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ABSTRACT
Low-power microcontrollers lack some of the hardware fea-
tures and memory resources that enable multiprogrammable
systems. Accordingly, microcontroller-based operating sys-
tems have not provided important features like fault isolation,
dynamic memory allocation, and flexible concurrency. How-
ever, an emerging class of embedded applications are software
platforms, rather than single purpose devices, and need these
multiprogramming features. Tock, a new operating system for
low-power platforms, takes advantage of limited hardware-
protection mechanisms as well as the type-safety features
of the Rust programming language to provide a multipro-
gramming environment for microcontrollers. Tock isolates
software faults, provides memory protection, and efficiently
manages memory for dynamic application workloads written
in any language. It achieves this while retaining the depend-
ability requirements of long-running applications.
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Figure 1: A USB authentication device provides a num-
ber of related, but independent functions on a single em-
bedded device. Tock is able to enforce this natural divi-
sion as separate processes that share hardware function-
ality. An example Tock-based architecture for an authen-
tication key is pictured above. Each application (in green)
uses a different combination of common, and often mul-
tiplexed, hardware resources exposed by the kernel (in
blue).

1 INTRODUCTION
The process abstraction common to general-purpose com-
puting usually relies on hardware features provided for that
purpose. Processor-enforced privilege levels allow the kernel
to prevent applications from accessing hardware directly, and
the memory management unit (MMU) provides memory pro-
tection and address virtualization. Large reservoirs of RAM
make it reasonable to allocate many kernel structures on the
heap: this improves the system’s ability to support dynamic
application requirements while using memory efficiently.

Low-power microcontrollers offer only a limited subset
of these hardware features. Some recent microcontrollers in-
clude simple privilege levels and a memory protection unit
(MPU) which programmers can use to configure access con-
trol for address regions, but that lacks virtualized addressing.
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Additionally, restrictive power budgets for embedded applica-
tions mean RAM is scarce: many systems have 64 kB or less
of expensive SRAM.

Memory isolation and dynamic memory management have
clear software-engineering and performance benefits, but soft-
ware systems for low-power embedded platforms have mostly
provided simpler and easier to implement application execu-
tion models.

Low-power embedded operating systems often use the
same memory regions for applications and the OS. Merging
applications with the kernel makes it easy to share pointers
between the two and provides efficient procedure call access
to low-level functionality. This monolithic approach usually
requires compiling and installing or replacing the applications
and OS for a device together, as one unit.

Of course, these restricted features make multiprogram-
ming difficult. Without memory isolation, all code must be
trusted absolutely and any misbehaving component threatens
the entire system. Even if faults are somehow caught, the en-
tanglement of system and application components via shared
pointers means there may not be a safe way to shut down only
the failed component at runtime.

Embedded devices require long-running and fault-free op-
eration. To achieve this, software for these platforms usually
allocate all memory statically. This avoids hard-to-predict
memory exhaustion due to dynamic application behavior. In
severely memory-constrained environments, even heap frag-
mentation poses a significant threat to memory availability.

When memory is statically allocated, system software for
managing a shared abstraction like a radio interface must
make a static decision about how many concurrent requests
it will support, as the kernel must track each request. To sup-
port a particular maximum degree of concurrency, the system
must pre-allocate memory that may be unused for much of
the device’s lifetime. This trade-off between concurrency and
memory footprint forces developers to guess how to balance
resources for optimal performance whenever a system’s func-
tional applications are reconfigured.

This paper presents Tock, a new operating system for low-
power embedded platforms that addresses these shortcomings
in existing systems to provide a rich multiprogramming envi-
ronment: it provides fault isolation and allows the kernel to
dynamically allocate memory for application requests. The
kernel itself is written in Rust [36], a type-safe language
whose memory efficiency and performance is close to C. Rust
allows Tock to encapsulate a large fraction of its kernel with
granular, type-safe interfaces. Code for these components is
trusted only to eventually yield the microcontroller for sys-
tem liveness. In addition, Tock provides a process abstraction
using the hardware isolation mechanisms available on many
recent chips. Processes provide complete isolation of mem-
ory and CPU resources between applications and the kernel,

allowing developers to write applications in C or any other
language that targets the hardware.

To avoid trade-offs between memory efficiency and con-
currency, Tock allows kernel components to use portions of
process memory, called grants, to maintain state for the pro-
cess’s requests to kernel services. Grants act as a dynamic
kernel heap that is partitioned among processes, so processes
cannot starve each other. The kernel can trivially and cheaply
reclaim each partition whenever its granting process dies.
This approach allows each process to dynamically donate its
available memory in order to perform whatever concurrent
requests are necessary at a particular moment. It also obviates
the need for pre-allocated request structures in the kernel. Al-
though the kernel itself uses only static allocation in order to
guarantee continuous operation, this feature simultaneously
allows for flexible configuration of applications and efficient
use of precious memory.

2 BACKGROUND & MOTIVATION
Historically, embedded applications have been designed to
solve a specific problem: collecting environmental data [12,
51, 54], localizing a sniper [30], recording fitness data [17],
or detecting household fires [40]. In other words, they are
single-purpose monoliths. The application requirements de-
termine the hardware used, operating system configuration,
and application software.

However, a new, emerging class of embedded applications
breaks this monolithic model: they are software platforms,
which support multiple, independent, dynamically-loadable
applications. For examples, sports watches run applications
that use the same hardware for different activities [18, 46];
USB authentication devices need to isolate multiple services
from each other for security reasons (Figure 1); and city
sensing infrastructure can run multiple applications written
by different stakeholders [1].

Unfortunately, current operating systems cannot meet the
requirements of these applications given the resource limita-
tions of embedded microcontrollers.

2.1 Microcontrollers
Low-power microcontrollers (MCUs) have extremely limited
resources compared to hardware platforms used for mobile,
desktop or server computing. MCUs run at tens of mega-
hertz, with tens of kilobytes of RAM and a megabyte or
less of flash storage. Moreover, Moore’s law will not obvi-
ate these limitations in the future since the limiting factor is
energy. Improvements in MCU resources do not follow the
same growth curves as CPUs. Table 1 shows the clock speed,
RAM, and flash memory of two embedded research platforms,
the TelosB mote (2004) [42] used in a decade of sensor net-
work research, and Signpost (2017) [1], a recent platform
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TelosB [42] (2004) Signpost [1] (2017)

MCU MSP430F1611 [39] ATSAM4LC8CA [45]
Sleep Current 0.2 µA 1.6 µA
Word size 16-bit 32-bit
CPU Clock 8 MHz 12–48 MHz
Flash 48 kB 512 kB
RAM 10 kB 64 kB

Table 1: Embedded microcontroller RAM and flash have
increased modestly over the past decade; a modern high-
end platform such as Signpost uses a 32-bit Cortex-M4
microcontroller, with tens of kilobytes of RAM.

System Concurrency Memory Dependability Fault Loadable
Efficiency Isolation Applications

Arduino [6] ✓
RIOT OS [5] ✓
Contiki [14] ✓ ✓ ✓
FreeRTOS [8] ✓ ✓
TinyOS [33] ✓ ✓ ✓
TOSThreads [28] ✓ ✓ ✓
SOS [23] ✓ ✓ ✓
Tock ✓ ✓ ✓ ✓ ✓

Table 2: Properties of embedded operating systems. Un-
like prior designs, which trade off between different prop-
erties, Tock provides all five through grants, a memory-
safe kernel, and a non-blocking API that supports mem-
ory protection units.

for city-scale sensing which is representative of other recent
platforms [3]. Although more than a decade has passed, RAM
has only increased from 10 kB to 64 kB. The corresponding
increase in sleep current to retain RAM contents has, and will,
continue to limit growth.

