tool for creating presentation-grade diagrams may be out of
scope here.

Finally, P01 and P02 mentioned layout considerations: P01’s
schematic capture fow takes into account rough layout foorplan-
ning when placing symbols, while P02 felt disconnected from the
physical (footprint) view though also believed that more stuf on
the block diagram could be cluttering.

7.4 Refresh and Speculative Efects
Participants had varied opinions on the manual (user-initiated)
recompilation and block diagram update. At one extreme, P01 pre-
ferred continuous compilation to minimize the feedback loop be-
tween HDL edits and visual presentation. On the other hand, P03 felt
that the current user-initiated scheme makes sense, crucially pre-
serving diagram stability as text is being edited. P04 was in-between,
feeling that automatic updates could save a few keystrokes, but
the system should be smart about detecting when the user is at a
stopping point.

As for speculative efects from block diagram insert or connect
operations, participants generally did not notice the details and felt
things seemed synchronized.

8 DISCUSSION
While we have built a functional but prototype IDE and obtained
user feedback, there are important limitations of the user study to
keep in mind when interpreting results. Yet, even if qualifed, this
data can help focus practically useful directions for future work.

8.1 Study Limitations
While we believe we accomplished our goal of sampling for range
given the diverse observed fows and feedback, the small participant
pool does mean the feedback is not exhaustive. However, we do

1047

UIST ’21, October 10–14, 2021, Virtual Event, USA Lin and Ramesh, et al.

believe it is appropriate in terms of early usability testing for a
novel concept and for informing future work.

Additionally, because the entire study was one session per partic-
ipant, learning efects may still be in play. If participants had used
this system for longer, they may have tried and adopted diferent
workfows. This may be especially important for a tool intended to
support long-term projects and include professional users.

8.2 Overall Takeaways
Overall, we believe a major generalizable takeaway is that graph-
ical editing operations do not need to cover all conceivable code
edits – here, participants were able to efectively blend use of GUI
tooling with textual HDL edits for operations not supported by
the GUI. Consistent with prior work [16], the simplest tools of
visualization and library browsing were the ones that were most
consistently used. Beyond PCB design, tools working on similar
concepts may fnd it valuable to focus on supporting a few com-
mon workfows well before being bogged down by how to support
trickier operations in a GUI.

While not all participants preferred the code generation features,
others aspects of the IDE were still useful in helping manually write
HDL. Perhaps unsurprisingly for a prototype tool, the interactions
were not perfect and this may have afected some participants’
decisions type out HDL instead, but it also does appear to be par-
tially rooted in personal preference. We believe that tools working
with HDLs will need to acknowledge and support diverse and free-
form fows, and these user observations and feedback can provide
starting points for further iteration.

Furthermore, imperfect techniques that improve responsiveness,
like speculative efects and caching, can provide the smooth in-
terface expected of direct manipulation system even with slower
compilers. Despite both techniques having unsupported edge cases,
which may be fundamentally difcult to resolve especially with a
dynamic language like Python, they seemed to have worked well
enough in practice for our (albeit somewhat limited) user study.
More generally, it may be useful for future work to explore this time-
accuracy trade-of in more detail, as well as investigate compromise
strategies that provide more accurate results as they become avail-
able.

8.3 Flow for Edit Actions
While our intent with caret editing was to disambiguate degrees of
freedom for edit actions in a mainstream language like Python, in
practice participants raised issues with our implementation. How-
ever, we believe that the feedback of needing a consistent fow,
instead of jumping between HDL and GUI, provides a useful guid-
ing principle for future output-directed manipulation tools in these
mainstream but messy languages.

While participants did not use the edit locations in the context
menu, avenues for future work may include how those choices can
be unobtrusively made part of the default workfow. Perhaps users
could be ofered the option alongside other parameters like name,
and provided with a reasonable default option. Smarter defaults
might be inferred according to style rules, perhaps selected by the
user. Furthermore, a live preview of the code to be inserted may
help users understand the choice. Edits may also be tracked (or

bufered) by the IDE to support smooth sequences of GUI actions,
while powerful refactoring tools can help users clean up their code
afterward.

8.4 Layout
Although participants found our automatically generated block
diagram visualization sufcient, there is still much room for im-
provement. The user feedback provides ideas for specifc features,
though the ultimate goal would be automated schematic layout
from a netlist. While our implementation uses a stock layout al-
gorithm for general hierarchical blocks, custom algorithms that
understand electronics conventions may do much better.

