
Interfacing the Internet of a Trillion Things

Bradford Campbell†, Pat Pannuto†, and Prabal Dutta
Electrical Engineering and Computer Science Department

University of Michigan
Ann Arbor, MI 48109

{bradjc,ppannuto,prabal}@umich.edu

ABSTRACT
Meaningful, reusable applications built on top of ubiquitous
and networked devices will be slow to materialize as long as
device APIs vary widely, communication protocols are not
standardized, and programming support is limited and in-
consistent. When even feature-identical devices present dif-
ferent APIs and application creators are burdened with man-
aging the variability, the promise of the swarm of devices
will go unrealized. We start addressing this issue by provid-
ing a model for devices, based on input and output ports, that
allows for a set of common interfaces to represent a range of
devices. Further, we provide a solution to the bootstrapping
problem, providing a general means to bridge the adoption
gap for a new API for the Internet of Things. We borrow
both the name, accessor, and several key design concepts
from a recent proposal by Latronico et. al, for our interface
layer that wraps currently non-conforming devices with the
standard interface. We show how a small, straightforward to
write (and read) JavaScript file can convert diverse devices
into common interfaces that are conducive for creating ap-
plications.

We realize our system with three environments that can
execute accessors, Python, Java, and Node.js, a range of ac-
cessors for both IoT and legacy devices, and a browser-based
application for interacting with devices using our proposed
interfaces. We show how the same accessor mechanism can
form synthetic devices with higher-level interfaces and we
outline how our system can be extended to support authenti-
cation, accessor control, and cloud storage support.

†Co-primary authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWEC’15, April 13, 2015, Seattle, WA, USA

1. INTRODUCTION
Networked, ubiquitous devices, from smart appliances to

automatic deadbolts, from power meters to adaptive light
bulbs, are rapidly increasing in number to form the swarm.
These devices are, and will be, little more than decoration,
however, without a reliable and useful way to communicate
and interact with them. The promised benefits of the swarm—
comprehensive sensing and monitoring, predictive device re-
sponsiveness, and personalized infrastructure—will be slow
to materialize if “connected” devices are locked behind in-
compatible communication protocols, inconsistent APIs, and
incongruent data models. If devices can only communicate
with their own cloud and every pair of devices needs a unique
adapter to talk to one another, the swarm will be completely
networked but not connected to anything.

Addressing this issue will require standardizing the inter-
faces, communication protocols, and public APIs of devices.
Much as the OpenFlow [16] protocol enabled Software De-
fined Networking research to thrive, when communications
and interfaces are standardized, higher-level exploration pros-
pers. This standardization process for the Internet of Things
is a gargantuan task, however, covering many layers of the
stack, hundreds of manufacturers, and a wide suite of func-
tionality. While we do not expect the Internet of Things to
converge on a unified interface soon, we would like to build
applications on top of the swarm today that do not have to be
re-written as the standardization process occurs.

To enable applications, bridge the gulf between devices,
and begin the transition towards standardization, we propose
defining standard interfaces for devices by modeling each
device as a canonical “black box” with input and output ports.
Ports have a name, direction, type, optional unit, and descrip-
tion. A port-based model for devices is intuitive, maps well to
simple and possibly pictorial representations of devices, and
provides a clean abstraction for distinct devices to expose the
“same” port. Conceptually, interacting with a device requires
learning which ports the device has and sending data to or
requesting data from the correct port for a particular appli-
cation. To ease port discovery and understanding, we group
ports into a set of standard interfaces that devices can instan-
tiate. These interfaces form the foundation of our proposed
standard API.

1

Currently, device APIs do not necessarily follow this model,
and those that do, do not share a standard underlying protocol
for reading and writing ports. The specifics of this protocol,
whether it be based on HTTP, CoAP [21], the Simple Thing
Protocol [5], MQTT [3], WebSockets [11], or some other ap-
plication layer protocol, are outside of the scope of this paper.
We expect that a standard will emerge, but our system is not
constrained to the eventual protocols. To allow for building
applications today, however, we provide a method, based on
the previously defined concept of “accessors” [14], of wrap-
ping non-conforming devices. Accessors in our system are
snippets of JavaScript code that provide the port-based inter-
face while converting port reads and writes to the underlying
native API of a particular device. If a device is updated with
support for the future standard, the accessor is simply dropped
and the application continues to execute unmodified.