While MCU resources have increased only modestly, 32-
bit Cortex-Ms have a new feature absent in earlier microcon-
trollers: a memory protection unit (MPU). As they only have
10s of kilobytes of RAM, MCUs have neither virtual mem-
ory nor segmentation: every memory address is an absolute
physical address. The MPU allows a kernel to protect regions
of physical memory, providing memory isolation between
applications as well as between applications and the kernel.
Adapting the memory protection unit to existing embedded
OS designs, however, has only limited benefit. FreeRTOS, for
example, supports using a memory protection unit to prevent
an application from writing to kernel memory. However, the
FreeRTOS system call interface requires the kernel to trust
any pointers passed through system calls, such that an appli-
cation can make the kernel read or write arbitrary memory.

2.2 Embedded Operating Systems
Emerging embedded applications require that the embedded
operating system support five key features: concurrency, de-
pendability from resource exhaustion, fault isolation, memory
efficiency, and application updates at runtime. While exist-
ing operating systems do not support all of these features, as
Table 2 shows, each provides some of them.

Dependability. Because embedded applications are often
unattended or have limited user interfaces, they place a high
premium on dependability—ensuring the system will con-
tinue running without intervention—often at the expense of
other performance characteristics like speed or throughput.
For example, a sensor network may be deployed in a remote
or inaccessible location [12] and cannot rely on human inter-
vention to recover from faults. As a result, many embedded
operating systems strive to increase dependability from mem-
ory exhaustion by ensuring that memory use is predictable at
compile-time. They typically achieve this by either statically
allocating memory for long-lasting values (TinyOS [33]) or
restricting dynamic allocation to boot time (FreeRTOS [8])
for fail-fast behavior.

Concurrency. Many embedded applications have tight en-
ergy budgets: a fitness tracker should maximize its runtime
before recharging, and a city-sensing network might rely only
on solar power. Increasing concurrency improves energy effi-
ciency, since overlapping I/O operations allow the device to
spend more time in a low-power sleep state [27]. As a result,
most embedded operating systems allow many operations
to occur in parallel. Systems such as TinyOS and SOS [23]
provide concurrency through a cooperative run-to-completion
model which simplifies stack management. Long running
operations starve the CPU. To prevent this, some existing
systems such as TOSThreads [28], FreeRTOS [8], and RIOT
OS [5] use preemptive threads to run some or all code.

Efficiency. As discussed in Section 2.1, RAM is a particu-
larly valuable resource. Therefore, embedded OSs strive to be
memory efficient, minimizing the amount of RAM allocated
to exactly what an application needs. TinyOS, for example,
statically counts callbacks to ensure it allocates just enough
to service every callback [20], while Arduino [6] is just a
thin wrapper for a monolithic C application. OSs that sup-
port dynamically loading new applications, such as SOS and
TOSThreads, trade off memory efficiency and memory ex-
haustion. SOS can dynamically load and link new “modules”,
which can dynamically allocate memory from a shared global
heap. This is efficient: applications do not allocate more than
they need. However, this flexibility harms dependability, as
an application’s allocation can fail due to other applications.
In contrast, TOSThreads is more dependable by statically
allocating RAM in the kernel for every potential system call.
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Figure 2: Tock system architecture. The kernel, written
in Rust, is divided into a trusted core kernel that can
use unsafe code, and untrusted capsules. Processes can
be written in any language and are isolated from the ker-
nel and each other.

However, this is inefficient: in typical use cases, 80% of this
RAM is wasted (Section 6.4).

Fault isolation. Isolating memory faults between system
components is a common technique for supporting multi-
ple applications running on the same system to ensure they
cannot corrupt each other’s state. However, until recently,
microcontrollers provided no hardware memory protection
mechanisms. As a result, embedded operating systems do not
typically provide fault isolation and, instead, rely on careful
API design or memory guard regions [23]. Some existing sys-
tems run applications in a bytecode interpreter [7, 32] which
can provide software-based fault isolation.

Unlike existing systems, Tock simultaneously provides
all five of these features by leveraging recent advances in
microcontrollers and programming languages.

3 TOCK ARCHITECTURE
The Tock architecture has two classes of code: capsules and
processes. Each has different goals, is trusted for different
properties and is designed for the hardware constraints and
application characteristics of embedded systems.

Capsules are units of composition within the kernel. They
are constrained by a language sandbox at compile-time and
cooperatively scheduled. This scheduling takes advantage
of the short operations in the kernel and minimizes context
switching overhead.

Processes, in contrast, are similar to processes in other sys-
tems: they are scheduled preemptively and memory-isolated
by hardware, using system calls to interact with the kernel.
Processes may be long-running and can be de-prioritized to
conserve energy if needed. The design of both processes and

capsules are guided by threat models that favors granular,
mutually distrustful components.

3.1 Threat Model
Tock does not aim to address any specific threat model, as
attacker capabilities and system security policies are specific
to particular embedded applications. Instead, it provides the
mechanisms required to build a secure system. Tock addresses
threats as they relate to four stakeholders: board integrators,
kernel component developers, application developers, and
end-users. Each is responsible for different parts of a complete
system and has different levels of trust in other stakeholders.

Board integrators. Integrators combine the Tock kernel
with microcontroller-specific glue code, drivers for attached
peripherals, and communication-protocol implementations.
Board integrators distribute capabilities to kernel components,
have complete control over the firmware in the microcon-
troller, and likely design and build the hardware platform. It is
the board integrator’s role to determine the end-to-end threat
model and structure system components to meet it.

Kernel component developers. Kernel developers write
most of the kernel functionality, such as peripheral drivers
and communication protocols, in capsules. For example, a
hardware vendor may supply drivers for a sensor or an open
source community may write a networking-protocol stack.
Tock’s design assumes the source code for kernel components
is available for the board integrators to audit before compiling
into the kernel. However, it does not assume that auditing will
catch all bugs, and Tock is able to limit the damage of a mis-
behaving kernel component. In particular, capsule developers
are not trusted to protect the secrecy and integrity of other
system components. A capsule may starve the CPU or force
a system restart, but it cannot violate other shared-resource
restrictions, such as performing unauthorized accesses on pe-
ripherals, even if it is authorized to access another peripheral
on the same bus.

Application developers. Application developers build end-
user functionality into processes using the services provided
by the kernel. Applications may ship with the hardware plat-
form, or they may be updated after deployment or installed
by end-users. Thus board integrators cannot generally audit
application code. Even the developers may be completely un-
known before deployment. Therefore we model applications
as malicious: they may attempt to block system progress, to
violate the secrecy or integrity of other applications or of the
kernel, or to exhaust other shared resources such as memory
and communication buses. It is important for a Tock-based
system to continue operating in the face of such attacks.
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End-users. Users may install, replace or update applica-
tions on a deployed system and may interact with the system’s
I/O ports in arbitrary ways. They are not assumed to have any
particular technical expertise, and may not be able to audit
applications before installing them. If a device’s construction
can prevent the end-user from replacing the kernel, then the
user need not be trusted to obey security policies attached to
sensitive kernel data. For example, a security module on such
a device could prevent a master encryption key from leaking
to end-users.

3.2 Capsules
The kernel is built out of components called capsules. Cap-
sules are written in Rust [36], which is an attractive language
for low-level systems because it preserves memory-safety (e.g.
no double frees or buffer overflows) and type-safety while
providing performance close to C’s [35].

A capsule is an instance of a Rust struct, including its
fields, associated methods, and accessible static variables
(e.g. static variables defined in the same module). The kernel
schedules capsules cooperatively. This enables capsules to
share a single stack and allows the compiler to eliminate most
capsule boundaries through inlining. However, it also means
that capsules are trusted for system liveness and meeting
timing constraints. A capsule could, for instance, interfere
with another capsule’s ability to receive events by running an
expensive computation.

The capsule abstraction provides all but one of the features
from Section 2.2: it is memory efficient, dependable, supports
concurrency, and provides memory fault isolation. However,
unlike processes, capsules cannot be loaded at runtime and
can exhaust CPU resources.

3.2.1 Capsule Types. There are a number of different
kinds of capsules in the kernel that serve different functions
and are written by authors with different levels of trust. Un-
derstanding these differences, their requirements, and their
goals enables policies that ensure the kernel remains safe.