8.5 Performant Recompilation
Finally, from a more engineering standpoint, speculative efects
may require code that is similar to what would be in the compiler,
but just diferent enough to require re-implementation. While the
architecturally elegant solution would be to fully recompile after a
GUI-inserted code edit, this may not always be performant enough
to sustain a sequence of interactive GUI edits. While speculative
efects will likely always remain a solution in general, it is worth ex-
ploring how far we can get with optimizations such as incremental
re-compilation to avoid the complexity of speculative efects.

9 CONCLUSION
While recent HDL approaches for PCB design have been promis-
ing in terms of design power, the textual code interface is a de-
parture from currently mainstream schematics. In this work, we
implemented and obtained exploratory user feedback for an IDE
approach that aims to bridge the familiar schematics with the power
and expressiveness of an HDL. Within the larger picture of program-
ming tools, and in contrast to similar work on GUI builders and
structure editors, our approach emphasizes fexibility in working
with and moving between code and block diagram views.

We hope that fexible tooling like this can be be a best-of-both-
worlds approach to building hardware with HDLs. We believe that
improved tooling can play a crucial part in encouraging adoption of
HDLs, and ultimately in making easy and efcient hardware design
accessible to everyone.

ACKNOWLEDGMENTS
We would like to thank our user study participants for their time and
feedback, as well as the anonymous reviews for their suggestions.

This work was supported in part by DARPA contract FA8750-20-
C-0156 (SDCPS); the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA; and the Paul and Judy Gray Alumni Presi-
dential Chair in Engineering Excellence. The views and opinions of
authors expressed herein do not necessarily state or refect those
of the United States Government or any agency thereof.

REFERENCES
[1] Altium. 2020. Altium Designer. https://www.altium.com/altium-designer/
[2] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-Action-

Circuits: Leveraging Generative Design to Enable Novices to Design and Build
Circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface

1048

https://www.altium.com/altium-designer/

Weaving Schematics and Code: Interactive Visual Editing for Hardware Description Languages UIST ’21, October 10–14, 2021, Virtual Event, USA

Software and Technology (Québec City, QC, Canada) (UIST ’17). ACM, New
York, NY, USA, 331–342. https://doi.org/10.1145/3126594.3126637

[3] Alan Blackwell and Thomas Green. 2003. Notational systems–the cognitive
dimensions of notations framework. HCI models, theories, and frameworks: toward
an interdisciplinary science. Morgan Kaufmann (2003).

[4] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic, David
Mellis, and Björn Hartmann. 2016. The Toastboard: Ubiquitous Instrumentation
and Automated Checking of Breadboarded Circuits. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 677–686.
https://doi.org/10.1145/2984511.2984566

[5] EDASolver. 2020. EDASolver - Automatic component selection and pin matching.
https://edasolver.com

[6] Jonathan Edwards. 2004. Example Centric Programming. SIGPLAN Not. 39, 12
(Dec. 2004), 84–91. https://doi.org/10.1145/1052883.1052894

[7] Eclipse Foundation. 2020. Eclipse Layout Kernel. https://www.eclipse.org/elk/
[8] Gumstix. 2018. Geppetto. www.gumstix.com/geppetto/
[9] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-

Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 281–292.
https://doi.org/10.1145/3332165.3347925

[10] National Instruments. 2020. LabVIEW. http://www.ni.com/labview
[11] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,

C. Markley, J. Lawson, and J. Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and transformations.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
209–216. https://doi.org/10.1109/ICCAD.2017.8203780

[12] Rushil Khurana and Steve Hodges. 2020. Beyond the Prototype: Understanding
the Challenge of Scaling Hardware Device Production. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/3313831.3376761

[13] KiCad. 2020. KiCad EDA. http://kicad-pcb.org/
[14] Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk Lee, and Andrea Bianchi.