Accessors are executed inside of an accessor runtime that
is responsible providing the standard, ports-based interface of
devices to applications in a native way given its programming
language and execution environment. Runtimes minimize the
burden of writing accessors by requiring the JavaScript ac-
cessors to focus on interacting with the device’s API and not
any complicated internal runtime APIs. Runtimes also allow
using accessors that include other accessors as dependencies.
This allows the same infrastructure to provide more desirable,
higher-level interfaces such as “watch a movie” instead of
“turn on the TV” and “turn on the DVD player.”

Standardization processes often require momentum in or-
der to gain wide traction. Our system and the use of accessors
as a “shim” layer until device APIs standardize allows for
the port-based model to gain momentum, encouraging new
devices to conform in the future. As devices standardize, the
runtime simply discards the JavaScript accessor.

To further explore the runtime architecture, accessor design,
and default port interfaces, we implement a prototype of our
proposed infrastructure. This comprises multiple runtime
environments and allows us to evaluate the complexity of
creating an accessor and the effectiveness of our system.

2. RELATED WORK
Providing a consistent and composable interface for ubiq-

uitous devices is critical for device usability and creating
applications as the devices become more numerous. Another
system that targets these goals is the Thing System [6]. The
Thing System provides a web server that presents a common
GUI for interacting with a range of devices. Each supported
device has a corresponding JavaScript wrapper that adapts
the device interface into the Thing System server. Further,
they have defined two data communication protocols, the
Thing Sensor Reporting Protocol [7] and the Simple Thing
Protocol [5]. While the Thing System is motivated by the
same general problem, our approach differs in several key
aspects. First, we focus on simplifying the task of writing the
per-device JavaScript wrapper by eliminating any framework-
level API that the wrapper must be compatible with. This

wemo_insight.js

/onoff.Power <bool>

Reset <button>

EnergyConsumed <integer::kilojoules>

/acmeter.Power <float::watt>

/acmeter.Voltage <float::watt>

Figure 1: Block model for the WeMo Insight. The Insight is
both an AC switch, supporting the /onoff interface, and an
AC meter, supporting the /acmeter interface. The Insight
also supports an odometer-like “Total Energy Consumed”
which has no standard interface. The Insight accessor exposes
custom ports to present the device-specific features.

reduces the number of lines of code in a wrapper for the
same device by half or more. Second, our system provides a
mechanism for easily creating synthetic devices with more
useful, higher-level interfaces from existing devices. Third,
our system is designed as a kernel that can be embedded in
other applications such as smartphone apps or web services.

Defining a device-level data model for classes of devices
is essential for building composable and shared applications.
Bluetooth [1] has a suite of well defined services [2] that a
device can support that specify data descriptions and types.
This ontology allows applications to interface seamlessly with
different peripherals that support the same services. While
Bluetooth has a much different focus than our system, we
could leverage these interface specifications in our device
definitions.

Accessors [14] is an existing project that we borrow the
concept of JavaScript wrappers for devices from. While the
original project focuses on wrapping devices in order to ex-
plore models of computation and interaction, we leverage
accessors as a method to build applications on top of.

3. STANDARD INTERFACE MODEL
To provide a consistent view of a wide range of devices,

we propose modeling all device interactions as a read or a
write to a well-defined port. As an example, Figure 1 shows a
representation of an AC relay device that also meters power
(e.g. The WeMo Insight [8]). It has one input/output port
(“Power”) that when written to turns the attached load on or
off and when read from returns the current power state of
the load. The remaining ports are strictly output ports and
only support reading the current power draw, daily energy
consumption, and instantaneous RMS voltage.