Most capsules are untrusted and cannot subvert the Rust
type system. The Rust type and module system ensures that
capsules cannot access data in other capsules (i.e. they cannot
read/write private fields in other capsules) or process mem-
ory. Multiplexing capsules, for example, are written by OS
developers or contributed by third parties. These capsules
multiplex fixed hardware resources (e.g. timers) to be used
by many other capsules. They are purely software constructs
and are therefore untrusted. Peripheral drivers for sensors,
radios, communication protocols, and other peripherals fall
into this category. They are hardware independent since they
use hardware-agnostic interfaces for communication buses
(e.g. a multiplexed I2C bus). System call capsules, which
translate between system calls from application processes and

internal kernel interfaces of multiplexed abstractions, are also
untrusted.

A small number of capsules that must interact directly
with hardware are trusted to perform actions outside the Rust
type system. This includes low-level abstractions of MCU
peripherals that must cast memory mapped registers to type-
safe structs. It also includes core kernel capsules, such as
the process scheduler, which must manipulate protected CPU
registers directly. Because more complex kernel services built
from these abstractions can be implemented within the Rust
type system, the kernel can maintain the secrecy and integrity
of data without having to trust most capsules.

3.2.2 Capsule Isolation. Capsules are isolated from
each other using the Rust type and module system. This pro-
tects the kernel from buggy or malicious capsules, allows
capsules to selectively expose state and methods, and pro-
vides a method for abstraction between kernel features.

Since the capsule isolation mechanism is used ubiquitously
in the kernel, it is important that it consume minimal memory
and have negligible or no computational overhead. Rust en-
forces type and memory safety at compile-time, so in most
cases capsule isolation has no runtime overhead compared to
a similar monolithic implementation. For example, a capsule
never has to check the validity of a reference, as Rust ensures
that all references point to valid memory of the right type.
This allows for extremely fine-grained isolation, as there is
often no overhead to splitting up components.

Rust’s language protection offers strong safety guarantees.
An untrusted capsule can only access resources explicitly
granted to it, and only in ways permitted by the interfaces
those resources expose. For example, direct memory access
(DMA) is a common source of kernel memory violations. Be-
cause the DMA hardware can manipulate data at any address,
kernel code using DMA could circumvent language-level
memory protections [25]. To avoid this, chip-specific cap-
sules wrap the DMA memory-mapped registers as a typed
data structure that leverages the Rust type system to enforce
pointer integrity.
struct DMAChannel {
...
enabled: bool,
buffer: &'static [u8],

}

Exposing the DMA base pointer and length as a Rust slice
(a bounds-checked array) enforces that the buffer field is a
pointer to a valid block of memory1. Furthermore, it can use
the buffer length to ensure it does not write past the end of
the block. For a caller to pass a &’static [u8], it must
1This particular example works because the hardware DMA interface happens
to match the memory layout of Rust’s built-in slice. However, Rust’s built-in
operations are flexible enough to allow the chip-maintainer to write their own
type-safe replacement that would match other memory layouts as well.
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Figure 3: The Tock kernel has two sources of events:
hardware interrupts and process system calls. The timer
driver capsule configures and receives events from a sin-
gle hardware timer. It dispatches those events to an alarm
multiplexing layer which, in turn delivers appropriate
events to a timer system call driver that enqueues a no-
tification to a process when its timer expires. In the other
direction, processes use system calls to configure when to
receive timer events.

have been granted access to a statically allocated byte buffer.
The only code that requires unsafe operations in this DMA
implementation is the code that casts the memory-mapped
I/O registers to this struct.

3.2.3 Concurrency. The kernel executes capsules coop-
eratively. The kernel scheduler is event-driven and the entire
kernel shares a single stack. Figure 3 illustrates the execution
model in the kernel. Events are generated from asynchronous
hardware interrupts, such as a timer expiring or a physical but-
ton being pressed, or from system calls in a running process.
Capsules interact with each other directly through function
calls or shared state variables.

Capsules cannot generate new events. They interact with
the rest of the kernel directly through normal control flow.
This has two benefits. First, it reduces overhead since using
events would require each interaction between capsules to go
through the event scheduler. With simple functions, the inter-
actions compile to a few instructions or are completely inlined
away. Second, Tock can statically allocate the event queue
since the number of events is known at compile-time. Similar
to how TinyOS manages its task queue, this prevents faulty
capsules from enqueueing many events, filling the queue, and
harming dependability by exhausting the queue resource.

3.3 Processes
Tock processes are hardware-isolated concurrent executions
of programs, similar to processes in other systems [4]. They
have a logical region of memory that includes their stack,
heap, and static variables, and is independent of the ker-
nel and other processes. Separate stacks allow the kernel to
schedule processes preemptively—all kernel events are given
higher priority than processes while a round-robin scheduler

switches between active processes. Processes interact with
the kernel through a system-call interface and with each other
using an IPC mechanism.

While similar to processes in systems such as Linux, Tock
processes differ in two important ways. First, because micro-
controllers only support absolute physical addresses, Tock
does not provide the illusion of infinite memory through vir-
tual memory nor do processes share code through shared
libraries. Second, the system call API to the kernel, as de-
scribed in Section 3.4, is non-blocking.

Processes have two main advantages over capsules. First,
because they are hardware-isolated rather than sandboxed
by a type-system, they can be written in any language. As a
result, they make it convenient to work with and incorporate
existing libraries written in other languages, like C. Second,
they are preemptively scheduled, so they can safely execute
long-running computations such as encryption or signal pro-
cessing.

Microcontroller memory-protection units provide a rela-
tively high granularity of access control. They can set read-
/write/execute bits on eight memory regions as small as 32
bytes 2. For example, this allows processes using IPC to di-
rectly share memory regions as small as 32 bytes. In principle,
processes could be given access to certain memory-mapped
I/O registers by the kernel to enable low-latency direct hard-
ware access. However, for peripherals we have considered
so far, such as the Bluetooth Low Energy transceiver of the
Nordic nRF51, it is not possible to do so without exposing
side-channel memory access through DMA registers. Finer-
grained MPUs or I/O register interfaces designed for this
functionality might eventually make this possible.

Processes provide all five features from Section 2.2: they
can be loaded and replaced independently; they are concur-
rent; memory isolation is enforced by hardware; they prevent
system resource exhaustion since they have isolated memory
regions and are scheduled preemptively; and, as we discuss
in Section 4, they make efficient use of memory.

3.4 System Call Interface
Tock uses a system call interface that is tailored for event-
driven systems. Processes interact with the kernel through an
extensible interface of five system calls, shown in Table 3.

The command system call allows processes to make ar-
bitrary requests to capsules by passing word-sized integer
arguments. For example, it can be used to configure timers
and begin bus transactions. Arguments are passed by value
and do not require any special checking by the kernel.

To pass more complicated data, the allow system call
passes data buffers from processes to capsules. The kernel

2Regions 256 bytes or larger can be further subdivided into eight subregions
which can be independently enabled/disabled.
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Call Core/Capsule Description

command Capsule Invoke an operation on a capsule
allow Capsule Give memory for a capsule to use
subscribe Capsule Register an upcall
memop Core Increase heap size
yield Core Block until an upcall completes

Table 3: Tock system call interface. command, allow,
and subscribe calls are routed to capsules but have
an impact on process scheduling. memop and yield are
handled directly by the core kernel.

verifies that the memory, specified by a pointer and length, is
within the application’s exposed memory bounds and creates
a type-safe Rust struct pointing to the array. The structure
checks that the associated process is alive before each use.
This allows processes to explicitly share memory with cap-
sules, for example, to receive network packets.

The subscribe system call takes a function pointer and
a user-data pointer. The kernel wraps these in an opaque
callback structure, which binds the function pointer and user
data to a particular process, before passing it to the capsule.
The capsule can then invoke this callback which will schedule
it in the process’s callback queue. For example, a process
can request to be notified when a network packet arrives. The
network driver capsule will invoke the callback when data is
available. The callback structure protects the pointer integrity
and checks for process liveness before use.

