
Polymorphic Blocks: Unifying High-level Specification and
Low-level Control for Circuit Board Design

Richard Lin, Rohit Ramesh, Connie Chi, Nikhil Jain, Ryan Nuqui, Prabal Dutta, Björn Hartmann
University of California, Berkeley

{richard.lin, rkr, conniejchi, nikhil.jain, ryannuqui, prabal, bjoern}@berkeley.edu

User HDL

Intera
cti

ve

Refi
nement

Netlist PCB
U1 magicmcu
R1 res0603
D1 led0603
net R1.1, D1.2
...

So
lve v=3.3V

i=20mA

Chip
Resistor

Export

U1

R
1

D
1

Elaborate

Layout

class Blinky:
 mcu = Block(MagicMcu)
 led = Block(Led)
 connect(mcu.io0,
 led.io)
 connect(mcu.gnd,
 led.gnd)

Subcircuit Library
class MagicMcu:
class Led:
class Resistor:
class ChipResistor
 extends Resistor:
 footprint(res0603)
 ...

This WorkIdea

Write
HDL

Draw

System Architecture

Datasheets

Mainstream Circuit Design Flow

Draw
Schematic

Export

Manual Process

Automated Process

ChipCorp
Magic
MCU

Schematic

MCU LEDsignal

USB Power

Mainstream Layout Flow

U1

MagicMcu

D1

R1 1k

Model

Draw
Subcircuits

MagicMcu

Part Libraries

Write
HDL

(community supplied)

Draw

Reference
throughout flow

Reference
throughout flow

Figure 1. In the Polymorphic Blocks approach (purple box), circuit designers start by writing their system architecture in a hardware description
language (HDL), which is then elaborated into a hierarchy block graph model and expanded using community libraries. That graph is then refined
through interactive choices in a GUI and automatically propagated parameters are checked to ensure system correctness. The result can be exported to
a netlist file, which can then be imported into a board design tool for layout. In contrast, mainstream tools (gray box) generally do not support system
architecture level design, so such diagrams are often done with pen and paper. Furthermore, direct re-use of sub-circuit files is difficult and uncommon
outside limited contexts, and schematics are typically manually entered from the bottom-up using reference circuit diagrams from datasheets.

ABSTRACT
Mainstream board-level circuit design tools work at the low-
est level of design — schematics and individual components.
While novel tools experiment with higher levels of design,
abstraction often comes at the expense of the fine-grained con-
trol afforded by low-level tools. In this work, we propose a
hardware description language (HDL) approach that supports
users at multiple levels of abstraction from broad system ar-
chitecture to subcircuits and component selection. We extend
the familiar hierarchical block diagram with polymorphism
to include abstract-typed blocks (e.g., generic resistor super-
type) and electronics modeling (i.e., currents and voltages).
Such an approach brings the advantages of reusability and
encapsulation from object-oriented programming, while ad-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’20, October 20–23, 2020, Virtual Event, USA
© 2020 Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-7514-6/20/10.
http://dx.doi.org/10.1145/3379337.3415860

dressing the unique needs of electronics designers such as
physical correctness verification. We discuss the system de-
sign, including fundamental abstractions, the block diagram
construction HDL, and user interfaces to inspect and fine-tune
the design; demonstrate example designs built with our sys-
tem; and present feedback from intermediate-level engineers
who have worked with our system.

Author Keywords
printed circuit board (PCB) design; circuit design; hardware
description language (HDL).

CCS Concepts
•Hardware → PCB design and layout; •Software and its
engineering → Domain specific languages;

INTRODUCTION
Circuit design, especially at the printed circuit board (PCB)
level, is an integral part of most electronic device design.
A typical workflow starts with a high level system diagram
capturing all major functional blocks in a device (such as
processing, power, or IO) without necessarily defining their
implementation [19]. From there, designers iteratively refine

blocks to get the low-level circuit schematic necessary to con-
tinue to board layout. This step tends to require a significant
body of knowledge spanning many sub-domains such as ana-
log circuits, power systems, and digital logic.

Modern electronic design automation (EDA) tools largely
focus on schematic capture and layout – the data entry after
the actual system architecture and circuit design problem is
solved. They come into play too late in the design process to
provide more fundamental design assistance.

In our work, we strive to build tools that can support board-
level design from the first high-level system diagram sketch,
all the way to a layout-ready circuit. In particular, we note that
hierarchy block diagrams naturally span multiple abstraction
levels while being familiar to users due to their support in
mainstream tools. We hypothesize that extending this basic
model with the software concepts of polymorphism and gener-
ators can raise the level of design and increase tool automation
without sacrificing low-level control.

Much like interfaces, classes, and inheritance in object-
oriented programming, constructing electronics from blocks
allows a division of labor: system designers can focus on
high-level architecture while experienced engineers can build
reusable libraries of blocks. Writing these blocks as generators
– executable code to translate high-level specifications into an
implementation, e.g. a LED-resistor subcircuit that calculates
resistance from input voltage – separates interface from imple-
mentation and enables relative novices to leverage the knowl-
edge of experts. Furthermore, block-level polymorphism –
refining blocks with compatible subtypes, e.g., substituting a
specific buck converter in place of an abstract voltage converter
– balances high-level design with fine-grained control.

We foresee an open-source community of engineers and de-
signers, similar to that in the software world, where open
collaboration and communication lowers the threshold of en-
try into electronics design even further, while preserving a
high ceiling of complex designs, and offering wide walls of
rapid exploration of design alternatives [27].

We implement this new model of circuit design in Polymorphic
Blocks, an end-to-end system for authoring block diagrams.
As summarized in Figure 1, users write designs in a hard-
ware description language (HDL) with the aid of subcircuit
generator libraries, then interactively explore refinements to
obtain a layout-ready circuit. An underlying electronics model
checks designs using constraints such as operating voltages
and currents. Supporting tooling in the form of a graphical
visualization and refinement interface enables users to view
their designs as block diagrams and specify refinements. This
combination of HDL, electronics model, and user interface
distinguishes our work from related work on purely textual
PCB HDL efforts [3, 25] and high-level design tools that don’t
also allow lower-level control [2].

Overall, we contribute a novel generator HDL for board-level
circuit design, supporting tooling, and an accompanying eval-
uation. In the rest of this paper, we expand on our hierarchy
block diagram model, its expression in our HDL, the visualiza-
tion and refinement interface, and important implementation

choices. We then demonstrate our system’s capabilities by
building and testing two example embedded devices, and re-
port on a remote study with three electrical engineers who
designed PCBs of their own choice with our system.

RELATED WORK
Our work relates to recent HCI research in supporting the
broader electronics design lifecycle, and to specific projects
that reimagine PCB and chip design tools.