Ports for a device are well defined with types and optional
units. Types range from primitive types to higher-level, but
still simple, types such as color. Units are primarily used with
numeric types. For instance, they allow a monetary port to
specify that it reports in USD. Types and units aid in connect-
ing ports between devices to ensure data compatibility.

2

The port-based model allows for a clean representation
of a range of devices. Specifying control and query actions
as ports aligns well with traditional interaction modes such
as physical buttons, online web forms, GUI elements, and
status displays. Other potential device models may suitably
capture interaction patterns with devices. We advocate for the
port based model for three reasons. First, describing physical
devices as a box with inputs and outputs is intuitive. Second,
the box-and-port model adapts well to describing interactions
between devices pictorially, which may be a useful future
feature. Third, two devices, such as two different light bulbs,
may expose the same port. Applications could interact with
both bulbs knowing only about the port, and not about details
of the device.

3.1 Device Interfaces
Interfaces in our system are groups of ports that share some

common relation. Interfaces are specified in a namespaced
hierarchy to allow for logical grouping. This allows interfaces
to not only specify ports and how to interact with the device,
but also provides some descriptive information about a device
that implements them. For example, a device that provides
the pcrlighting/onoff interface describes itself as a type of
light while also specifying that it provides a “Power” port.

These interfaces, as in all interface design, must be care-
fully composed. Ideally they should be widely reusable to
facilitate application design. With common interfaces, appli-
cations can be implemented on top of the interfaces instead
of specific devices. For instance, an application that turns
the lights off in a room when the occupants leave that is im-
plemented on top of the lighting interface will work without
modification in rooms containing different smart light bulbs.

Each device is not restricted to a single interface, in fact,
we expect most devices to implement multiple interfaces for
different slices of their functionality. For instance, a power
meter with an included relay would provide both the “OnOff”
interface and the “PowerMeter” interface. Further, we expect
that there will be device- and vendor-specific interfaces for
features that are specific to only certain devices. But, much
in the way that instruction set architectures have evolved, we
hope that interfaces will standardize in the future.

3.2 Interaction
Once a common interface model has been established for

devices there must be a standard communication protocol for
interacting with the interfaces. While specifying a specific
protocol is outside of the scope of this paper, we anticipate
that HTTP or CoAP may be a good fit as interfaces and ports
may map well to URLS.

4. ACCESSORS
Our proposed standard interface presents a bootstrapping

issue. There is no incentive to program against a standard
interface if no devices support it and there is no incentive for
devices to support a standard interface if no applications use

it. Accessors solve this issue by acting as a shim layer. They
wrap device-specific implementations to present an API that
adheres to the standard interface.

Accessors are not restricted to simple protocol translations,
however. An accessor holds state and can perform arbitrary
computation. With this, accessors can translate device-centric
interfaces into semantically meaningful interfaces for syn-
thetic devices.

4.1 Accessor Design
Accessors are designed to be easy to write and comprehend.

The expectation is that a large number of accessors will need
to be written, one for every networked device currently on
the market. This implies that accessor authors are unlikely to
be experts in the accessor programming environment or even
programming at all.

To maximize accessibility and minimize maintenance over-
head, an accessor is a single JavaScript file. JavaScript is no
longer a browser-only language. It has been shown to be both
quickly accessible to novice programmers [15, 20] and vi-
able for advanced applications [17]. An accessor is a single
JavaScript file. Accessors express their capabilities impera-
tively. They provide interface()s for standard interfaces
and create port()s for device-specific features. The design
explicitly rejects any human-authored metadata files for an
accessor, as this creates cognitive load to share state across
multiple files.

4.2 Lifecycle and Execution Model
When an accessor is first loaded its init method is ex-

ecuted to allow the accessor to verify it can connect to the
device and to load any data structures as necessary. From
there, all interaction with the accessor occurs by the runtime
calling the accessor’s port functions. Each input (or inout)
port has a corresponding function in the accessor. When an
application instructs the runtime to set a port, the runtime
calls the port function with the new value of the port. The
accessor is responsible for correctly transmitting that value to
the device. If the runtime removes the accessor, its optional
wrapup function is called, allowing the accessor to perform
any necessary cleanup.