The yield and memop system calls invoke the core ker-
nel rather than capsules. memop moves the memory break
between the heap and grant regions and has similar semantics
to sbrk.
yield blocks process execution until its callback queue

is not empty. Callbacks are not serviced until a yield is
called. Callbacks behave similarly to UNIX signals: the ker-
nel pushes a new frame onto the process’s stack and resumes
execution at the callback function. When the function com-
pletes, execution resumes at the yield call.

4 GRANTS
The architecture described in Section 3 isolates a dependable
kernel with static allocation from processes that can dynami-
cally allocate memory from a heap. However, what happens
when the kernel requires dynamic resources to respond to a re-
quest from a process? Capsules often need to allocate memory
in response to process requests which cannot be anticipated in
advance. For example, a software timer driver must allocate
a structure to hold metadata for each new timer any process
creates.

Existing techniques for addressing this issue in low re-
source systems have significant limitations. One technique is

Grant<T> Provides access to grant memory of a particular type.

create() Reserves an identifier for a new grant
used to allocate space for it in process
memory.

enter (proc_id, closure) Yields the Owned value from the spec-
ified process to the given closure. Allo-
cates new grant memory if necessary.

each(closure) Iteratively yields the Owned value from
each process if already allocated. Does
not allocate new memory.

Owned<T> A reference to allocated grant memory for a process.

deref () Dereferences the value. (sugared in Rust
using pointer dereference syntax: *)

drop() Frees allocated space. Automatically
called when the Owned value goes out
of scope.

Table 4: API for grants. The interface allows capsules to
access dynamically allocated memory on a per-process
basis. Owned references can only be accessed within a
grant, and cannot escape the closure passed to enter or
each. The API ensures that the memory is inaccessible
after the process has died or been replaced.

to select limits for such resources statically. In the timer exam-
ple, this would mean setting the maximum number of timers at
compile time. If this is set too low, it limits concurrency. If too
high, memory is used inefficiently and wasted. Another tech-
nique is to use a global kernel heap to dynamically allocate
resources. However, this can lead to resource exhaustion, caus-
ing unpredictable shortages, and fails to prevent the demands
of one process from affecting the capabilities of another. Fi-
nally, since process workload is not known until runtime,
compile-time counting, as with TinyOS’s uniqueCount,
cannot be used [31].

Tock solves this problem with a kernel abstraction called
grants. Grants are separate sections of kernel heap located
in each process’s memory space along with an API to access
them. Unlike normal kernel heap allocation, grant allocations
for one process do not affect the kernel’s ability to allocate
for other processes. While the heap memory is still limited,
the rest of the system continues functioning when one process
exhausts its grant memory and fails. Moreover, grants guaran-
tee that all resources for a process can be freed immediately
and safely if the process dies or is replaced. This is critical
since system memory is so limited.

The grant interface leverages the type-system to ensure
that references created inside a grant cannot escape. As Sec-
tion 5.3 describes, capsules only operate on grant memory
through a supplied closure with compile time enforced Rust
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lifetimes that guarantee references do not escape the closure.
This guarantees that all resources for a process can be freed
immediately and safely if the process dies or is replaced.

Table 4 summarizes the grant API exposed to capsules.
Capsules can create a Grant which is the notion of a granted
memory section across all processes. This section is concep-
tual until allocated for a particular process by calling the
enter method. In practice, the grant is allocated when a pro-
cess first makes a call to that capsule. If a process never uses
a particular capsule, the grant remains conceptual, requiring
no memory space from the process.

Granted memory can be defined as any type. The type
can be simple (e.g. an integer) or arbitrarily complex (e.g. a
composite data type or a data structure). When accessed, the
Owned type wraps the memory reference so that it cannot
escape the closure and be used without controlled access.

The enter method is also used to access already allocated
memory from a grant. Additionally, it provides an allocator
to the closure which can be used to reserve additional mem-
ory. This handles both the common case need of dynamic
resources on a per process basis, as well as the dynamic needs
of a single process (for example requesting multiple timers).

As a consequence of splitting memory across processes,
capsules may not use a single data structure to contain all state
and must instead iterate across data structures associated with
each process. To simplify this, the each method provides
iterative access to grants, only returning already allocated
sections from valid processes.

In order for grants to be safe, the kernel must enforce
three properties: allocated memory cannot allow capsules
to break the type system; capsules can only be allowed to
access grant references while the associated process is alive;
and the kernel must be able to reclaim grant memory from a
terminated process.

4.1 Preserving Type Safety
While grants are physically located within a process’s memory
space, processes are not allowed to access grant memory.
A process that did so could read or write sensitive kernel
fields or violate type invariants in capsule data structures.
To enforce this, Tock uses the MPU to prevent access by
processes. Limiting access to grants from processes allows
Tock to preserve Rust’s type safety.

4.2 Ensuring Liveness
There are two features that allow Tock to ensure capsules
can only access grant memory when the associated process is
alive. The first is by ensuring that Tock does not run processes
in parallel with the kernel. Whatever state (alive or dead) a
process was in when the capsule began executing will be the
same state it is in when the capsule completes, and the grant

will therefore either be valid or invalid for the duration of the
capsule’s execution.

Second, all accesses to grant memory occur through the
limited grant API. Calls to enter check the provided pro-
cess identifier for validity, returning an error if necessary.
Calls to each only iterate over valid processes. Within the
closure, references to grant-allocated values are wrapped in
the Owned type, which is defined in such a way that these
references cannot escape the closure. This ensures that the
grant memory cannot be accessed without first being checked.
In Section 5 we explain how we use Rust’s affine type system
to enforce these properties.

4.3 Grant Region Allocation
The grant region for each process is a dynamically sized
heap located within the process’s continuous memory. When
the kernel loads a process, it allocates a fixed sized block
of memory, based on platform configuration or the process’s
stated requirements. The size of this memory block is the total
memory a process may consume between its data segment,
stack, heap, and the kernel-controlled grant region.

Process controlled memory—the data segment, stack and
heap—is allocated at the bottom of the process memory block
and grows upward while the grant region, controlled by the
kernel, grows downward from the top of the memory block. A
process can expand or contract using sbrk and brk system
calls—for example, Newlib’s malloc implementation calls
sbrk to expand the heap. Similarly, grant allocations may
expand the grant region downwards.

The process table in the kernel keeps track of the memory
break for the currently consumed process memory and grant
region. If these memory breaks meet, future allocations, initi-
ated from either the process or grant operations will fail. The
caller can either free memory (e.g. by freeing heap memory
in the process) or kill the process.

4.4 Grant Region Deallocation
Grant memory may be deallocated in two ways. First, when an
Owned value falls out of scope, the compiler inserts a call to
its destructor. Owned stores a process identifier alongside the
pointer to the value. The destructor uses the process identifier
to free the value’s memory from the process’s grant region.

Second, when a process is terminated, the kernel needs to
reclaim its associated memory. Since all accesses from the
kernel are made through the grant API, grant space can be
freed immediately when the process is terminated without
having to wait for a reference count to go to zero or a garbage
collector to run. If a capsule tries to enter the grant for a
non-existent process, it receives an error and knows it can
drop any data or requests for that process.
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Figure 4: Process memory layout. Each process has sep-
arate heap, data, stack, and grant regions. Processes are
isolated from access the grant region in order to protect
kernel state.

As grant memory is allocated within the same contiguous
block of memory as process accessible memory, the kernel
deallocates a grant region in the same step as deallocating
process memory. In Tock, this means returning the entire
process memory block to the processes memory allocator
or, if the process will be re-spawned, just resetting metadata
fields like the memory break and zeroing the grant region.