Electronics and HCI
The HCI research community has recently seen a growth of
interest in tools for electronics that cover all phases of project
conceptualization, design, debugging, fabrication, and mass
production. A number of projects have worked on augmented
breadboards that help with physical circuit construction [7, 34,
33]. Other tools focus on introducing software programmable
components, e.g. for designing analog circuits [29] or using
augmented reality [16]. Other projects support constructing
circuits through step-by-step tutorials [32] or debugging fabri-
cated PCBs [30]. While many tools focus on enabling novices,
some projects also consider how to enable scaling from elec-
tronic prototypes to mass production [14]. Our research fits
into this larger landscape but focuses specifically on the task
of translating ideas from system architecture diagrams into
printed circuit boards.

PCB Design Tools
Our recent study on PCB design practices [19] revealed that
while the interesting hardware design tends to happen across
levels of abstraction, mainstream PCB suites such as KiCad
[15] and higher-end commercial suites like Altium [1] and
Xpedition [23] operate mainly at the level of individual com-
ponents. Much of the development of these tools seems to
have focused on board layout, with features like interactive
and sketch auto-routing, and signal integrity and power analy-
sis. Circuit verification is typically limited to Electrical Rules
Check (ERC) in the form of pin-type compatibility checks,
but the coarse types (e.g., passive, input, output, power) limit
usefulness. Although the circuit entry side has seen advances
like hierarchical support, these are still first and foremost
schematic drawing tools, not circuit design tools.

While part libraries [18] are used in mainstream tools, these are
less capable than subcircuit generator libraries. Organizations
may also re-use internal schematic files [22], but re-use of
community schematic files is difficult and uncommon [19].

Current schematic verification revolves primarily around peer
review [21], but recent commercial tools like Valydate [24]
automate some schematic checks with a static model of parts.
While aspects of their electrical model appear similar to ours,
these are still verification, not design, tools.

Some recent academic work on PCB design tools has focused
on novices. Fritzing [17] provides a breadboard view of a
circuit as a conceptual bridge to the schematic view, but is
still fundamentally a schematic drawing tool. AutoFritz [20]
extends this with circuit autocomplete suggestions, but does
not change the fundamental design abstraction. While its
connection-oriented data-driven approach allows it to leverage

a large corpus of existing designs, the resulting correctness
guarantees are weaker than a model-based approach.

Recent work has also examined tools operating at a higher
level of design. These include Trigger-Action-Circuits [2],
where designs are specified at a behavioral level; Geppetto
[10], where designs are specified at a block-diagram level; and
circuito.io [5] and EDASolver [8], where designs are a collec-
tion of parts attached to a central microcontroller. However,
lack of support for user-defined parts limits designs to a single
level of abstraction, fixed by the tool. Furthermore, while
these systems model electronics to some degree to synthesize
working circuits, those details have not been published.

Our prior work on EDG [26] focused on the underlying blocks
and links problem structure, electronics model, and synthesis
algorithms, but fell short of a complete design system. This
work extends EDG’s model with hierarchy blocks, and com-
bines it with an user-facing HDL and tooling to produce an
end-to-end tool with an accompanying user study and analysis.

Chip Design and Hardware Description Languages
HDLs like Verilog and VHDL are common in the chip design
space for defining digital logic. Generally, digital logic HDLs
combine a structural component, which specifies hardware in
terms of modules and connections, and a behavioral compo-
nent, which specifies arithmetic and logic flows. PCB HDLs
like PHDL [25] are structural, as it is unclear what behavioral
abstractions can suit the wide space of PCB electronics. How-
ever, an HDL interface to the same schematic abstractions
provides little more design automation than a graphical editor.

Verilog-AMS [12] and VHDL-AMS [4] provide analog and
mixed-signal extensions on top of their base digital languages.
Though they allow for modeling and simulation of circuit
behavior, they are neither design nor synthesis languages.

Generators are an evolution on the basic HDL, encoding the
rules to generate a family of similar modules instead of describ-
ing a single instance. Chip-level generators include Chisel
[13] for digital hardware, and OASYS [11] and BAG [6] for
analog hardware. JITPCB [3] brings generators to the PCB
space by embedding circuit construction primitives in a gen-
eral purpose programming language. Our system also uses
subcircuit generators as a key component, but augments it with
electronics modeling to enable design support features like
parts selection and correctness checks.

SYSTEM DESIGN
In the Polymorphic Blocks workflow, as summarized in Fig-
ure 1, users start with an idea and a high-level system architec-
ture in mind. They then translate that architecture into code
written in our HDL, which is fundamentally organized around
hierarchy block diagrams extended with generators, a type sys-
tem, and an electronics model. Block level polymorphism and
a class hierarchy allows the use of abstract blocks which can
be refined later – for example, an abstract step-down converter
that can be refined into buck converter subcircuits based on
particular controller chips. Our visualization and refinement
interface allows the user to inspect their design and review

MagicMcu
mcu led

IndicatorLed

...
digital[1]
digital[0]

gnd gnd

sig

MagicMcu
mcu led

IndicatorLed

...

src
sinks

digital[1]
digital[0]

gnd gnd

sigsrc
sinks

Figure 2. An example of a simple blinky LED circuit in our user-facing
model (left) and internal model (right). The simplified user-facing model
is presented at a single level of hierarchy, and contains just blocks (rect-
angles) with ports (circles) that can be connected. This largely follows
representations in system architecture diagrams. The more detailed in-
ternal model spans multiple levels of abstraction by including internal
hierarchy, and connections are described through links (diamonds).

Figure 3. A more complex example: the datalogger PCB produced with
our system, further explained in Section 5.2.

these refinement choices. Finally, the user can export a netlist
which can then be used to complete the layout of a PCB.

In the following sections, we will use a running example of a
simple blinking LED circuit, shown in Figure 2, to introduce
our model and the design workflow. However, it is important
to emphasize that the system is designed to handle and produce
more complex designs such as the data logger in Figure 3.

Block Diagram Model
Figure 2 shows our model’s basic structure, extending the
basic block diagram and consisting of blocks, ports, and links.

Blocks, shown as rectangles in figures, are elements of the
circuit and the main construct users will interact with. They
represent structures from single components like resistors and
chips, to subcircuits like buck converters, to abstract functional
blocks like voltage converters. Internally, they can have a
set of parameters that define operating conditions along with
constraints on those parameters.

Ports, shown as small circles in figures, represent the interface
of blocks like power pins, GPIO pins, and signal busses. They
can also contain parameters that describe properties of the
interface, like maximum voltage ratings.

Links, shown as diamonds in figures, represent connections
between ports, defining how ports connect and how param-
eters can propagate. They are structured much like blocks,
containing ports, parameters, and constraints, however, block
ports can only connect to link ports (and vice versa). As shown
in Figure 2, links are simplified in the user-facing model as a
connection between ports, and inferred into explicit objects in
the internal model based on the types of connected ports.

StepDown
out

gnd
in

LinearReg SyncBuck Buck

Superclass

Subclasses

Figure 4. Class hierarchy example with step-down voltage converters.
The abstract step-down converter has three subclasses, a linear regula-
tor, a synchronous buck converter, and a buck converter. All these fulfill
the step-down converter interface and functionality, and can be used in
its place. This mechanism provides support for abstraction in our model.