4.3 Masking JavaScript Runtime Variability
Pure JavaScript has no I/O capability. JavaScript runtime

environments (e.g. browsers, Node.js) provide APIs for web
requests or other I/O. To abstract JavaScript runtime varia-
tions, we introduce an accessor runtime API. The API in-
cludes common interfaces such as HTTP and Berkeley sock-
ets. Additionally, accessor authors can import external JavaScript
libraries (e.g. a colorspace conversion library) and the acces-
sor runtime will ensure they are available when the accessor
is run. By scoping all I/O under our accessor runtime API,
we can encapsulate and embed accessors. This enables us to
create first-class bindings between the JavaScript accessor
and other languages.

3

onoff

color

brightness
rt.color rt.http

name

hue.js

colorlib.js http

accessor runtime

onoff

brightness
rt.http

lifx.js

http
accessor
runtime

/lighting/dimmable

brightness

onoff

rt.http

infocus.js

http
accessor
runtime

onoff

rt.socket

denon.js

TCP
accessor
runtime

input

Mode lab11.js

(a) Block and Port Model of lab11

$ cat lab control.py Lab Control Application
1 import accessors Load the accessor library
2 lab11 = accessors.get accessor by location(Load the lab11 accessor (creates the object in (a))

’/usa/48109/uofm/lab11.json’) Returns a Python object with ports as attributes
3 def watch movie():
4 lab11.mode = "Movie" Set and fire the Mode port

$ cat lab11.js Accessor for Lab (A Synthetic Device)
5 var lights, proj, receiver; References to other accessors
6
7 function init() { Called when accesor is loaded (line 2)
8 proj = load dep(’/display/’, get param(’infocus’)); The parameters are URIs for accessors with the
9 audio = load dep(’/receiver’, get param(’denon’)); right configuration for our projector and receiver
10 lights = load dep(’/lighting/dimmable’, Runtime creates an aggregate of all accessors

’/usa/48109/uofm/lab11’); with dimmable interfaces at that location
11 create port("inout", "Mode", { We create a custom port unique to this accessor.

type: ’select’, For a select-type port, the runtime will enforce that
options: [’Empty’, ’Work’, ’Music’, ’Movie’] only valid values are passed (line 4). Custom ports

}); behave the same as ports from standard interfaces
12 }
13
14 function Mode(mode) { This function is invoked by line 4
15 if (mode == "Movie") {
16 lights.brightness = 0.25; This will apply to all the lights
17 proj.power = true;
18 audio.power = true;
19 audio.input = ’Media PC’; Input is implicit given Movie Mode
20 }
21 ... snipped
22 }

(b) Snippet of our lab control applet and the composite accessor it uses.

Figure 2: Composite Accessor Example. To show the ease of programming on top of accessors and the power of composite
accessors, we show a simple lab control applet. The lab control.py applet uses the composite accessor lab11, which integrates
the lighting, projector, and audio receiver into a single synthetic device. lab11 uses absolute knowledge about the room and its
exact devices—lines 8 and 9 reference the exact projector and audio receiver—as well as abstract knowledge provided by the
runtime—line 10 requests all of the dimmable lights in the room—to instantiate itself.

4.4 Synthesizing Devices by Composition
The utility of accessors extends beyond acting as shims

for legacy devices. By composing accessors, users can cre-
ate abstract devices, such as a smart home. An accessor can
express a dependency on a specific device—My Oven—or
a collection—All devices that support the /light/lighting

interface at 123 First St., Ann Arbor, MI.
Accessors that compose other accessors effectively cre-

ate new “devices”. These new devices can implement stan-
dard interfaces, e.g. /smarthome/lights. Because an
accessor is simply JavaScript, higher-level devices can eas-
ily write logic to abstract variations in device capability, e.g.
map a request to dim lights onto simpler binary lights us-
ing a user-set threshold or expose interfaces with semantic
meaning such as “watch movie” instead of Lights.Dim,
TV.Power, TV.Input, and DVD.Power. Composite ac-
cessors provide a mechanism to map from a device-centric
view—turn on stereo—to a semantic view—play music—and
can act as a key enabler towards pervasive computing.

