
CS276 Cryptography Spring 2006

Lecture 19: 2006.03.21
Lecturer: David Wagner Scribe: Adrian Mettler

19.1 Proof of Security for El Gamal

Recall, El Gamal is defined for a cyclic group G = 〈g〉, whose elements compose the domain Zq. It has a

private key x
$← Zq, with corresponding public key h = gx.

Encryption of a message m ∈ Zq is given by E(m) = (gr, hr ·m) for a per-message random value r
$← Zq.

The discrete Diffie-Hellman (DDH) assumption is that the tuple (gx, gy, gxy) is computationally indistin-

guishable from (gx, gy, gz) for x, y, z
$← Zq.

Theorem 19.1 If the Discrete Diffie-Hellman problem is hard (i.e. if the DDH assumption holds), El Gamal
is IND-CPA secure.

Proof: Assume, by contradiction, that we have an adversary that breaks El Gamal, i.e. that it has significant
advantage by a real-or-random definition,

AdvA = Pr[AE
pk(pk) = 1]− Pr[AEpk◦$(pk) = 1]

Since El Gamal is a public key encryption scheme, if it is secure against a single query it is secure against q
queries, so we only need to show that it is (t, q, ε) secure for q = 1; we can thus assume that the adversary
A makes exactly one query.

Given such an adversary A that runs in time t and has advantage δ, we can construct an adversary B for
DDH that runs in time t + O(1) and has avantage δ. Algorithm B(a, b, c) is as follows:

1. Run AEB (a), where B’s version of the encryption oracle EB answers its one query m with (b, c ·m).

2. Output the same result as A does.

In the case where B is called on a triple of the form (gx, gr, grx), what A sees is identical to interacting with
a “real” encryption oracle, B(gx, gr, grx) = AEpk(pk). In the case where B is called on a tuple of the form
(gx, gr, gz), A sees the values a = gx and (b, c ·m) = (gr, gz ·m). Since gz is selected uniformly at random,
gz ·m is also a uniform random value and is thus completely indistinguishable from grx ·$(m). As (gr, gz ·m)
is the same distribution as (gr, grx · $(m), This makes B a perfect simulator of a random oracle in this case,
B(gx, gr, gz) = AEpk◦$(pk).

This construction thus turns an adversary that breaks El-Gamal into one that breaks DDH with the same
advantage, adding constant time complexity.

19-1



19-2 Lecture 19: 2006.03.21

19.2 Efficient Asymmetric Encryption

The Golwasser-Micali construction allows us to transmit a single bit in a IND-CPA-secure manner using
a trapdoor one-way function, but we’d like a more efficient way to utilize trapdoor one-way functions for
encryption. In the case of the RSA trapdoor one way function, for example, we’d like only those who can
compute r from r3 to be able to decrypt the message. Actually, we’d like IND-CPA security, so only a
recipient with the private key could distinguish any encrypted message from another. Note that we can’t
just apply an arbitrary symmetric key scheme like AES, i.e. E(m) = (r3, AESr(m)), since leaking partial
knowledge about the key, in this case its cube, could render AES inscure.

Instead, schemes of the form E(m) = (r3,H(r)⊕m) has been proposed, where H is a “secure hash function”,
along the lines of SHA-1. Note that such a scheme isn’t secure for just any hash function, as a correct guess
for m allows the adversary to see H(r). If H were invertible, the aversary could then compute r3 and see if
its guess for m was correct. Our first requirement for H is thus that it is one-way. But this isn’t sufficient:
r3 itself is a one-way function, but using that as the hash would making recovering m trivial. In order to
convince ourselves that this encryption scheme is secure, we want to have some notion of a generic secure
hash function, which has been chosen to avoid any bad interactions with the other primitives we are using.

Ideally, we’d define some notion of correctness for a hash function the same way as we have for other
cryptographic primitives; if we did this, we could build up schemes based on the guarantees provided by the
definition of a secure hash function. There is no clear way how to do this however; intuitively, we’d like our
hash function to be difficult to distinguish from random until sampled, but a notion such as

AdvA = Pr[ASHA−1 = 1]− Pr[R← Func({0, 1} → {0, 1}160);AR = 1]

can’t work because hash functions are deterministic. Consider the attack

Af () = if f("Hello World") = 0x33ab... then 1 else 0

19.3 The Random Oracle Model

Certainly, if our scheme would be broken for any choice of hash function, we can’t blame weakneses of the
scheme on hash function. We can define a “universal attack” as one that defeats a scheme regardless of the
hash function that is chosen.
Try 1: A schme that uses a hash function is secure if it is provably secure against universal attacks. This
isn’t a good criterion however, as it could be that only a small number of hash functions are good enough
for the scheme to work. One could conceive of a scheme that, for example, was insecure for any hash whose
first bit was close to being evenly distributed between 0 and 1.

Instead, we can consider probabalistic behavior of the scheme over the space of possible hash functions.

We can define A as a semi-universal attack against scheme S if Pr[H ← Func({0, 1} → {0, 1}160);A breaks S[H]]
is significant.
Try 2: A scheme is considered secure if it is provably secure against semi-universal attacks. The problem
with this definition is that is unrealistically hard on the attacker. In essense, it says that the attacker doesn’t
know what hash we are using, i.e. that we have a secret hash the attacker can’t evaluate. Any real scheme
would use a known hash function, which the attacker could evaluate as much as it liked, limited only by
compuational power.

