Read Sections Sections 4.1-6 and 4.8 in Alexander \& Sadiku.

1. Redo Example 4.4 in Alexander \& Sadiku for the following component values: $20 \mathrm{~V} \rightarrow V_{1}=\quad \mathrm{V}, 4 \mathrm{~A} \rightarrow$ $I_{1}=\mathrm{mA}, 1 \Omega \rightarrow R_{1}=\mathrm{k} \Omega, 2 \Omega \rightarrow R_{2}=\mathrm{k} \Omega, 3 \Omega \rightarrow R_{3}=\mathrm{k} \Omega, 4 \Omega \rightarrow R_{4}=\quad \mathrm{k} \Omega$ and $5 \Omega \rightarrow R_{5}=\mathrm{k} \Omega$.
$i_{0}=\square_{0}^{4 \mathrm{pts}}$
2. Redo Example 4.8 in Alexander \& Sadiku for the following component values: $32 \mathrm{~V} \rightarrow V_{1}=\mathrm{V}, 2 \mathrm{~A} \rightarrow$ $I_{1}=\mathrm{mA}, 1 \Omega \rightarrow R_{1}=\mathrm{k} \Omega, 4 \Omega \rightarrow R_{2}=\mathrm{k} \Omega, 12 \Omega \rightarrow R_{3}=\mathrm{k} \Omega$.
$i_{R_{L}}\left(R_{L}=1 \mathrm{k} \Omega\right)=$ $i_{R_{L}}\left(R_{L}=4 \mathrm{k} \Omega\right)=$ $i_{R_{L}}\left(R_{L}=9 \mathrm{k} \Omega\right)=$

3. Find component values such that all three circuits shown behave identically.

Parameter: $I_{1}=\mathrm{mA}, V_{1}=\mathrm{V}, R_{1}=\mathrm{k} \Omega$ and $R_{2}=\mathrm{k} \Omega$.

(a)

(b)

(c)
4. Find an equivalent representation for the I / V characteristics at terminals A and B of the circuit below consisting of only a current source I_{x} and resistor R_{x}.
Draw the schematic of the equivalent circuit consisting of a current source I_{x} and resistor R_{x}. Label the components and terminals A and B.
\square

Calculate the values of I_{x} and R_{x} for $I_{1}=\mathrm{mA}, V_{2}=\mathrm{V}, I_{3}=\mathrm{mA}, R_{1}=\mathrm{k} \Omega, R_{2}=\mathrm{k} \Omega$, and $R_{3}=\mathrm{k} \Omega$.

5. Calculate the value of current i_{x}. Parameter $I_{1}=\mathrm{mA}, V_{2}=\mathrm{V}, V_{3}=\mathrm{V}, R_{1}=\mathrm{k} \Omega, R_{2}=\mathrm{k} \Omega$, $R_{3}=\mathrm{k} \Omega$ and $R_{4}=\mathrm{k} \Omega$.

6. For evaluation, circuit (a^{\prime}) is temporarily connected to circuit (a) and the following measurements are taken with the ampère- and volt-meters shown in circuit (a^{\prime}) (for different values of R_{L}):

$$
\begin{array}{rlll}
\text { i) } & V= & \mathrm{V} & A= \\
\text { ii) } & \mathrm{mA} \\
\text { in } & \mathrm{V} & = & \mathrm{mA}
\end{array}
$$

a) Determine the values of V_{T} and R_{T} such that circuits (a) and (b) behave identically.
$V_{T}=\square$

$\left.R_{T}=\square$| opt. |
| :--- |
| 11 |
| opt. |
| 12 | \right\rvert\,$. \square . ~$

b) The apprentice is asked to verify the measurement, but inadvertently mixes up the volt- and ampèremeters. What readings does he get when redoing measurement (i) above? Use the values from part (a) for V_{T} and R_{T}.

7. Find component values such that all three circuits shown behave identically. Given: $I_{1}=\mathrm{mA}, V_{1}=\quad \mathrm{V}$, $R_{1}=\mathrm{k} \Omega$ and $R_{2}=\mathrm{k} \Omega$.

(a)

(b)

(c)
8. Find the value of current i_{2}. Parameters: $V_{1}=\mathrm{V}, I_{1}=\mathrm{mA}, R_{1}=\mathrm{k} \Omega, R_{2}=\mathrm{k} \Omega, R_{3}=\mathrm{k} \Omega$, $R_{4}=\quad \mathrm{k} \Omega$. Hint: Use source transformation.
$i_{2}=\square{ }^{19}$

9. Find the Thevenin equivalent for port A-B in the circuit shown below. Use the following component values: resistors $\mathrm{k} \Omega$, voltage sources V , current sources mA .

Password:
Submit Reload