5. IMPLEMENTATION
An instance of our web runtime is available at accessors.io

and currently includes about a dozen accessors, including
multiple devices in the same class1 and a composite accessor
1The ACme++ [9] and a WeMo Insight [8] both support the

that creates a synthetic device that represents our lab. Figure 2
includes a snippet of the composite accessor and demonstrates
how a minimal Python program can use a high-level accessor
to realize complex semantic interfaces, e.g. “Watch a movie”.

5.1 Accessor Host Server
As a first step, the accessor host server “compiles” all of

the accessors to an intermediate representation in JSON. This
compilation pass first validates the accessor. It ensures that
an accessor implements every port in an interface it claims
to provide, checks that any dependencies are valid, and is ex-
panding to ensure that runtime APIs are used correctly. The
output of the compilation is a JSON blob that includes meta-
data about the accessor, its runtime requirements, external
libraries, interfaces provided, ports created, some additional
metadata, and the original accessor JavaScript. Accessor run-
times download this intermediate representation when they
load a new accessor. This allows runtimes to ensure that all
dependencies are met before initializing an accessor.

The current implementation has a single, centralized acces-
sor host server. Device-specific accessors, e.g. a Phillips Hue
accessor, are placed in a wide tree hierarchy, organized by
vendor. Accessors can require parameters, e.g. a bridge url

for the Hue.

/onoff and the /power/ac meter interfaces.

4

accessors.io

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Lines of Code

Figure 3: CDF of lines of code for 15 accessors. As a rough
measure of the overhead for authoring accessors, we consider
their size. Our largest accessor is only 58 lines of JavaScript,
suggesting that writing accessors is accessible to a diverse
audience of potential coders.

The accessor host server includes a location-oriented hi-
erarchy that holds parameters for specific instantiations of
devices, e.g. /usa/48109/uofm/lab11/hue pat.json. This
file contains parameters for the Hue bulb ID and bridge URL
for the Hue at Pat’s desk and a pointer to the accessor for
the device at /devices/Phillips/hue.json. The synthetic
lab11 composite accessor also resides in the location tree on
the accessor host server. Runtimes treat all objects in the loca-
tion tree as complete accessors, and will resolve indirections
such as the device reference for Pat’s Hue transparently.

5.2 Accessor Runtimes
We implement three accessor runtimes. One implemen-

tation is written in JavaScript on Node.js, which has native
support for executing JavaScript [4]. The second runtime we
develop in Java using the Nashorn engine from Java 8 to
execute JavaScript [18]. Finally, we create a Python runtime.
Python has no means to directly execute JavaScript, so we use
python-bond, a library that bridges Python and an instance
Node.js [10].

Additionally, we create a webserver and RPC server to
build a “browser runtime”. Accessor code does not actually
execute in the browser. We initially attempted an in-browser
accessor runtime, but rejected the effect as browsers are too
sandboxed of an environment to support the accessor runtime
API. Browsers support only websockets, requiring a support
server to proxy other protocols such as UDP or TCP; the
same-origin policy impedes the ability to support devices that
neglect the Access-Control-Allow-Origin header—which
both the audio receiver and project in our lab omit—, requir-
ing yet another proxy for HTTP requests. Instead, we build an
RPC server with a REST API. This REST API maps the ports
for accessors to GET, PUT, and POST for reading, setting, and
firing ports respectively. The webserver uses the metadata
from the compiled accessor to build a GUI on-demand for ac-
cessors. This accessor webserver is available at accessors.io.