This model improves on mainstream schematics by enabling
electronics modeling and additional automated checks. How-
ever, more advanced automation and design support requires
two notions of hierarchy: a structural hierarchy for encapsula-
tion and a class hierarchy for abstraction.

Structural Hierarchy
Modern schematic editors already support a form of structural
hierarchy via hierarchy blocks, which can be placed on the
schematic like ordinary components but represent a sub-“sheet”
or sub-circuit instead of a single component. This serves two
purposes: as an organizational tool to make large schematics
comprehensible, and as a re-use tool for replicating the same
circuit block. We support the same concept, as shown in
Figure 2 right where the IndicatorLed nests internal LED
and resistor sub-blocks. Generators, discussed later, further
increase the encapsulation power of these hierarchy blocks.

Hierarchy support requires cross-hierarchy additions to the
block model. In the simplest case, a sub-block port can be
directly exported to a containing block port, as shown with
the IndicatorLed’s ports in Figure 2 right. In the more
complex case, where multiple sub-block ports connect to a
containing block port, a bridge is necessary. For example, a
block might have a single power input feeding two sub-blocks,
but a connection of only power inputs is nonsensical. A bridge
would take the external facing port, a power input, and present
a flipped internal version, a power source, to feed the sub-
blocks. Bridges are structured as two-ported blocks, with one
port being directly exported, and the other connecting to the
internal link. We note that this structure preserves parameters
and constraints of the internal blocks, allowing automatic
management of lower-level invariants.

This hierarchy also extends to ports, which can be bundles of
sub-ports, and links, which can be composed from sub-links.
For example, the UART port is comprised of two digital ports
TX and RX, and the UART link contains two digital links.

Class Hierarchy
The main differentiator from mainstream schematic tools is
the notion of a class hierarchy for blocks. While modern
schematic tools require blocks to be specific parts, we would
like designers to be able to, for example, instantiate and con-
nect a “generic” LED at that (ambiguous) level of specificity.
Prior work [19] found that embedded designers tend to start
with high-level and weakly specified versions of designs, using
general modules like power, sensing, and processing.

Our class hierarchy, borrowing inheritance concepts from
object-oriented programming, defines how parts are function-

Power Source
voltage_out = 3.3 V
current_limit = 2 A voltage_limit = 3.0-3.6 V

current_draw = 1 A

voltage ⇐ src.voltage_out = 3.3 V
current ⇐ sum(sinks.current_draw) = 1 A

voltage ⊆ intersection(sinks.voltage_limit) = 3.0-3.6 V
current ≤ src.current_limit = 2 A

src sinks

Power Sink
Power
Link

Assignments

Assertions

Figure 5. An example of parameter propagation and checking in our
model, with a simplified constant-voltage link. Ports are defined with
their physical properties: voltage output and current limits for sources,
and current draw and voltage limits for sinks. These parameters "flow"
through connected ports to links, which create aggregate parameters of
connected ports such as the total current drawn and acceptable voltage
range. Links also define assertions to check correctness properties.

ally similar and can be used in place of one another. Super-
classes provide higher-level interfaces, while a subclass has a
is-a relationship with its superclass but can be more specific
and concrete. For example, in Figure 4, a buck converter is
a type of (and can be used in place of a) generic step down
converter. This allows using blocks that are abstract – generic
and without implementation – and delaying the precise spec-
ification until later. These abstract parts also enable more
generalizable library blocks, by allowing system designers
control over elements nested within the structural hierarchy.

We note that, differently from object-oriented programming,
replacing a block with a subclass is not always safe. For
example, a generic and abstract buck converter would not have
current limits, but a concrete one made of physical components
would. Block constraints enable automated checks to catch
compatibility issues with selected refinements, but designer
expertise is generally helpful in making high-level trade-offs.

Electronics Model and Libraries
We built an electronics layer on top of this basic structure that
models common pin types and part ratings. This consists of
common links and their associated ports, such as a power link
representing a constant-voltage power net, and power source
and sink ports encoding output voltages, input currents, and
their limits. We also define signal types, including digital ports
modeling high and low voltage thresholds and analog ports
modeling input and output impedances. Multi-wire protocols
like SPI, USB, and CAN are modeled as bundles composed
of the above single-wire primitives. As shown in Figure 5,
we structured the model so that parameters on ports define
properties of the device (e.g., voltage limits and current draw
for a power sink), while links define properties of the net as
derived from connected devices (e.g., voltage on a wire).

With this electronics model, we built a library of common
blocks. Primitives include a resistor generator using the E24
series of preferred numbers, and inductor, capacitor, diode,
and transistor generators created from parts tables. These
primitives are defined with untyped passive ports, and are
wrapped in higher-level library blocks (e.g., pull-up resistors
for digital lines and decoupling capacitors for power lines)
that translate port parameters to component parameters (e.g.,
pin voltage to rated voltage on a decoupling capacitor).

Top-level System Expertise
Required

Design
Abstraction

System
Design

Library
Building

Model
Building

Novices

Proficient

Experts

H
ig

he
r

Le
ve

l

W
id

er
 A

ud
ie

nc
e

MagicMcu IndicatorLed

...

Figure 6. The scalable levels of design is intended to be accessible and
useful to novices who can compose system-level designs using libraries,
while the relatively fewer but more experienced electronics experts build
those libraries of blocks and underlying port and link models.

1 class Blinky(Block):

2 def contents(self):

3 super().contents()

4 self.mcu = self.Block(Nucleo_F303k8())

5 self.led = self.Block(IndicatorLed())

6 self.connect(self.mcu.gnd, self.led.gnd)

7 self.connect(self.mcu.digital[0], self.led.io)

Figure 7. Example code defining the Blinky circuit Block. Within the
block’s contents, lines 4 and 5 instantiate the sub-blocks for the Nucleo
microcontroller board and a discrete LED. Lines 6 and 7 then make the
signal and ground connections.

These library blocks provide significant design automation
and integration. For example, a low-pass resistor-capacitor
(RC) filter block would calculate the resistance and capaci-
tance based on a cutoff frequency and impedance specification,
while a resistive divider block would find a pair of resistor
values in the E24 series meeting the target ratio and output
impedance. The library also includes application circuits of
more specialized devices like microcontrollers, displays, and
protocol converters, all of which can be directly dropped into
the system architecture level HDL.

Our overall vision of the layers of our system and how different
users interact with it is summarized in Figure 6.

Hardware Description Language
Taking inspiration from recent work on chip generators [13],
we provide a generator HDL interface for authoring blocks.
This programmatic construction of blocks captures the design
methodology to construct a family of subcircuits, and sepa-
rates interface from implementation by translating high-level
inputs into internal parameters. For example, the LED-resistor
generator calculates the resistor value given the input voltage.

1 with self.implicit_connect(

2 ImplicitConnect(self.mcu.gnd, [Common]),

3) as imp:

4 (self.led,), _ = self.chain(self.mcu.digital[0],

5 imp.Block(IndicatorLed()))

Figure 8. Example of an alternative structure for instantiating the Blinky
circuit using implicit connect and chain. Line 2 defines the ports (micro-
controller ground) that hierarchy blocks in the code block should con-
nect to, and the tags to match. The IndicatorLed instantiated on line
5 defines a ground port tagged with Common, so it is automatically to the
microcontroller’s ground. The chain statement on line 4 then connects
the microcontroller’s digital pin to the LED’s Input-tagged signal pin.