This method of reclaiming memory has implications on
kernel design. Since the granted memory associated with a
process can disappear, it should only store state inherently tied
to that process. This precludes the kernel from using a global
list of state (e.g. a list of outstanding timers), and instead
requires separate per-process lists. When an event occurs (e.g.
a hardware timer firing), the capsule has to iterate through
the grants for each process in order to service it. In Tock this
overhead is acceptable because in practice there is a very
limited number of processes (likely fewer then 10 as limited
by RAM), and the kernel is I/O bound as capsules cannot
perform long-running computation. We discuss optimizations
to the implementation of grants in Section 5 and evaluate
grant overhead in Section 6.

5 IMPLEMENTATION
We have implemented Tock for ARM Cortex-M based mi-
crocontrollers. Our main development platforms are based
on the Atmel SAM4L Cortex-M4, which runs at a maximum
CPU clock speed of 48 MHz, has 512 kB of flash for code and
64 kB of SRAM. The development platform includes sensors,
low-power wireless radios, and a basic user-interface.

The core kernel, which is hardware and platform agnostic,
is written in 3554 lines of Rust, as reported by cloc [2]. An
additional 6824 lines of Rust form the hardware adaptation
layer for the SAM4L’s hardware peripherals. ARM Cortex-M
specific details such as context switching are 295 lines of
(mostly) assembly. The port for our main development plat-
form includes 21 untrusted capsules that implement drivers

for the sensors, radios, communication protocols, and hard-
ware multiplexing layers in an additional 12925 lines of Rust
code. The Tock kernel on this platform fits in 8.4 kB of SRAM
plus an additional 4 kB for the kernel stack. The kernel re-
quires 87 kB of flash. The remaining memory is reserved for
processes.

5.1 MPU Management
Tock uses the ARM Cortex-M’s memory protection unit to
isolate processes from the kernel and from each other. When
context switching into a process, the MPU is configured to
allow access to the process’s code space in flash, and its
data, stack, and heap regions in SRAM, but not the grant
region allocated from the process’s memory space. When the
kernel is executing, the MPU is disabled. The MPU is also
used for inter-process communication. The IPC mechanism
enables one process to directly share memory blocks with
with another process using additional MPU regions.

One difficulty of using the MPU is that MPU regions must
be sized to a power of two and must be aligned to an ad-
dress that is an even multiple of their size. In practice, this
means that aligning grant and IPC regions requires additional
padding in a process.

5.2 Process Memory Layout
Figure 4 shows the process memory layout. The process’s
stack is placed at the bottom of its memory to ensure that
any stack overflows trigger an MPU violation. The heap and
grant regions grow up and down, respectively, into shared
allocation space.

5.3 Grants
Figure 5 shows the Rust implementation of the grant interface.
The type signatures of enter and each enforce two impor-
tant properties. First, the lifetimes (’b) of the arguments to
the closure enforce that they can only be manipulated within
the scope of the closure. Their lifetimes are explicitly tied
to the life of the closure itself. Second, the closure cannot
leak mutable references to grant memory in its return value
because return values are copied out of the closure. Specif-
ically, the return type, R, must implement the Copy trait,
and Owned does not. Together these properties ensure that
granted memory cannot leak outside of the grant API.

The Grant type is implemented with a level of indirec-
tion. It contains the unique identifier returned from a call
to create. This identifier is used to index into a table of
allocated grants at the top of the grant region of each process.
This table, in turn, is populated with pointers to the allocated
memory for that grant. When a grant is accessed for a given
process, it indexes to the correct position in the table and
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impl<T: Default> Grant {
fn create() -> Grant<T>

fn enter<F,R>(&self, proc_id: ProcId, func: F) -> Result<R, Error> where
F: for<'b> FnOnce(&'b mut Owned<T>, &'b mut Allocator) -> R, R: Copy

fn each<F>(&self, func: F) where
F: for<'b> Fn(&'b mut Owned<T>)

}

Figure 5: Rust type signatures for the grant interface. Grants are generic over a type T which they allocate space for.
enter is called with a process ID and a closure that accepts as arguments the grant memory and an allocator. The
lifetimes ’b in the method’s signature ensure that the grant memory is only accessible for the duration of the closure.
each iteratively returns the granted memory from each process, calling the closure repeatedly. Together, these methods
allow controlled access to dynamically allocated memory.

passes a pointer to the actual grant memory, wrapped in an
Owned structure, to the closure.

A memory allocator in the kernel manages blocks in the
process’s memory pool. Our implementation uses a buddy
allocator, however, other allocation strategies are possible and
could even be chosen separately for each process.

5.3.1 Case Study: Timer Driver. To demonstrate how
grants are used in practice, Figure 6 provides a brief example
of the Timer driver capsule in Tock. The interface multiplexes
a hardware alarm, allowing processes to set virtual timers
and receive callbacks when they expire. When a process sub-
scribes, a handle to the callback function is stored in the grant.
When the underlying alarm fires, the capsule iterates through
the grants for each process, checking if they should be no-
tified. For brevity, some details, including integer wrapping
logic and capsule initialization, are elided.

In this example, when an alarm fires, the capsule must iter-
ate through all allocated grants to find processes with expired
timers. It is possible to optimize the common case where
previously allocated grants remain accessible by allocating a
combined linked-list. Using this optimization the driver can
iterate through the list until it finds a processes with a timer
that has not expired. At any point, entering a grant in this
manner might fail, in which case the driver simply falls back
to iterating through all processes.

6 EVALUATION
Tock explores a new point in the design space of embed-
ded kernels. As a result, quantitative comparisons with ex-
isting systems with different design considerations are dif-
ficult. Moreover, because Tock targets application domains
unaddressed by previous systems (and does not necessarily
subsume previous systems), there are no appropriate bench-
mark suites to evaluate. Instead, we describe two applications
under development that are enabled by Tock. Then, we focus
our quantitative evaluation around four main questions:

pub struct GrantData {
expiration: u32,
callback: Option<Callback>,

}
impl Syscall for Timer {
fn subscribe(&self, cb: Callback){

self.grant.enter(cb.proc_id(), |owned| {
owned.callback = Some(cb);

});
}
fn command(&self, interval: u32, pid: ProcId){

self.grant.enter(pid, |owned, _| {
owned.expiration = self.now() + interval;
if self.current_alarm > owned.expiration {
self.set_alarm(owned.expiration);

}
});

}
}
impl HardwareInterface for Timer {
fn expired(&self, pin_num: u8){
// timer has expired
// notify all interested processes
let now = self.now();
self.grant.each(|owned| {
if owned.expiration <= now {
owned.callback.schedule(...);

}
});
// setup next alarm...

}
}

Figure 6: Timer driver demonstrating typical use of
grants. Processes can register a callback and request a
timer be started. When the hardware timer expires, the
capsule notifies the appropriate processes.

(1) What is the cost of capsule isolation?
(2) How do capsules compare to using only process isolation?
(3) How much memory do grants save compared to alternate

solutions?
(4) What is the cost of using grants?
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All experiments were performed using imix, a Tock devel-
opment board based on the Atmel SAM4L Cortex-M4. It has
three I2C connected sensors (light, acceleration, and tempera-
ture), buttons, LEDs, and Bluetooth Low Energy and IEEE
802.15.4 radios for low power wireless communication. The
SAM4L runs at a maximum CPU clock speed of 48 MHz, has
512 kB of flash for code, and 64 kB of SRAM. It has hardware
support for a variety of common microcontroller functions,
including timers, ADC, I2C, USART, SPI, and AES encryp-
tion. In experiments comparing with TinyOS, we used a port
of TinyOS to a predecessor of this platform [3] which has the
same microcontroller and similar peripherals.

6.1 Case Studies
Tock is open-source and available for anyone to use.3 A few
early adopters in academia and industry are building appli-
cations with Tock. To validate the claim that Tock enables
embedded hardware platforms with constrained power and
memory resources to run third-party processes that are un-
known at compile time concurrently and efficiently without
memory exhaustion, we consider two such applications: a
modular city-scale sensor network platform and a USB secu-
rity key.