 0.0001

 0.001

 0.01

 0.1

 1

 10

Java Native Node.js Python

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Runtime

First Run
Steady-state

Figure 4: Accessor Runtime Overhead. To measure runtime
overhead, we run a loop of HTTP requests to localhost

using accessors from various runtimes. Running accessor
JavaScript code in non-JavaScript-based runtimes requires
an embedded a JavaScript engine (Java) or communicat-
ing with an external JavaScript engine (Python). For non-
JavaScript runtimes, loading the JavaScript engine adds a
one-time warmup penalty. For the non-embedded Python
case, interprocess communication adds significant overhead
to the continued execution.

6. INITIAL EVALUATION AND INSIGHTS
Our proposed standard interface and accessor environment

are very young—we have written a total of fifteen accessors.
However, this preliminary exploration has been very informa-
tive and shaped many of our implementation design choices.
Here we attempt to capture that reasoning and present prelim-
inary evidence for why we believe our architecture can scale
far beyond fifteen accessors.

6.1 Accessor Creation Overhead
Essential to encouraging traction and adoption of our sys-

tem is minimizing the barrier to creating and maintaining
accessors for devices. This encompasses reducing the amount
of framework overhead present in accessors and providing a
comprehensive standard library to use when writing acces-
sors. Towards this reduction, a key element in our design is
the single-file, self-describing accessor. Our initial design re-
quired users to explicitly list ports and interfaces in a separate
metadata section. With only the preliminary set of acces-
sors, the authors continually failed to keep the metadata and
implementation in sync, motivating our decision to program-
matically extract all metadata from the accessor source.

To quantify the complexity of accessors we examine the
number of lines of JavaScript source code present in the fif-
teen accessors we have created so far. Figure 3 shows the
CDF of the files. On average, our accessors are 33 lines long,
and our longest is 58. While this evaluation does not replace
a user study or a more thorough evaluation of the accessor
creation complexity, it does provide some initial insight into
the relative simplicity of creating a JavaScript accessor.

5

accessors.io

6.2 JavaScript Execution Overhead
Runtime environments must be able to execute JavaScript

to use accessors, however, most programming languages and
runtimes do not have existing JavaScript engines built in. To
create runtimes, then, one must either compile the JavaScript
to the runtime’s native language or execute the accessor in a
separate JavaScript environment. Figure 4 compares the over-
head of the three runtimes described in Section 5.2. We run
a small accessor app that makes continuous HTTP requests
to localhost. We also include a native JavaScript applet that
directly issues the same HTTP requests as a baseline.

The most significant runtime overhead is loading the JavaScript
engine for non-native JavaScript runtimes, which leads to the
high cost for the first run. Most JavaScript engines include
analyses that optimize running code, accounting for the more
modest improvements in native JavaScript. With Nashorn,
Java is able to run JavaScript directly on the Java Virtual
Machine, resulting in near-zero context switch overhead be-
tween runtimes. As Java is generally more performant, the
Java runtime is actually able to outperform even the native
JavaScript. Python, on the other hand, requires continuous
interprocess communication between the Python and Node.js
engines. The python-bond library communications between
processes by reading and writing serialized JSON to stdin/std-
out, a particularly inefficient mechanism, resulting in about
100× runtime overhead.

The high performance of the native Node.js and the in-
tegrated Java solution, coupled with the diverse and grow-
ing number of embedded JavaScript components and en-
gines [13, 19], lead us to believe that choosing JavaScript
as the intermediate language is the correct choice. The cur-
rent performance of the Python implementation is largely
an implementation detail, and already new libraries such as
PyV8 [12] are emerging to run JavaScript from Python with
much higher efficiency.

7. FUTURE DIRECTIONS
Our prototype device interface and accessor system presents

several areas for future work and exploration.

7.1 Authentication
The accessor system we propose provides a method for

users to access data and control devices, but does not provide
a mechanism for validating that the users should be able to
access those devices. We intentionally do not build authenti-
cation into the accessor host server as this does not provide
a method for revoking access. A user can cache an accessor
and execute it later, even if the user could not re-request the
accessor from the server. Therefore, authentication must ex-
ist between the executing accessor and the end device. This,
however, requires the accessor to understand the identity of
the user and perform the possibly complex authentication
procedure itself, burdening the accessor creator.