Try 3: A scheme is secure if Pr[H ← Func({0, 1} → {0, 1}160);AHbreaksS[H]]. Note that here the adversary
is given the hash function as an oracle. This is known as the Random Oracle Model, and is often used for
evaluating the security of encryption schemes using hash functions.



Lecture 19: 2006.03.21 19-3

Figure 19.1: The Random Oracle Model and Hash-based asymmetric encryption scheme.

The sender, receiver, and malicious parties all have access to the random oracle H, which can be considered
a random function from all strings to hashes of some fixed length.

Specifically, a scheme that uses a concrete hash function such as SHA-1 is analyzed with the hash function
replaced with a random oracle. Once the scheme is proved secure in the random oracle, we can make a
somewhat handwavey statement about how if SHA-1 behaves the way we’d like it to, it’s a lot like a random
function and thus the scheme will continue to be secure with SHA-1. This could be a dangerous move, as
there’s no guarantee that SHA-1 hashes are adequately random. Essentially, this reasoning boils down to
the assumption that any adversary won’t use any deep knowledge of the structure of SHA-1 and will treat
it like a black box random function. In particular, we assume that previous queries don’t help the adversary
invert the hash function unless the adversary already queried the pre-image.

19.4 An IND-CPA Asymmetric Encryption Scheme in the Ran-
dom Oracle Model

Real-or-random IND-CPA security in the random oracle model can be defined by

AdvA = |Pr[AH,EH
pk(pk) = 1]− Pr[AH,EH

pk◦$(pk) = 1]|

Left-or right IND-CPA is

AdvA = |Pr[AH,EH
pk◦§0(pk) = 1]− Pr[AH,EH

pk◦§1(pk) = 1]|

Note that it is inappropriate in a random-oracle-model security theorem to parameterize against the number
of queries to the random oracle. This is because evaluating any real hash function is purely computational
and is not visible to any of the honest parties. Evaluation of the hash function will thus only be reflected in
the t factor of the security determined for a cryptosystem.

Theorem 19.2 E(m) = (T (r),H(r)⊕m) is IND-CPA if T is a trapdoor one-way permutation and H is a
random oracle.

The proof will use the left-right definition of IND-CPA, and the scenario depicted in Figure 19.2.

Ideas behind the proof:

1. We need only consider one query to the encryption oracle, q = 1, since this is a public key encryption
scheme. Since the adversary makes only one query, it must be of the following form:

(a) Query H some number of times



19-4 Lecture 19: 2006.03.21

(b) Query E once

(c) Query H some number of times

(d) Output “left” or “right”.

2. In step (b), the value H(r) used in the encryption is uniformly random, provided the adversary has
not already queried r, therefore the value H(r) ⊕mi that the adversary sees is also uniform random
and can’t give the adversary any information.

3. As long as adversary doesn’t query r in step (c), H(r) ⊕mi remains indistinguishable from random
for the adversary.

Proof: Let the adversary A make one query to its E oracle. If A breaks the encryption scheme with
some probabality ε, the following trapdoor-one-way-permutation adversary B will break T with at least the
same probability. In other words, we will show that one cannot break the encryption without breaking the
trapdoor.

Let r be a uniform random value in the domain of T , and let y = Tpk(r). Then, define B as follows (also
see Figure 19.3):

1. Run AH,e such that e(m0,m1) = (y, $(mi)) (the value to invert and a uniform random ciphertext)

2. Let ai be the set of queries A made to oracle H. If ∃i.Tpk(ai) = y, then output ai.

3. Else fail.

If A can break the encryption sheme with advantage ε, B can break the trapdoor with the same advantage.
Define the event Lucky as {∃i.ai = r}. In the event that Lucky is true, B, which has only been given access
to y, has inverted the trapdoor and recovered r without using any additional information (it hasn’t queried
a “real” encryption oracle). This gives a procedure for inverting T with probability at least Pr[Lucky].

Note that if Lucky is false, the behavior of B’s “fake” encryptor e is identical to that of a real encryptor
making use of a random oracle. This is because the values H(r), H(r)⊕m0, and H(r)⊕m1 have identically
uniform distributions. Since the fake encryptor behaves identically to a real encryptor in this case, and the
fake encryptor is independent of the inputs (m0,m1), adversary A can have no advantage in the case that
Lucky is false. In particular, there is always an equal number of possible oracles H such that the correct
answer is “Left” as there are such that the correct answer is “Right”, and as long as A doesn’t query r it
can’t tell which class of oracle it is dealing with. There is a bijective mapping between every hash function
H and its opposite H ′ given by

H ′(x) = if x = r then H(x)⊕m0 ⊕m1 else H(x)

This means that AdvA = ε ≤ Pr[Lucky] ≤ AdvB.



Lecture 19: 2006.03.21 19-5

Figure 19.2: Left and right worlds for hash-based asymmetric encryption scheme.

Figure 19.3: Trapdoor one-way permutation adversary B


