UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering
 and Computer Sciences

B. E. BOSER

Problem Set 4
EE 42 / 100
Due Tuesday, February 19, 2008

In problems you are asked to verify your result with a circuit simulator. Please follow the guidelines presented in Problem Set 3 which apply to this and all future homework sets.

1. Solve problem 2 of quiz 2 for $I_{1}=3 \mathrm{~A}$. Use the values stated in the quiz for elements not specified here.
2. Quiz 2, problem 4: Find the value of I_{3} for $V_{1}=5 \mathrm{~V}$.
3. Quiz 2, problem 7: Find the value of R_{eq} for $R_{2}=10 \mathrm{k} \Omega$.
4. Quiz 2, problem 7: Find the value of R_{3} for $R_{\mathrm{eq}}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega$, and $R_{2}=10 \mathrm{k} \Omega$.
5. Quiz 2, problem 9: Find the power dissipated in R_{2}.
6. Problem 4.6 in Nilsson and Riedel, $8^{\text {th }}$ edition
7. Problem 4.15 and verify your solution with circuit simulation. The simulator output (operating point analysis) should include a list of all node voltages and branch currents.
Suggestion: Use a program (e.g. Matlab) to solve the equations numerically.
8. Problem 4.21 and verify your result with circuit simulation
9. Suggestion only: do the assessment problems on page 123 in Nilsson and Riedel, $8^{\text {th }}$ edition
10. Draw the Thévenin and Norton equivalent circuits for the circuit shown in Figure P4.65 (in Nilsson and Riedel, $8^{\text {th }}$ edition) and calculate the values of the circuit elements.
11. Problem 4.68
12. Problem 4.69
13. Find algebraic expressions for the circuit elements of a Norton equivalent circuit representing the behavior at terminals a-b of the circuit shown below.

14. Find algebraic expressions for the circuit elements of a Thévenin equivalent circuit representing the behavior at terminals a-b of the circuit shown below.

15. Find an algebraic expression for i_{x}. Simplify your result as much as possible (e.g. no fractions of fractions).

16. Assume that the operational amplifier in the circuit below is ideal.
(a) Find an expression for voltage v_{x}.
(b) Find an algebraic expression for the value of the voltage gain, $\frac{v_{0}}{v_{i}}$. Simplify your result as much as possible (e.g. no fractions of fractions).