A possible solution is to allow the accessor runtime to
perform the authentication on behalf of the accessor and

then have it provide the accessor with a token that it can use
in its requests. This approach is feasible if specifying the
authentication scheme and authentication parameters can be
done in a concise way for a range of devices, that is, that there
are only a handful of authentication schemes used in practice
that can be consistently parametrized. Surveying currently
used authentication mechanisms and integrating them into
accessors is left as future work.

7.2 Composing Accessors
Composing accessors can be a very powerful tool for cre-

ating complex interactions with the physical world without
a prohibitively high barrier to entry. Our system includes
one form of composed accessors in the form of accessors
that use other accessors as dependencies. However, another
useful composition may be an event-based model where a
change in the output of one accessor triggers an event in
another accessor. Take, for example, a composition of the
“RoomTemperature” and “Hue” accessors. A user may wish
to illuminate the Hue when the room temperature exceeds
a certain threshold. Composing accessors in this manner re-
quires an environment where this logic can be specified and
the long-running execution can occur. How to enable this
type of composition of accessors is left as future work.

7.3 Authorizing Device Communication
Once devices can communicate, there needs to be a mech-

anism for determining if they should communicate. While de-
vices may initially be trusted, bugs or malicious code should
not be able to cause devices to interact in a manner the user
does not expect. The port based definition of devices allows
for one natural method to restrict communication. The man-
agement environment discussed in Section 7.2 can issue a
pair of cryptographic keys for the communicating devices
that are assigned to the relevant ports. Those devices will now
only listen to messages for specific ports that are encrypted
with the correct keys. Any attempts by a misbehaving device
to control a device it is not allowed to will be ignored.

7.4 Seamless Cloud Interaction
Accessors and the standard device model provide two nat-

ural mechanisms for leveraging cloud resources with device
interactions. First, certain low-capability devices that are con-
strained by energy-harvesting power supplies or limited net-
work connectivity can be proxied in the cloud. That is, a cloud
endpoint would provide the port interface on behalf of the
device, and all interactions would be handled by the cloud
instead of the actual device. Second, specified ports could be
handled by the cloud instead of the device. For instance, in a
power metering example, the power meter can easily handle a
current power query, but a port that provides historical power
data over some time range may be much easier to implement
with a cloud service that is collecting the historical data. A
mechanism similar to an HTTP redirect issued by the device
would likely make the hand-off seamless.

6

8. CONCLUSIONS
The Internet of Things is missing a standard interface. This

complicates building applications which have to compensate
for the variability in devices, are limited to only specific de-
vices, and have to be updated when new devices are added.
We propose a model, based on defining devices as blocks
with input and output ports, for devices that allows for a com-
mon interface across devices that applications can be built on.
To enable this functionality today, before devices adopt this
model, we leverage the concept of accessors, or JavaScript
wrappers around devices that convert the device-specific in-
terface into our proposed model. These accessors are simple
to write and can be removed when the device supports the
standard interface. Our implementation of accessors allows
new applications to benefit from this interface while provid-
ing a platform for addressing issues such as authentication,
access control, and device composition. Building useful ap-
plications is a primary goal of the swarm, and our system is a
fundamental step towards achieving that goal.

9. ACKNOWLEDGMENTS
This research was conducted with Government support

under and awarded by DoD, Air Force Office of Scientific Re-
search, National Defense Science and Engineering Graduate
(NDSEG) Fellowship, 32 CFR 168a This work was supported
in part by the TerraSwarm Research Center, one of six cen-
ters supported by the STARnet phase of the Focus Center
Research Program (FCRP), a Semiconductor Research Cor-
poration program sponsored by MARCO and DARPA. This
material is based upon work partially supported by the Na-
tional Science Foundation under grant CNS-1350967, and
generous gifts from Intel and Texas Instruments.