6.1.1 City-Scale Sensing. Signpost [1] is a modular
platform for city-scale sensing that provides power, network-
ing, and other resources to sensor modules that attach to it.
Rather than predetermining the sensors or applications to
deploy, Signpost allows researchers to upgrade or replace
sensors and software over time.

Each Signpost comprises a controller that manages module
energy allocations and provides time and location resources, a
radio module, and a number of independent sensing modules
connected to the controller and each other over I2C. All these
components run Tock.

The controller and radio, which are built and maintained
by the Signpost developers, use multiple processes for logical
isolation and development simplicity. The controller performs
several independent tasks, while the radio module comprises
several communication facilities, running each radio stack in
a separate process to ensure failures are isolated.

Sensor modules are developed by research teams wishing to
leverage the Signpost platform. Typically, they will extend a
basic module schematic (microcontroller, power management,
form factor) with peripheral sensors (e.g. audio, RF spectrum
analysis, environment sensors) and kernel drivers for those
peripherals, written by the Signpost developers or others in
the community.

Finally, other researchers may write applications for an
existing, already-deployed sensor module. For example, they

3https://www.tockos.org

can use it to validate an audio-event detection algorithm using
the already deployed audio module.

At the time of writing, a network of Signposts are deployed
on the U.C. Berkeley campus.

6.1.2 USB Security Key. USB authentication keys can
provide better security and user experience relative to other
second factor authentication options [29]. As a result, many
large organizations are deploying security keys internally [16].

A USB authentication key contains a secure element that
stores encryption keys and performs cryptographic operations,
a simple user interface comprised of an LED and capacitive
touch button, and a microcontroller that communicates with a
computer over USB. One example, the YubiKey [56], serves
several fixed functions: U2F second factor authentication,
HMAC-based one-time passwords (HOTP), PGP smart card,
and a static password. Other functionality that could be in-
corporated into such a device includes a Hardware Security
Module (HSM), SSH authentication, a password manager, or
a bitcoin wallet.

Indeed, a large software organization prototyping an au-
thentication key based on Tock currently uses a JavaCard-
based device with custom firmware to implement U2F and
SSH authentication. At the core of the prototype is a capsule
that has exclusive access to a master symmetric encryption
key and acts as an encryption oracle. The remainder of the
kernel implements functionality such as USB communication,
user-interface drivers, and virtualization layers, as depicted in
Figure 1.

Using Tock provides several benefits for this application.
First, it allows application updates without needing to update
the kernel and provides a logical separation between the appli-
cations. Second, it enables other developers in the company
to build additional applications without risking compromise
of the core security applications.

Finally, Tock is able to support the USB authentication
key’s threat model. While applications will generally be writ-
ten by other software engineers in the same organization, and
are likely not malicious, the core authentication feature is
sensitive enough that trusting non-core applications is unde-
sirable. Moreover, limiting access to the master encryption
key to an isolated encryption-oracle capsule enables the plat-
form developers to reason carefully about a relatively small
amount of code that provides the most important security
function of the device.

6.2 Capsule Isolation Overhead
Capsule isolation introduces overhead compared to an ideal
monolithic implementation. Splitting up a component into
multiple capsules requires each capsule to have references
to its dependencies. Moreover, in our current implementa-
tion, capsules cannot run directly as interrupt service routines
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struct Isl29035<'a, AlarmType: time::Alarm + 'a,
I2CType: I2CDevice + 'a> {

i2c: &'a I2CType,
alarm: &'a AlarmType,
state: Cell<State>,
buffer: TakeCell<'static, [u8]>,
client: Cell<Option<&'a AmbientLightClient>>,

}

Figure 7: The data structure used in the capsule im-
plementing a driver for the ISL29035 light sensor pe-
ripheral chip. Capsules use references to “communicate”
with other capsules, thus requiring an additional word
of memory for each dependency relative to an optimized
monolithic implementation: 12 bytes total in this driver
for the i2c, alarm, and client references.

(ISRs) so there is some computational overhead associated
with re-implementing event-handler routing in software. How-
ever, in practice, these overheads are either negligible or in-
curred anyway in non-isolated systems.

6.2.1 Microbenchmarks. In an optimized monolithic
kernel, high-level code such as the user of a peripheral sen-
sor has direct access to the hardware (i.e. memory-mapped
registers), and vice-versa (i.e. interrupt handlers). As a result,
peripheral-access code can optimize peripheral references to
direct, hard-coded memory addresses. In contrast, a small
isolated capsule must use references to communicate with
other capsules that perform accesses on its behalf.

Figure 7 shows the data structure used in a Tock capsule
that implements the driver for a light sensor peripheral chip. In
addition to driver state, the capsule must also store references
to its dependencies—a virtualized I2C device and a virtual
alarm—as well as to its dependents. Each reference increases
the size of the capsule by a four-byte word, totaling twelve
bytes for this particular driver.

While a monolithic kernel may avoid this overhead entirely,
in practice, isolation boundaries typically mirror modularity.
As a result, as we show in Section 6.2.2, Tock capsules do not
consume significantly more memory than comparable systems
with no isolation when considering complete systems with
applications.

Capsules cannot be invoked directly as interrupt service
routines by the hardware. Tock must match the handler routine
to the in-memory data structure associated with the handler
(the self variable). As a result, when a hardware event
occurs, such as a timer expiring, Tock takes longer to service.

Table 5 compares the latency to service a pin toggle inter-
rupt directly from an ISR, from a capsule in Tock, and from
a Tock process. When the CPU is active (i.e. in a busy wait
loop), handling an event directly in an ISR is more than twice
as fast as servicing it from a capsule. However, the typical

Handler Latency

Interrupt Service routine 0.87 µs
No sleep Tock Capsule 2.03 µs

Tock Process 36.8 µs

Interrupt Service routine 2.29 ms
From deep sleep Tock Capsule 2.29 ms

Tock Process 2.34 ms

Table 5: Latency to handle a hardware event optimally
as well as from a Tock capsule and process. Results are
shown for an interrupt fired during a busy wait (no sleep)
and from the SAM4L’s deep sleep state, which requires
CPU clocks to boot up and re-stabilize before executing
instructions.

state of the CPU is a low-power sleep mode which requires
a relatively long wake up period. In this case, the difference
between an ISR handler and capsule handler is overshadowed
by CPU wake up time.

This implies that certain tasks, such as bit-banging a high-
speed communication bus in software, must be implemented
in trusted ISR code—without the benefits of capsule isolation.
However, most functionality with such high latency sensitivity
is typically implemented in hardware on modern microcon-
trollers.

6.2.2 Macrobenchmarks. To quantify capsule memory
overhead, we compare the resource consumption of a capsule-
only Tock system with comparable non-isolated embedded
systems.

Table 6 shows the flash and memory footprint of a kernel-
only “blink” application—the “Hello World” of embedded
systems—compared to an identical application implemented
using TinyOS and FreeRTOS. The application toggles an on-
board LED once every second then enters a deep-sleep state.
Memory overhead for Tock is about 1 kB, nearly 3 kB for
FreeRTOS, and under 100 bytes for TinyOS. In all cases, we
do not account for the kernel stack, which is a tunable pa-
rameter. Tock and FreeRTOS have a larger memory footprint
than TinyOS even for a minimal application since they both
provide much richer abstractions, such as a preemptive thread
scheduler.

The flash footprint is roughly comparable across systems.
TinyOS’s somewhat larger usage reflects its goal of minimiz-
ing memory at the expense of flash usage, in order to match
the relatively high flash/RAM ratio on hardware platforms of
its time.

This comparison shows that the baseline footprint of a
Tock system that uses capsules for isolation is comparable
to other embedded systems with no isolation. This is unsur-
prising since capsules leave no additional runtime artifacts
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System text (B) data (B) bss (B) Total RAM (B)

Tock 3208 812 104 916
TinyOS 5296 0 72 72
FreeRTOS 4848 1080 1904 2984

Table 6: Blink application footprint on different embed-
ded operating systems: TinyOS, FreeRTOS, and a Tock
implementation using only capsules. Resource consump-
tion is reported as bytes allocated for each of the text,
BSS, and data segments in the compiled binary, exclud-
ing the stack, which is a tunable parameter in each sys-
tem. Tock capsules consume comparable resources to ex-
isting systems without a similar isolation mechanism.