1 class IndicatorLed(GeneratorBlock):

2 def __init__(self) -> None:

3 super().__init__()

4 self.io = self.Port(DigitalSink())

5 self.gnd = self.Port(Ground())

6

7 def generate(self):

8 super().generate()

9 voltage = self.get(self.io.output_high_voltage)

10 self.led = self.Block(Led())

11 self.res = self.Block(Resistor(

12 resistance=(voltage / 0.010, # max current, 10 mAmp

13 voltage / 0.001))) # min current, 1 mAmp

Figure 9. Simplified code for the indicator LED subcircuit. Lines 4 and
5 define the external ports by their types, while lines 10-13 define the
internal blocks. Notably, as on line 9, generators can access solved values
like digital logic thresholds, and use those to automatically size internal
blocks like the resistor. We omit the internal connections for brevity.

As shown by the Blinky code example in Figure 7 (which
describes the diagram in Figure 2 left), the HDL is a Python-
embedded domain specific language, making use of its object-
oriented features. Classes represent a re-usable block template,
while objects represent individual instances. Generators defin-
ing a block’s contents are written as a member function which
can instantiate and connect sub-blocks, ports, and parameters.

We also provide syntactic sugar constructs for frequent use
cases as shown in Figure 8. The first, implicit connect, is moti-
vated by the large number of common connections like power
and ground. This is structured as a code block, in which inter-
nal sub-blocks will have connections made by tag matching.
The second, chain, is motivated by the frequent appearance
of connections through blocks: in one port and out another.
Syntactically, this allows block declaration and connection to
happen on one line, and also makes linear connection topolo-
gies more obvious in HDL. These constructs can be mixed
with each other, as also shown in Figure 8, where the implicit
connect provides the ground and the chain provides the signal.

Subcircuits and generators are defined in the same way, as
shown in Figure 9. The same also mostly holds true for links,
given their block-like structure.

Visualization and Refinement Interface
As prior work [19] has highlighted the need to balance control
and transparency with automation, we also provide a visu-
alization and refinement GUI. This user interface, shown in
Figure 10, visualizes the HDL with an automatically laid out
block diagram and provides insight into the system’s reasoning
though inspection of solved values.

Furthermore, users can select block subclass refinements in
the interface, allowing the HDL to remain high-level while
specifics can be dealt with interactively. The resulting subcir-
cuit is then automatically generated, and model checks catch
mistakes. For example, a user could refine an abstract resistor
into a concrete surface-mount chip resistor, and its modeled
power rating allow automated compatibility checks.

Board Generation
As subcircuits are fully defined at lowest level of the hierarchy
block diagram, the overall design is equivalent to a schematic.

Figure 10. Visualization and refinement GUI with the Blinky example from Figure 2 open. An automatically laid out block diagram is on the left side,
while tree view of the design is immediately to the right. In the design tree, abstract blocks (needing refinement) would be shown in yellow, refined
blocks in green, and error blocks in red. The top of the vertically split pane shows the available refinements for the currently selected block, and users
can apply block-specific or type-wide refinements through a context menu. The bottom pane shows all the chosen refinements. The rightmost pane
displays details of the selected block, including parameters and connected ports.

Our system can export this as a netlist file describing compo-
nents and their connectivity, which can then be imported into
KiCad’s [15] board layout tool. Otherwise, we currently do
not address board layout.

As the overall hardware design flow involves a back-and-forth
between schematic and layout, we enable netlist updates to a
work-in-progress layout by generating deterministic compo-
nent names using HDL variable names. However, this does
require those names to be stable, so additional techniques will
be needed to support user HDL refactoring.

SYSTEM IMPLEMENTATION
The user-facing HDL is implemented as a library of base
classes in Python, with mypy static type annotations allowing
the user HDL to be type checked. The HDL compiler, netlister,
and visualization interface were also written in Python with
the TkInter GUI toolkit. The entire project is open-source at
https://github.com/BerkeleyHCI/PolymorphicBlocks.

The user HDL code invokes hardware construction methods
(like Block and Port) which builds up the hierarchy block
model as a tree data structure.

Compiler Structure
The hardware compiler takes the “high-level” model, as in
Figure 2 left, and incrementally “lowers” the model by adding
detail and expanding sub-elements until getting to the low-
est form, as in Figure 2 right. This is structured as a tree
walk, from blocks to its internal ports, sub-blocks, and links,
recursively. Each visited block is transformed as follows:

Refinement: if there is a refinement selected for the type or
particular block, the block is replaced with the refinement.

Generation: if the block is a generator, the generator is pro-
vided with the concrete values of any accessible parameters,
then invoked to define the block’s internal elements.

Generators run once and not in any specific order, so all refer-
enced parameters must have at least worst-case bounds, and
the generator must be written to produce a working imple-
mentation for that entire range. Similarly, generators must
specify pre-execution worst-case bounds for parameter values.
For example, voltage converter generators define a worst-case
current draw before a tighter one is available post-generation.
This is an implementation limitation, and future work could
explore better approaches like inferring an order from the
constraint graph and allowing interactive updates.

Constraint graph update: constraints between parameters
are parsed into a directed graph. Constraints of the form "a
== something" are recorded as assignments to a, and con-
straints of the form "a subset-of something" are recorded
as bounds to a. Parameter values are evaluated by walking
the constraint graph, and only when needed (lazily). A value
may have any number of subset bounds, but only one assigned
value (as long as it satisfies all subset bounds). Constraints not
matching either form do not affect evaluation, and are instead
recorded as assertions that are checked at the end.

Netlisting is handled as a compiler phase after the design has
been fully lowered, and is also a tree walk that builds up and
writes out the index of footprints, pins, and connections.

Block Diagram Layout
We use ELK [9] (through py4j) as the block diagram layout
engine, specifically its “layered" algorithm which supports hi-
erarchy blocks and ports. As this algorithm relies on directed
edges to provide a reasonable layout, we infer directionality
primarily from the link port. For example, a voltage source
would be the tail, and a voltage sink would be the head. Bidi-
rectional ports are treated as sinks, except for when the link
has no sources, the first bidirectional port is treated as a source.

We run a series of simplification transforms to hide internal
details like bridge and adapter pseudo-blocks by collapsing
them and merging their input and output edges. High-fanout

https://github.com/BerkeleyHCI/PolymorphicBlocks

links (containing over 3 sinks) have their edges replaced with
stubs for simplicity, analogous to power rail and ground sym-
bols in schematics. Overall, while these approximations are
not perfect, they appear to produce usable block diagrams.

EXAMPLE APPLICATIONS
We demonstrate the capabilities of our system by designing,
physically building, and testing two example systems.

Simon
We extend the Blinky example into the Simon memory game,
shown in Figure 11 and consisting of four colored light-up
buttons and an accompanying audio tone for each color.