10. REFERENCES
[1] Bluetooth. https://www.bluetooth.org.
[2] Bluetooth Services. https://developer.bluetooth.org/gatt/

services/Pages/ServicesHome.aspx.
[3] MQTT. http://mqtt.org.
[4] Node.js. http://nodejs.org/.
[5] Simple Thing Protocol. http://thethingsystem.com/dev/

Simple-Thing-Protocol.html.
[6] The Thing System.

http://thethingsystem.com/index.html.
[7] Thing Sensor Reporting Protocol.

http://thethingsystem.com/dev/
Thing-Sensor-Reporting-Protocol.html.

[8] Belkin. WeMo Insight Switch. http://www.belkin.com/
us/support-product?pid=01t80000003JS3FAAW, 2014.
Part #: F7C029fc.

[9] B. Campbell. ACme++.
http://lab11.eecs.umich.edu/pcb.html#ACme++, Jan.
2014.

[10] Y. D’Elia. Python Bond. http://www.thregr.org/
∼wavexx/software/python-bond/.

[11] I. Fette and A. Melnikov. The WebSocket Protocol.
RFC 6455 (Proposed Standard), Dec. 2011.

[12] L. Flier. PyV8. https://code.google.com/p/pyv8/.
[13] A. Hidayat. Esprima. http://esprima.org/.
[14] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver,

A. Wasicek, and M. Weber. A vision of swarmlets.
Internet Computing, IEEE, Jan. 2015.

[15] Q. H. Mahmoud, W. Dobosiewicz, and D. Swayne.
Redesigning introductory computer programming with
HTML, JavaScript, and Java. In Proceedings of the
35th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’04, pages 120–124, New
York, NY, USA, 2004. ACM.

[16] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[17] T. Mikkonen and A. Taivalsaari. Using JavaScript as a
real programming language. Technical report,
Mountain View, CA, USA, 2007.

[18] OpenJDK. Nashorn.
http://openjdk.java.net/projects/nashorn/.

[19] Pur3 Ltd. Espruino. http://www.espruino.com/.
[20] D. Reed. Rethinking CS0 with JavaScript. In

Proceedings of the Thirty-second SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’01, pages 100–104, New York, NY, USA, 2001. ACM.

[21] Z. Shelby, K. Hartke, and C. Bormann. The
Constrained Application Protocol (CoAP). RFC 7252
(Proposed Standard), June 2014.

7

https://www.bluetooth.org
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://mqtt.org
http://nodejs.org/
http://thethingsystem.com/dev/Simple-Thing-Protocol.html
http://thethingsystem.com/dev/Simple-Thing-Protocol.html
http://thethingsystem.com/index.html
http://thethingsystem.com/dev/Thing-Sensor-Reporting-Protocol.html
http://thethingsystem.com/dev/Thing-Sensor-Reporting-Protocol.html
http://www.belkin.com/us/support-product?pid=01t80000003JS3FAAW
http://www.belkin.com/us/support-product?pid=01t80000003JS3FAAW
http://lab11.eecs.umich.edu/pcb.html#ACme++
http://www.thregr.org/~wavexx/software/python-bond/
http://www.thregr.org/~wavexx/software/python-bond/
https://code.google.com/p/pyv8/
http://esprima.org/
http://openjdk.java.net/projects/nashorn/
http://www.espruino.com/

	Introduction
	Related Work
	Standard Interface Model
	Device Interfaces
	Interaction

	Accessors
	Accessor Design
	Lifecycle and Execution Model
	Masking JavaScript Runtime Variability
	Synthesizing Devices by Composition

	Implementation
	Accessor Host Server
	Accessor Runtimes

	Initial Evaluation and Insights
	Accessor Creation Overhead
	JavaScript Execution Overhead

	Future Directions
	Authentication
	Composing Accessors
	Authorizing Device Communication
	Seamless Cloud Interaction

	Conclusions
	Acknowledgments
	References