System text (B) data (B) bss (B) Total RAM (B)

Tock 41744 2824 6880 9704
TinyOS 39604 1228 9232 10460

Table 7: Environment sensing application footprint im-
plemented with Tock and TinyOS. The application sam-
ples three environment sensors periodically and sends
readings over an 802.15.4 radio. Memory reported for
both systems include a 4 kB stack.

beyond references to other components, which are typically
also present in systems without isolation.

We also compare the footprint of a more complete appli-
cation: an environment sensing application that reports data
over an 802.15.4 radio. We used an existing implementation
for TinyOS 4 and implemented the application in Tock for
the same hardware platform. The application samples periodi-
cally from an accelerometer, temperature sensor, and ambient
light sensor, then sends a packet containing the readings over
a 802.15.4 radio on board. Table 7 lists the flash and memory
footprint for each. Tock requires 9 kB of RAM while TinyOS
requires 10 kB. Most of the difference in memory consump-
tion is due the TinyOS’s more complete network stack which
allocates larger static buffers. Importantly, using capsules for
isolation does not impose a significant memory overhead in
this application.

6.3 Capsules vs. Process-only Isolation
Capsules enable isolation at a finer granularity than can be
achieved with memory-isolated processes. Capsule isolation

4https://github.com/SoftwareDefinedBuildings/stormport/tree/rebase0/
apps/SensysDemo

requires zero runtime-communication costs and incurs mini-
mal memory overhead (i.e. comparable to architectural separa-
tion in monolithic kernels), whereas process isolation suffers
both communication and memory overheads.

We evaluate the capsule granularity claim for memory and
communication overhead each in turn. As a representative
benchmark, we consider the kernel used for Signpost’s am-
bient sensor module, which has 26 capsules, and compare
capsule overhead to the same kernel using process isolation.

6.3.1 Memory overhead. From Section 6.2.1, capsule
isolation has at most a memory overhead of one word for each
other capsule it communicates with. The process abstraction
imposes memory overhead per-process, requiring context-
switching and state metadata in the kernel as well as dedicated
per-process stack memory. In Tock, which is not optimized
to support many processes, this overhead is significant. The
kernel data structure for process metadata is 164 bytes. Some
of this metadata could be discarded (e.g. metadata used for
debugging process crashes), but other is essential for context
switch performance (e.g. MPU region configurations). Other
systems that support threading have smaller process structures.
RIOT’s [5] minimal process metadata structure is 14 bytes.
The minimal process metadata overhead for a system that
isolates processes using hardware memory protection lies
somewhere between the two.

More significantly, though, pre-emptive processes need
separate memory regions to, at least, store their stack whereas
cooperatively scheduled capsules share a single stack. Since
the stack size must be able to fit the largest depth a process
may ever reach, accurately choosing it is difficult and stacks
are often over-allocated. Common choices for preemptive
embedded system stacks are 256-512 bytes, though many
processes must override this default.

To achieve the same degree of isolation granularity as the
Signpost ambient sensor using only processes requires at least
13 kB (using 512 byte stacks and RIOT’s task structure) and as
much as 110 kB (using 4 kB stacks and Tock’s current process
metadata structure) of RAM, more than the memory available
on the SAM4L. In contrast, the capsule-isolated version uses
12 kB, including all static buffers and a shared 4 kB stack.

6.3.2 Communication overhead. Communication over-
head for capsules is no more than a pointer indirection or
a (often inlined) function call (commonly 0–4 cycles; pes-
simistically, as many as 25 cycles, or 0.5 µs at 48 MHz). In
comparison, communication between processes requires a
context switch. A context switch in Tock requires 340 cycles
(7 µs at 48 MHz). This limits the kinds of functionality that
can be implemented using multiple communicating processes.
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6.4 Grant Memory Efficiency
Grants allow the kernel to service arbitrary process requests
in a memory efficient, highly concurrent manner while main-
taining overall system reliability by avoiding a global kernel
heap. To our knowledge, no other system provides compa-
rable properties for low-resource hardware. However, it is
possible to achieve the most important design goals of Tock—
memory isolation and high concurrency—without the grant
mechanism, at the expense of memory efficiency. We first
examine the memory overhead associated with grants and
then compare it to the alternative.

Grants impose memory overhead for both the kernel and
for processes. The memory overhead in the kernel is small
and fixed at compilation time. For processes, grants impose
memory overhead only when requests are being serviced.

The Grant type is simply a wrapper around a unique 32-
bit grant identifier, thus a reference to a grant in a capsule
is only 4 bytes. When a grant is allocated, the kernel adds
an entry to a hash table that is stored in the process’s grant
region that points to the newly allocated memory, imposing
an overhead of two words.

The Owned type, which wraps references to granted mem-
ory (Section 4), stores values as a regular pointer in the pro-
cess’s grant memory and an additional word to store the pro-
cess id. This allows the grant deallocator to know from which
process’s grant region to deallocate if an Owned object falls
out of scope. Critically, no memory overhead is imposed on
the kernel itself when a process dynamically allocates grant
space. A capsule allocates grant memory on demand, using
only as much as is needed at that point.

As an example, during a write request, the serial driver
allocates two grants, a fixed-size buffer to store metadata
about the write (28 bytes), and a dynamically sized buffer to
hold the data that will be written. The two Grants impose
only a two-byte overhead.

6.4.1 Comparison to Alternatives. To contextualize
the memory efficiency of grants, we compare it to the over-
head of a modified version of TOSThreads that supports pro-
cess isolation. TOSThreads, following the TinyOS program-
ming model, uses a static allocation policy. Each multiplexed
service is a statically-allocated request queue. Each client
(known at compile time) has a single reserved entry in the
queue. Each client is therefore assured that it can enqueue
one request, and further requests will fail until that opera-
tion completes. This functional isolation simplifies thread
error handling, as resources are always available for a caller.
TinyOS provides no memory isolation: threads and the kernel
freely share pointers and overwrite each other’s memory. For
example, on packet reception the kernel passes a reference
to a kernel-allocated packet buffer to a process, which the
process can trivially keep, modify, or read beyond.

# Threads Kernel RAM Syscall RAM Max Used

1 3506 712 158
2 4216 1422 316
3 4928 2134 474

Table 8: TOSThreads has low memory efficiency. Static
allocation costs 710-712 bytes per thread, of which at
most 158 bytes (22%) can be in use at any time. These
numbers do not include the thread stacks, each of which
can be less than 100 bytes.

To show the cost of static allocation when there is isola-
tion, we modified the TOSThreads implementation to copy
between processes and the kernel (allocating buffers rather
than pointers to buffers in its request queues).

We created a narrow system call interface that samples the
six on-board sensors of the TelosB mote [42], sends packets
using the CTP collection protocol [21], sends packets over
the serial port, and can write to block, log, and configura-
tion flash storage [19]. Table 8 shows the code and RAM
size of the resulting TinyOS image for 1-3 threads on an
MSP43F1612 [39] (the MSP430F1611 has insufficient code
space). TinyOS’s dead-code elimination means that compiling
with zero threads eliminates the entire kernel, while system
call interfaces for 4 threads cannot fit in an F1612’s RAM.

Each thread requires allocating 710-712 bytes within the
kernel for its system calls. The system call to write to configu-
ration storage (small atomic writes to flash) requires the most
RAM, 158 bytes, of which 30 bytes is call state and param-
eters while the data buffer is 128 bytes. Since a TOSThread
can only have one outstanding I/O operation, this means at
most 22% of a thread’s allocated kernel state can be in use at
any time and 554 bytes (78%) are wasted.

In contrast, Tock allows concurrency within a process
(many operations can be outstanding) and grants allow the sys-
tem to allocate memory for process requests only as needed.
This results in significantly lower memory overhead, with no
wasted memory.