We use a socketed Nucleo board as both a power source and
microcontroller. Since the lights in the dome buttons require
12 volts while the Nucleo only supplies 5 volts, we use a boost
converter to generate the necessary voltage and a MOSFET
circuit to drive the lights from a 3.3 volt pin. We further added
a speaker driver, speaker connector, and debugging tricolor
LED. In terms of structure, each of these is a library sub-block.

Overall, the top-level HDL for Simon is 58 lines. Of note is
that the boost converter instantiation requires only one line
of code including the desired output voltage, minimizing de-
sign effort for an element where we do not care about the
specific implementation. The boost converter generator library
encapsulates the details and process of component sizing.

Figure 11. The Simon PCB (with detail view) and connected buttons.

Datalogger
A more complex design is the datalogger, shown in Figure 3,
which records data from a Controller Area Network (CAN)
interface onto an SD card. In contrast to Simon’s socketed
microcontroller board, this drops a microcontroller chip and
its supporting components directly on the board.

In addition to the necessary CAN interface, SD card socket,
microcontroller, and power conditioning blocks, this design
also includes a supercapacitor-based backup power supply.
Similar to the boost converter generator, this block generates
a current-limited charger and automatically sizes internal ele-
ments like the transistor and reference voltage divider.

USER STUDY: METHODOLOGY
While the preceding examples demonstrate that our system
can produce working boards, usability is also an important

practical consideration. We ran a small user study, in which
participants designed an electronics project of their choice.

Overall, our study design prioritizes ecological validity (re-
alism) with open-ended tasks and participants’ choice of
projects, important aspects for creativity support tools [28].
Furthermore, we focused on qualitative feedback: as a con-
cept significantly different from current practice, we felt that
answers to “where and why does it work" which could drive
future work were more interesting than a binary “does it work".

Participants
We recruited 3 local participants through personal referrals, in-
cluding two professional engineers and one electrical engineer-
ing undergraduate. All participants had at least intermediate
familiarity with PCB design and Python.

Participants were compensated with gift cards at $50 an hour
for the data collection interviews, and given a budget of up to
$300 for parts and boards to build their projects.

Structure
We set up a fresh virtual machine (VM) for each participant,
which they would remote-desktop into using X2go. Each VM
ran Ubuntu 18.04 with XFCE and IntelliJ Community Edition
(which all participants used) pre-configured to work with our
system. Participants did not have issues navigating the remote
desktop interface, and everything was reasonably responsive.

We asked participants to share their VM window over video
conference so we could watch their progress and provide help.
We did not record these sessions, but took field notes. As
documentation and error messages were specifically not under
evaluation, we would answer any questions participants had,
including giving pointers to example code where appropriate.

The study started with a tutorial session, in which participants
worked through a tutorial document which involved build-
ing the blinky design from Figure 2, then extending it with
a switch, LED array, discrete microcontroller, and tempera-
ture sensor. This tutorial introduced all the HDL constructs,
from basic model and abstractions to the implicit-connect and
chain syntactic sugar constructs, and ended with a simple part
definition exercise for the temperature sensor.

Afterwards, we worked with participants to define a project of
appropriate complexity and scope. In particular, we wanted
a system architecture which neatly decomposes into blocks
and could re-use common library elements, but also involved
building a generator and modeling a few parts. We felt that
building a single generator would help in understanding how
automation features (like low-pass RC generators) work, while
remaining considerate of participants’ time. Furthermore, as
the effectiveness of our tool depends on extensive libraries
which normally would be provided by a community in mature
projects, we also built library parts needed for participants’
projects for parts we deemed common. This phase was con-
ducted with a mix of video conference and instant messaging,
as a back-and-forth process which spanned several days. We
then scheduled time for participants to actually write HDL.

Once participants were satisfied with their HDL, we conducted
a semi-structured interview. Topics included their overall
thoughts about working in the system and comparisons with
mainstream flows, as well as specific thoughts on the HDL,
abstractions, electronics model, and supporting tooling. We
attempted to reduce the effects of acquiescence bias by encour-
aging participants to be frank and by framing the interview
as constructive feedback rather than evaluation. Interviews
were audio recorded (with participants’ consent), and lasted
an average of 2 hours and 19 minutes.

Afterwards, participants had the option of continuing to a
board layout, which was primarily independent and on their
own computer, unless they needed to make netlist changes.
Because of COVID-19, we were unable to physically fabricate,
assemble, and test the final devices.

USER STUDY: RESULTS
Overall, participants spent an average of 1 hour 5 minutes com-
pleting the tutorial, and 5 hours 15 minutes working on their
HDL, including 2 hours building subcircuit and part libraries,
and including untracked time understanding the circuits be-
ing built and becoming familiar with the system. By the end,
participants were able to work effectively with the system,
got designs to a point they were satisfied with, and continued
to layout. All three projects are detailed below, with P02’s
project shown in Figure 12 and HDL in Figure 13. Further
figures for all projects, including block diagram visualizations,
are included in the supplemental materials.

Project: Power Meter
P01’s project was an inline power meter that measures the
voltage and current passing through it. P01 started by model-
ing the INA190 current sense amplifier chip, then building the
top-level system with stub sub-blocks for the current and volt-
age sense chains, and finally implementing those sub-blocks
including writing the differential RC filter generator. The ini-
tial design idea came as a sketch of the analog signal chain
in KiCad, while the rest of the system came together during
HDL writing and based on available library parts.

P01 wrote 112 lines of system-level HDL (including signal
chain sub-blocks), 20 lines of generator libraries, and 95 lines
of part definitions. The layout had 66 individual components.

Project: Thermistor Reader
P02’s project was a thermistor reader that displays readings
from a bank of 8 thermistors and plays an audio alert if bounds
are exceeded. P02 chose to start by writing the thermistor and
RC filter combination generator, which would calculate the
series resistor and parallel capacitor values given the nominal
thermistor resistance. Of note is the use of a for loop to
generate the repeated thermistors and signal chains. This was
also the only case requiring a model override: the OLED and
speaker worst-case current draw exceeded capabilities of the
USB port, so an inline pseudo-block (using 3 lines of code)
was used to lower the modeled current, effectively telling the
system that these parts would not be run at full power.

Figure 12. P02’s initial system diagram for the thermistor reader, and
the resulting PCB (rendering) they produced using our system.

P02 wrote 52 lines of system-level HDL, 40 lines of generator
libraries, and 15 lines of part definitions. The layout had 90
individual components.

Project: Multifunction Instrument
P03’s project was an USB oscilloscope, function generator,
logic analyzer, and power supply combination device, all
driven from a microcontroller. P03 chose to start by writing
the variable-output buck converter generator, modifying the ex-
isting feedback controller chip based buck converter by adding
a PWM input, MOSFET switch, and diode. This process
turned out to be tricky, requiring deeper circuits knowledge to
size switches and diodes compared to the typical process of
choosing an off-the-shelf chip and using reference schematics
and part selections. However, once completed, the top-level
system architecture, including hooking up the converter, signal
buffers, LCD, and USB, progressed smoothly.