2019. VirtualComponent: A Mixed-Reality Tool for Designing and Tuning Bread-
boarded Circuits. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300407

[15] André Knörig, Reto Wettach, and Jonathan Cohen. 2009. Fritzing: A Tool for
Advancing Electronic Prototyping for Designers. In Proceedings of the 3rd Inter-
national Conference on Tangible and Embedded Interaction (Cambridge, United
Kingdom) (TEI ’09). Association for Computing Machinery, New York, NY, USA,
351–358. https://doi.org/10.1145/1517664.1517735

[16] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The Road to Live
Programming: Insights from the Practice. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 1090–1101. https://doi.org/10.
1145/3180155.3180200

[17] Richard Lin, Rohit Ramesh, Connie Chi, Nikhil Jain, Ryan Nuqui, Prabal Dutta, and
Björn Hartmann. 2020. Polymorphic Blocks: Unifying High-Level Specifcation
and Low-Level Control for Circuit Board Design. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 529–540.
https://doi.org/10.1145/3379337.3415860

[18] Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli,
Prabal Dutta, Elad Alon, and Björn Hartmann. 2019. Beyond Schematic Capture:
Meaningful Abstractions for Better Electronics Design Tools. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, Article
283, 13 pages. https://doi.org/10.1145/3290605.3300513

[19] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo Sun, Jun Gong, Teddy
Seyed, Xing-Dong Yang, and Bing-Yu Chen. 2019. AutoFritz: Autocomplete for
Prototyping Virtual Breadboard Circuits. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
Association for Computing Machinery, New York, NY, USA, Article 403, 13 pages.
https://doi.org/10.1145/3290605.3300633

[20] Andrew J. Matthews. 1977. A Human Engineered PCB Design System. In Proceed-
ings of the 14th Design Automation Conference (DAC ’77). IEEE Press, 182–186.

[21] Sean McDirmid. 2013. Usable Live Programming. In Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms, and Refections on
Programming & Software (Indianapolis, Indiana, USA) (Onward! 2013). Association
for Computing Machinery, New York, NY, USA, 53–62. https://doi.org/10.1145/
2509578.2509585

[22] Sean McDirmid. 2016. The Future of Programming will be Live. In Curry On!
(Rome) (Curry On! 2016). https://www.youtube.com/watch?v=bnqkglrSqrg

[23] Mentor. 2020. Xpedition Enterprise. https://www.mentor.com/pcb/xpedition/

[24] Mentor. 2020. Xpedition Valydate Schematic Analysis. https://www.mentor.com/
pcb/xpedition/schematic-analysis/

[25] Devon J. Merrill, Jorge Garza, and Steven Swanson. 2019. Echidna: Mixed-Domain
Computational Implementation via Decision Trees. In Proceedings of the ACM
Symposium on Computational Fabrication (Pittsburgh, Pennsylvania) (SCF ’19).
Association for Computing Machinery, New York, NY, USA, Article 5, 12 pages.
https://doi.org/10.1145/3328939.3329004

[26] Devon J. Merrill and Steven Swanson. 2019. Reducing Instructor Workload in
an Introductory Robotics Course via Computational Design. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 592–598. https://doi.org/10.1145/3287324.3287506

[27] Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli,
Björn Hartmann, and Prabal Dutta. 2017. Turning Coders into Makers: The
Promise of Embedded Design Generation. In Proceedings of the 1st Annual ACM
Symposium on Computational Fabrication (Cambridge, Massachusetts) (SCF ’17).
ACM, New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3083157.
3083159

[28] Patrick Rein, Stefan Lehmann, Toni Mattis, and Robert Hirschfeld. 2016. How
Live Are Live Programming Systems? Benchmarking the Response Times of Live
Programming Environments. In Proceedings of the Programming Experience 2016
(PX/16) Workshop (Rome, Italy) (PX/16). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/2984380.2984381

[29] Eric Schkufza, Michael Wei, and Christopher J. Rossbach. 2019. Just-In-Time
Compilation for Verilog: A New Technique for Improving the FPGA Program-
ming Experience. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 271–286. https://doi.org/10.1145/3297858.3304010

[30] Haven Skinner, Rafael Trapani Possignolo, Sheng-Hong Wang, and Jose Renau.
2020. LiveSim: A Fast Hot Reload Simulator for HDLs. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 126–135.
https://doi.org/10.1109/ISPASS48437.2020.00028

[31] Sparkfun. 2020. À La Carte. https://alc.sparkfun.com/
[32] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. 2017. Scanalog: Interac-

tive Design and Debugging of Analog Circuits with Programmable Hardware. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 321–330. https://doi.org/10.1145/3126594.3126618

[33] Evan Strasnick, Sean Follmer, and Maneesh Agrawala. 2019. Pinpoint: A PCB
Debugging Pipeline Using Interruptible Routing and Instrumentation. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1–11. https://doi.org/10.1145/3290605.3300278

[34] Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.
In 2013 1st International Workshop on Live Programming (LIVE).