6.5 Algorithmic Overhead
While grants are memory efficient, they require algorithmic
changes relative to using a global kernel heap or statically
allocating for maximal concurrency. Recall that, as discussed
in Section 4, from the perspective of a capsule, a grant from
a particular process may disappear at any time if the process
crashes, restarts, or is replaced. Thus only state inherently
tied to that process should be stored in the grant.

Where a traditional driver might use a list of structures
each tagged with a process identifier (for example, a list of
outstanding timers), with grants this state must be split into
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Figure 8: The simple implementation requires an event
handler to iterate through the grant structure of each
process to deliver an event. The graph above shows the
overhead in CPU cycles and time of this iteration for a
workload of up to 16 processes, projected out to 36 pro-
cesses. It also shows an optimized version that stores the
predicted process separately as well as an unsafe version
that uses a combined heap. Full iteration takes an addi-
tional 44 cycles for each additional process.

separate per-process lists. When an event occurs (such as a
hardware timer firing), the capsule must iterate through all
processes to find the relevant grant region.

Given enough processes, this algorithmic overhead could
prevent the system from meeting timing requirements. How-
ever, we argue that this limit is sufficiently permissive and
that memory would limit the number of processes first. More-
over, we describe an example mitigation that eliminates the
algorithmic overhead in the common case when no processes
have failed recently.

Figure 8 shows the overhead associated with delivering
a timer event as the number of processes with outstanding
timers increases. We measure the number of cycles in the
timer driver’s event handler to enqueue a timer expiration
event for the appropriate processes. When only one process
has an outstanding timer, the CPU spends 387 cycles (8 µs)
in the event handler. Each additional outstanding timer to
check adds 44 cycles (< 1 µs). This would allow up to 900
processes to have outstanding timers before exceeding the
timer granularity of 1 ms.

6.5.1 Alternatives and Optimizations. Section 5 de-
scribes a possible optimization to the timer driver: store the
process identifier containing the next expected process timer
to expire. This allows the timer driver’s event handler to enter
directly into that process’s grant region if the processes is still
alive. In addition, each process’s grant stores a weak pointer
to the subsequent timer, and so on. If any process dies, this
chain is broken and eventually the timer driver must iterate
through all grants to fix it. However, in the common case, this

optimization allows the timer driver to skip iteration. Apply-
ing this optimization in Figure 8 reduces time spent in the
event handler to a constant 360 cycles.

Finally, we measure the overhead of traversing an optimal,
but unsafe, implementation that stores pointers to process-
allocated structures (as is the case in existing embedded op-
erating systems). Because storing pointers to data avoids the
indirection and liveness checks of grants, this strategy spends
only 305 CPU cycles in the event handler—slightly faster
than the optimized timer implementation.

The optimized timer demonstrates that grants enable cap-
sule authors to construct efficient (only 55-cycle overhead)
yet safe mechanisms for storing references to numerous, pos-
sibly volatile, processes without requiring static allocation of
per-process state or an a priori understanding of system load.
Without the grant mechanism, capsules could unsafely access
process memory (e.g. processes that have been reaped).

7 RELATED WORK
Tock draws on a rich ecosystem of embedded operating
systems. It is most similar to SOS [23], which also fea-
tures dynamic loading. Tock uses new hardware facilities
and language-based safety to add memory isolation, con-
tributes grants to prevent memory exhaustion, and provides
preemptible processes to avoid CPU starvation.

Section 2 contrasts the goals and design of Tock with Ar-
duino [6], TinyOS [33], TOSThreads [28], FreeRTOS [8],
and RIOT [5]. These were chosen to be representative of a
class of systems that includes other research efforts like Con-
tiki [13–15], TinyThreads [38] and Fibers [53] as well as a
variety of industry products such as ARM’s mbed [37] and
Chromium Embedded Controller [48].

Some non-embedded operating systems use mechanisms
that share some characteristics with grants to prevent dynamic
allocation of kernel objects from exhausting system memory.
Linux cgroups allow the kernel to charge dynamic memory
allocations to a process namespace [47]. This provides the
same flexibility as grants regarding which kinds of objects
the kernel may allocate while enabling the system to impose
resource limits on process groups. Unlike grants, there are
no restrictions on pointers between kernel objects charged to
different process groups. This means the Linux kernel does
not need to isolate data structures per group, as in Tock, but
instead must garbage collect objects when the process group
terminates.

The seL4 microkernel, like Tock, avoids dynamic alloca-
tion completely in the kernel. Instead, user-level threads can
convert their own “untyped” memory into kernel objects for
use in system calls [52]. A key difference with grants is that
the kernel cannot allocate objects of arbitrary type. In Tock,
capsules allocate grants of whatever type they choose directly
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from process memory. The seL4 microkernel implements
only a minimal set of functionality and all kernel objects
are specified in the system call API, while most “operating
system” functionality is implemented in user-level threads.
Conversely, the Tock kernel implements a large and extensi-
ble set of functionality that requires a variety of granted types
depending on the hardware. Thus, relying on processes to
allocate specific kernel objects would be too inflexible.

Previous work has leveraged type-safe languages [22] to
build reliable and safe operating systems [34]. Spin [9] al-
lowed applications to extend and optimize kernel performance
by downloading modules written in Modula-3 [10]. Spin
provides relatively weak isolation between processes, which
share a common garbage-collected heap. The Singularity [24]
operating system is written in Sing# (a variant of C#) and
avoids hardware protection entirely in favor of a software iso-
lated process (SIP) abstraction. Singularity uses threaded SIPs
with separate stacks and heaps as the only unit of isolation.
It uses linked stacks to mitigate stack over-provisioning, but
the minimum stack size is 4 kB, which would allow room for
at most 16 processes on our platform. Both systems are inap-
propriate for memory-constrained embedded devices because
Modula-3 and Sing# dynamically allocate most data and use
garbage collection for memory management. Moreover, while
Modula-3 is defunct (the last release was in 2010) and Sing#
is custom-designed for Singularity, Rust is an independent
effort with relatively wide adoption.

There has been significant work on using formal methods,
instead of type-safety, to verify operating systems or their
components. For example, FSCQ [11] is a UNIX file-system
implementation verified in Coq. seL4 [26] is a verified mi-
crokernel. Yang et al. [55] use an automated theorem prover
to verify that their C# language runtime correctly enforces
type-safety. They build an operating system, Verve, using this
verified runtime. We view such work as largely complimen-
tary to Tock. For example, similar methods could be used to
verify Tock’s trusted core kernel while using capsules and
processes to isolate unverified drivers and applications.

Finally, both region-based memory management [43, 44,
49, 50] and block-level lock synchronization [41] influenced
the design of the grant interface in Tock.

8 CONCLUSION
For embedded applications like wearables, city-scale sens-
ing, autonomous cars, and personal authentication, resource-
constrained computing will continue to be challenging for
system designers. Even as computing capability increases, the
hardware resources underlying these devices will continue to
be constrained in order to lower power, shrink form-factors,
and decrease cost. However, the limitations of these systems

need not preclude the software abstractions and protections
common to general-purpose computers.

Tock is an operating system for resource-constrained sys-
tems that provides both dynamic operation and dependability.
Tock brings flexible multiprogramming to this tier of com-
puting while isolating processes from the kernel and from
each other. To support dynamic demands for kernel resources
despite limited system memory, Tock uses a new mechanism,
called grants, to split a kernel heap across processes. This
allows the system to respond to resource demands from one
process without impacting the memory available to other
processes or the kernel.

We show how Tock enables multiple system designs whose
needs are not adequately met by existing architectures, lead-
ing to new capabilities and opportunities for low-power em-
bedded systems.

The lack of isolation or security considerations in many
embedded systems has led them to be notoriously vulnerable.
As we increasingly connect low-power embedded processors
to the physical world, their poor security affects not just our
privacy, but also the places we live and work and the things
around us. Tock is a first step towards providing a more secure
foundation for these increasingly important computers.
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