P03 wrote 48 lines of system-level HDL, 24 lines of generator
libraries, and 90 lines of part definitions. The layout had 53
individual components.

Advantages
Overall, participants were happy with the system architecture
and level of design, with P01 noting that it matched the ideal.

Participants also liked the pre-built blocks and the encapsula-
tion they provide. P02 noted that library blocks could reduce
the need to read through datasheets and make it more difficult
to miss non-obvious elements like the pull-down resistors on
the Type-C receptacle. P03 also compared the cleaner and
integrated generator library approach of our system with their
painful existing flow of building buck converters by searching
on chip vendor sites, using Excel calculators, and downloading
and importing footprints.

All participants found the more detailed automated checks to
be useful, with P01 considering it the best part of the system.
P02 felt the system could be particularly useful for novices,

1 self.usb = self.Block(UsbDeviceCReceptacle())

2 with self.implicit_connect(ImplicitConnect(self.usb.pwr, [Power]),

3 ImplicitConnect(self.usb.gnd, [Common])) as imp:

4 self.usb_reg = imp.Block(BuckConverter(output_voltage=(3.0, 3.3)))

5
6 with self.implicit_connect(ImplicitConnect(self.usb_reg.pwr_out, [Power]),

7 ImplicitConnect(self.usb.gnd, [Common])) as imp:

8 self.mcu = imp.Block(Lpc1549_48())

9 (self.swd,), _ = self.chain(imp.Block(SwdCortexTargetHeader()), self.mcu.swd)

10 (self.crystal,), _ = self.chain(self.mcu.xtal, imp.Block(

11 OscillatorCrystal(frequency=12 * MHertz(tol=0.005))))

12 (self.usb_esd,), _ = self.chain(self.usb.usb, imp.Block(UsbEsdDiode()), self.mcu.usb_0)

13
14 self.thermistors = ElementDict[ThermistorLowPassRc]() # Thermistor array and buffers

15 self.buffers = ElementDict[OpampFollower]()

16 for i in range(8):

17 (self.thermistors[i], self.buffers[i]), _ = self.chain(

18 imp.Block(ThermistorLowPassRc(47*kOhm(tol=0.05), 0.5*kHertz(tol=0.2), True)),

19 imp.Block(OpampFollower()), self.mcu.new_io(AnalogSink))

20
21 self.screen = imp.Block(Nhd_312_25664uc()) # Screen

22 self.connect(self.mcu.new_io(DigitalBidir), self.screen.cs)

23 self.connect(self.mcu.new_io(DigitalBidir), self.screen.reset)

24 self.connect(self.mcu.new_io(DigitalBidir), self.screen.dc)

25 self.connect(self.mcu.new_io(SpiMaster), self.screen.spi)

26
27 self.sw1 = imp.Block(DigitalSwitch()) # Switches

28 self.connect(self.sw1.out, self.mcu.new_io(DigitalBidir))

29 self.sw2 = imp.Block(DigitalSwitch())

30 self.connect(self.sw2.out, self.mcu.new_io(DigitalBidir))

31 self.rgb_led = imp.Block(IndicatorSinkRgbLed()) # Indicator light

32 self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.red)

33 self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.green)

34 self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.blue)

35
36 self.forced_current = self.Block(ForcedCurrentDraw((0, 0.1*Amp)))

37 self.speaker_amp = self.Block(Lm4871())

38 self.speaker = self.Block(Speaker())

39 self.connect(self.forced_current.pwr_in, self.usb_reg.pwr_out)

40 self.connect(self.forced_current.pwr_out, self.speaker_amp.pwr)

41 self.connect(self.speaker_amp.spk, self.speaker.input)

42 self.connect(self.speaker_amp.gnd, self.usb.gnd)

43 self.connect(self.speaker_amp.sig, self.mcu.new_io(AnalogSource))

Figure 13. The system-level HDL for P02’s thermistor board, simplified
for brevity.

making it more difficult to get an obviously bad schematic
compared to the weaker ERC in existing tools. Furthermore,
in combination with previous hardware-proven designs built
in this system, the block diagram visualization, and famil-
iarity with the circuit from doing the layout, all participants
had between medium and high confidence that their design
would work. However, participants were more skeptical of
community libraries, for example saying that they would do
spot checks or want quality indicators.

Limitations
While participants generally felt the electrical checks were
reasonable without being excessive, P01 cautioned that the
checks were better described as sanity checks as the modeled
values were based on datasheets which might assume certain
conditions, context that is lost in our model. Furthermore,
P02 noted that the modeling and encapsulation of generators
might not be comprehensive: for example, a user instantiating
a thermistor block would need to know whether the signal
rises or falls with increasing temperature.

All participants encountered failed checks, often due to toler-
ances set too strict for parts like resistive dividers. Though par-
ticipants recognized these as true-positives and solved these by
loosening tolerances, this tolerance specification with stackup
differs from design practices around nominal values. Further-
more, P01 found the common tolerance debugging process
of loosen, re-compile, and iterate to be annoying, suggesting

either tighter iteration loops or presenting the best achievable
value. P01 also preferred checks to be non-fatal and not pre-
vent netlist generation where possible, though P02 preferred
to not waive checks and instead use more targeted and explicit
mechanisms like tightening the worst-case current draws.

P03 felt that the learning curve was steeper than a GUI, and
that the system does require familiarity with Python. Further-
more, the object-oriented Python in our HDL may differ from
the scripting aspects used by hardware designers. P01 also
noted mismatches between terminology and class names pre-
sented in our system and existing schematic capture concepts,
and viewed intuitive names as essential to easy learning.

One issue P01 noted with the refinement process is that this
data are stored separately from the HDL, so the HDL alone
would be insufficient for a design review. Suggestions in-
clude having refinements generate code back into the HDL,
or having refinements be part of review. In general, P01 and
P03 also noted good tool support for code diffs, though also
acknowledged the existence of schematic diff tools.

Finally, participants brought up a slew of less-fundamental
usability issues with the system. This ranged from poor au-
tomatic net naming, to HDL syntax issues like excessive ver-
bosity reducing the signal-to-noise ratio.

Part Building
Though all participants agreed that modeling parts and writing
generators was worth the cost if it was likely to be re-used
and shared, they differed in the details. P02 found writing the
math for the RC filter calculation to be easy, and P03 noted
that having an existing generator as a starting was very helpful.
On the other hand, P01 pushed for an untyped port, which
would in effect waive model checks for when one just wants
things to connect.

Graphical Interfaces
All participants also made use of the visualization and refine-
ment interface to explore the compiled designs. P01 noted that
circuit reading usually relies on visual pattern matching on
schematics, and it was harder to see the connectivity structure
from the HDL, though P02 believed the HDL to be reasonably
clear. P01 also thought that while the automatically generated
block diagram was reasonable for the top level, deeper levels
showing individual components significantly deviated from
schematic convention. However, that was tempered with the
hope that adding a few more simple rules, like ordering ports
by voltage, could produce significant improvements.