[35] Sheng-Hong Wang, Rafael Trapani Possignolo, Haven Blake Skinner, and Jose
Renau. 2020. LiveHD: A Productive Live Hardware Development Flow. IEEE
Micro 40, 4 (2020), 67–75. https://doi.org/10.1109/MM.2020.2996508

[36] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei
Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y. Chen. 2017. CurrentViz: Sensing and
Visualizing Electric Current Flows of Breadboarded Circuits. In Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology (Québec
City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York,
NY, USA, 343–349. https://doi.org/10.1145/3126594.3126646

[37] Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen,
Pin-Sung Ku, Ming-Wei Hsu, Yu-Chih Lin, and Mike Y. Chen. 2017. CircuitSense:
Automatic Sensing of Physical Circuits and Generation of Virtual Circuits to
Support Software Tools.. In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (Québec City, QC, Canada) (UIST ’17).
Association for Computing Machinery, New York, NY, USA, 311–319. https:
//doi.org/10.1145/3126594.3126634

[38] Apostolos V. Zarras, Georgios Mamalis, Aggelos Papamichail, Panagiotis Kollias,
and Panos Vassiliadis. 2018. And the Tool Created a GUI That Was Impure and
Without Form: Anti-Patterns in Automatically Generated GUIs. In Proceedings of
the 23rd European Conference on Pattern Languages of Programs (Irsee, Germany)
(EuroPLoP ’18). Association for Computing Machinery, New York, NY, USA,
Article 24, 8 pages. https://doi.org/10.1145/3282308.3282333

[39] Junyi Zhu, Yunyi Zhu, Jiaming Cui, Leon Cheng, Jackson Snowden, Mark Choun-
lakone, Michael Wessely, and Stefanie Mueller. 2020. MorphSensor: A 3D Elec-
tronic Design Tool for Reforming Sensor Modules. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 541–553. https://doi.org/10.1145/3379337.3415898

1049

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/2984511.2984566
https://edasolver.com
https://doi.org/10.1145/1052883.1052894
https://www.eclipse.org/elk/
www.gumstix.com/geppetto/
https://doi.org/10.1145/3332165.3347925
http://www.ni.com/labview
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1145/3313831.3376761
http://kicad-pcb.org/
https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1145/3379337.3415860
https://doi.org/10.1145/3290605.3300513
https://doi.org/10.1145/3290605.3300633
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://www.youtube.com/watch?v=bnqkglrSqrg
https://www.mentor.com/pcb/xpedition/
https://www.mentor.com/pcb/xpedition/schematic-analysis/
https://www.mentor.com/pcb/xpedition/schematic-analysis/
https://doi.org/10.1145/3328939.3329004
https://doi.org/10.1145/3287324.3287506
https://doi.org/10.1145/3083157.3083159
https://doi.org/10.1145/3083157.3083159
https://doi.org/10.1145/2984380.2984381
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1109/ISPASS48437.2020.00028
https://alc.sparkfun.com/
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1145/3290605.3300278
https://doi.org/10.1109/MM.2020.2996508
https://doi.org/10.1145/3126594.3126646
https://doi.org/10.1145/3126594.3126634
https://doi.org/10.1145/3126594.3126634
https://doi.org/10.1145/3282308.3282333
https://doi.org/10.1145/3379337.3415898

	Abstract
	1 Introduction
	2 Related Work
	2.1 Electronics Design
	2.2 Hardware Description Languages
	2.3 Live Programming

	3 Background
	3.1 Top-Level Design
	3.2 Defining Library Blocks

	4 System Description
	4.1 Block Diagram Edit Actions
	4.2 Design-wide Edits
	4.3 Inspection
	4.4 Library Creation and Edits

	5 System Implementation
	5.1 Code Analysis and Edits
	5.2 Block Diagram Visualization

	6 User Study: Methodology
	6.1 Participants
	6.2 Structure

	7 User Study: Results
	7.1 Individual Flows
	7.2 Edit Actions
	7.3 Block Diagram Visualization
	7.4 Refresh and Speculative Effects

	8 Discussion
	8.1 Study Limitations
	8.2 Overall Takeaways
	8.3 Flow for Edit Actions
	8.4 Layout
	8.5 Performant Recompilation

	9 Conclusion
	Acknowledgments
	References