All participants also independently suggested tightening the
HDL and block diagram update loop, perhaps by integrating
the visualization into an IDE. One use case suggested by P02
was to highlight block pins that still need to be connected.

Participants did have differing opinions on the HDL as a de-
sign entry interface. P02 thought the HDL with its for loop and
textual entry was faster, though modern schematic tools some-
what close the gap with support for hierarchy replication. P01
noted more generally that HDLs and graphical schematic edi-
tors were suitable for different purposes, preferring schematics

for analog designs with high connectivity between a few com-
ponents, and preferring HDLs when the equivalent schematic
sheets would be very complex and cluttered.

Design Time
All participants mentioned design time as a metric when com-
paring this system to mainstream flows, with P03 also men-
tioning design pain. While acknowledging that it was difficult
to fairly compare time for such different flows, P02 and P03
estimated their projects would have taken about as long in
a traditional flow (give or take depending on assumptions),
while P01 was more wary about comparing new tools to fa-
miliar tools. P03 further noted that the end results were more
“portable”, including time invested in reusable components.
However, P02 was unsure about benefits when dealing with
specialized, one-off components, and P01 noted the flexibil-
ity in mainstream flows to defer component sizing to quickly
proceed to layout.

LIMITATIONS AND FUTURE WORK
While we have presented a system that ultimately produces
working boards and conducted user trials with an emphasis
on simulating realistic conditions, there are both important
limitations and open avenues for continued work.

Library-Based Approach
Our approach relies on having good and complete libraries to
maximize re-use. Though our current library includes many
common parts and subcircuits, it is far from complete. While
a database of simple parts might be easily parse-able from a
parametric product table, complete details for more complex
parts are often only available in PDF datasheets. Future re-
search on extracting data from datasheets with tools such as
Tabula [31] and DocParser could accelerate this effort.

Overall, collaboration from a large community may be key
to building a critical mass of parts and subcircuit generators
to support the needs of users. However, as noted by partici-
pants, this must be balanced with quality indicators to enable
confidence in re-use.

Electronics Model
The foundational abstractions of hierarchy blocks, links,
and parameters appeared useful to and was understood by
users. While the electronics model proved suitable for our
intermediate-level example designs and user projects, it has
many limitations, for example defining only a few signal in-
terfaces and lacking support for multiple grounds. We do
caution that continued work extending the model must balance
functionality with usability and usefulness.

Users and User Study
In building our system and libraries, we focused on support-
ing intermediate-level designers and projects. In particular,
sufficient circuits background enables effective use of library
blocks, while less complex projects avoid needing a long tail
of specialized parts. However, we believe that with additional
work – such as on-demand documentation for novices, or an
expanded library and model for experts – our approach will
scale up and down both the skill and complexity hierarchy.

That being said, we do caution against generalizing the user
study results, given the small participant pool and the selection
for circuits knowledge and programming experience. We
position our results as a first step, leaving larger and more
robust studies – and the need for a more polished and scalable
system – as future work.

Graphical Interfaces
Based on user feedback, perhaps the most important usability
improvement would be better integration with graphical block
diagram or schematic representations. The most ambitious
idea would be a fully linked, hybrid HDL and block diagram
editor, allowing users to freely move between whichever repre-
sentation suits their current task best. Less ambitious would be
tighter updating of block diagrams from HDL, better automatic
block diagram layouts (possibly with user-specified hints), and
better tools for tracing and sense-making of constraint errors.

Furthermore, while an HDL is necessary to write generators,
the resulting blocks and the rest of our design model can be
used from within a graphical, schematic-like interface. This
would eliminate the need for programming experience and
provide a more familiar interface and graceful transition.

CONCLUSION
Building upon recent work examining how electronics design-
ers work and proposing a hierarchy block diagram abstraction,
we implemented an HDL and compiler based on those prin-
ciples and which is capable of providing meaningful design
automation. System designers can compose systems using
high-level blocks, while experienced engineers can provide
the implementation of those blocks as re-usable generators,
encapsulating design methodology in executable code.

We demonstrate the capability of this system though hardware-
proven example designs, where complex subcircuits are gener-
ated from high-level specifications. Furthermore, a small-scale
but realistic user study indicates that the overall abstractions
are usable and useful for intermediate-level projects, and par-
ticipants’ feedback provided important data on limitations as
well as ideas for future work.

Ultimately, we hope our work enables existing engineers to
design more efficiently, and extends the reach of novices in
building custom, personalized devices.

ACKNOWLEDGMENTS
This work was supported in part by NSF CNS 1505773 and
CNS 1822332, Synergy: Collaborative: CPS-Security: End-to-
End Security for the Internet of Things, in part by the CONIX
Research Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA,
and in part with funds from the Paul and Judy Gray Alumni
Presidential Chair in Engineering Excellence.

REFERENCES
[1] Altium. 2020. Altium Designer. (2020).

https://www.altium.com/altium-designer/

[2] Fraser Anderson, Tovi Grossman, and George
Fitzmaurice. 2017. Trigger-Action-Circuits: Leveraging
Generative Design to Enable Novices to Design and
Build Circuitry. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 331–342. DOI:
http://dx.doi.org/10.1145/3126594.3126637

[3] Jonathan Bachrach, David Biancolin, Austin Buchan,
Duncan W Haldane, and Richard Lin. 2016. JITPCB. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2230–2236. DOI:
http://dx.doi.org/10.1109/IROS.2016.7759349

[4] Ernst Christen, Kenneth Bakalar, Allen M Dewey, and
Eduard Moser. 1999. Analog and mixed-signal
modeling using the VHDL-AMS language. In 36th
Design Automation Conference. 21–25.

[5] circuito.io. 2020. Circuit Design App for Makers-
circuito.io. (Feb. 2020). https://www.circuito.io/

[6] J. Crossley, A. Puggelli, H.-P. Le, B. Yang, R. Nancollas,
K. Jung, L. Kong, N. Narevsky, Y. Lu, N. Sutardja, E. J.
An, A. L. Sangiovanni-Vincentelli, and E. Alon. 2013.
BAG: A Designer-Oriented Integrated Framework for
the Development of AMS Circuit Generators. In
Proceedings of the International Conference on
Computer-Aided Design (ICCAD ’13). IEEE Press,
74–81.

[7] Daniel Drew, Julie L Newcomb, William McGrath, Filip
Maksimovic, David Mellis, and Björn Hartmann. 2016.
The toastboard: Ubiquitous instrumentation and
automated checking of breadboarded circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology. 677–686.

[8] EDASolver. 2020. EDASolver - Automatic component
selection and pin matching. (2020).
https://edasolver.com

[9] Eclipse Foundation. 2020. Eclipse Layout Kernel.
(2020). https://www.eclipse.org/elk/

[10] Gumstix. 2018. Geppetto. (2018).
www.gumstix.com/geppetto/

[11] R. Harjani, R. A. Rutenbar, and L. R. Carley. 1989.
OASYS: a framework for analog circuit synthesis. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 8, 12 (1989), 1247–1266.

[12] Accellera System Initiative. 2014. Verilog-AMS
Language Reference Manual. (2014).

[13] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A.
Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson,
and J. Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks,
and transformations. In 2017 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD).
209–216. DOI:
http://dx.doi.org/10.1109/ICCAD.2017.8203780

[14] Rushil Khurana and Steve Hodges. 2020. Beyond the
Prototype: Understanding the Challenge of Scaling
Hardware Device Production. In Proceedings of the
2020 CHI Conference on Human Factors in Computing
Systems. 1–11.

[15] KiCad. 2020. KiCad EDA. (2020).
http://kicad-pcb.org/

[16] Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk
Lee, and Andrea Bianchi. 2019. VirtualComponent: a
Mixed-Reality Tool for Designing and Tuning
Breadboarded Circuits. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems.
1–13.

[17] André Knörig, Reto Wettach, and Jonathan Cohen. 2009.
Fritzing: A Tool for Advancing Electronic Prototyping
for Designers. In Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction (TEI
’09). Association for Computing Machinery, New York,
NY, USA, 351–358. DOI:
http://dx.doi.org/10.1145/1517664.1517735

[18] Ultra Librarian. 2020. (2020).
https://www.ultralibrarian.com/

[19] Richard Lin, Rohit Ramesh, Antonio Iannopollo,
Alberto Sangiovanni Vincentelli, Prabal Dutta, Elad
Alon, and Björn Hartmann. 2019. Beyond Schematic
Capture: Meaningful Abstractions for Better Electronics
Design Tools. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). Association for Computing Machinery, New
York, NY, USA, Article Paper 283, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300513

[20] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo
Sun, Jun Gong, Teddy Seyed, Xing-Dong Yang, and
Bing-Yu Chen. 2019. AutoFritz: Autocomplete for
Prototyping Virtual Breadboard Circuits. In Proceedings
of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI ’19). Association for
Computing Machinery, New York, NY, USA, Article
Paper 403, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300633

[21] Mentor. 2020a. Error Reduction in the Design Definition
Phase. (2020).
https://www.mentor.com/pcb/multimedia/player/error-

reduction-in-the-design-definition-phase-0db48520-

5d96-43ba-a208-d10513b742c6

[22] Mentor. 2020b. Get to Market Fast and First with
Reusable Circuit Blocks. (2020).
https://www.mentor.com/pcb/resources/overview/get-to-

market-fast-and-first-with-reusable-circuit-blocks-

981762c9-485a-416f-877c-b6dbf7622c45

[23] Mentor. 2020c. Xpedition Enterprise. (2020).
https://www.mentor.com/pcb/xpedition/

https://www.altium.com/altium-designer/
http://dx.doi.org/10.1145/3126594.3126637
http://dx.doi.org/10.1109/IROS.2016.7759349
https://www.circuito.io/
https://edasolver.com
https://www.eclipse.org/elk/
www.gumstix.com/geppetto/
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://kicad-pcb.org/
http://dx.doi.org/10.1145/1517664.1517735
https://www.ultralibrarian.com/
http://dx.doi.org/10.1145/3290605.3300513
http://dx.doi.org/10.1145/3290605.3300633
https://www.mentor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db48520-5d96-43ba-a208-d10513b742c6
https://www.mentor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db48520-5d96-43ba-a208-d10513b742c6
https://www.mentor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db48520-5d96-43ba-a208-d10513b742c6
https://www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45
https://www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45
https://www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45
https://www.mentor.com/pcb/xpedition/

[24] Mentor. 2020d. Xpedition Valydate Schematic Analysis.
(2020). https:
//www.mentor.com/pcb/xpedition/schematic-analysis/

[25] Brant Nelson, Brad Riching, and Josh Mangelson. 2012.
Using a Custom-Built HDL for Printed Circuit Board
Design Capture. PCB West 2012 Presentation. (2012).

[26] Rohit Ramesh, Richard Lin, Antonio Iannopollo,
Alberto Sangiovanni-Vincentelli, Björn Hartmann, and
Prabal Dutta. 2017. Turning Coders into Makers: The
Promise of Embedded Design Generation. In
Proceedings of the 1st Annual ACM Symposium on
Computational Fabrication (SCF ’17). ACM, New York,
NY, USA, Article 4, 10 pages. DOI:
http://dx.doi.org/10.1145/3083157.3083159

[27] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben
Shneiderman, Randy Pausch, Ted Selker, and Mike
Eisenberg. 2005. Design principles for tools to support
creative thinking. (2005).

[28] Ben Shneiderman. 2007. Creativity Support Tools:
Accelerating Discovery and Innovation. Commun. ACM
50, 12 (Dec. 2007), 20–32. DOI:
http://dx.doi.org/10.1145/1323688.1323689

[29] Evan Strasnick, Maneesh Agrawala, and Sean Follmer.
2017. Scanalog: Interactive design and debugging of
analog circuits with programmable hardware. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology. 321–330.

[30] Evan Strasnick, Sean Follmer, and Maneesh Agrawala.
2019. Pinpoint: A PCB Debugging Pipeline Using
Interruptible Routing and Instrumentation. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–11.

[31] Tabula. 2020. Tabula. (2020).
https://tabula.technology/

[32] Jeremy Warner, Ben Lafreniere, George Fitzmaurice,
and Tovi Grossman. 2018. ElectroTutor: Test-Driven
Physical Computing Tutorials. In Proceedings of the
31st Annual ACM Symposium on User Interface
Software and Technology. 435–446.

[33] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen,
Pin-Sung Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin,
and Mike Y Chen. 2017a. CurrentViz: Sensing and
Visualizing Electric Current Flows of Breadboarded
Circuits. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology.
343–349.

[34] Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen,
Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei
Hsu, Yu-Chih Lin, and Mike Y Chen. 2017b.
CircuitSense: Automatic Sensing of Physical Circuits
and Generation of Virtual Circuits to Support Software
Tools.. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology.
311–319.

https://www.mentor.com/pcb/xpedition/schematic-analysis/
https://www.mentor.com/pcb/xpedition/schematic-analysis/
http://dx.doi.org/10.1145/3083157.3083159
http://dx.doi.org/10.1145/1323688.1323689
https://tabula.technology/

	Introduction
	Related Work
	Electronics and HCI
	PCB Design Tools
	Chip Design and Hardware Description Languages

	System Design
	Block Diagram Model
	Structural Hierarchy
	Class Hierarchy

	Electronics Model and Libraries
	Hardware Description Language
	Visualization and Refinement Interface
	Board Generation

	System Implementation
	Compiler Structure
	Block Diagram Layout

	Example Applications
	Simon
	Datalogger

	User Study: Methodology
	Participants
	Structure

	User Study: Results
	Project: Power Meter
	Project: Thermistor Reader
	Project: Multifunction Instrument
	Advantages
	Limitations
	Part Building
	Graphical Interfaces
	Design Time

	Limitations and Future Work
	Library-Based Approach
	Electronics Model
	Users and User Study
	Graphical Interfaces

	Conclusion
	Acknowledgments
	References

