EECS 40

UID:

Read Sections Sections 4.1-6 and 4.8 in Alexander & Sadiku.

1. Redo Example 4.4 in Alexander & Sadiku for the following component values: $20 \text{ V} \rightarrow V_1 = V$, $4 \text{ A} \rightarrow I_1 = \text{mA}$, $1 \Omega \rightarrow R_1 = \text{k}\Omega$, $2 \Omega \rightarrow R_2 = \text{k}\Omega$, $3 \Omega \rightarrow R_3 = \text{k}\Omega$, $4 \Omega \rightarrow R_4 = \text{k}\Omega$ and $5 \Omega \rightarrow R_5 = \text{k}\Omega$.

$$i_0 = {}^{4 \, \mathrm{pts}}$$

2. Redo Example 4.8 in Alexander & Sadiku for the following component values: $32 \text{ V} \rightarrow V_1 = V$, $2 \text{ A} \rightarrow I_1 = \text{mA}$, $1 \Omega \rightarrow R_1 = \text{k}\Omega$, $4 \Omega \rightarrow R_2 = \text{k}\Omega$, $12 \Omega \rightarrow R_3 = \text{k}\Omega$.

$$\begin{array}{ll} i_{R_L}(R_L=1\,\mathrm{k}\Omega) = & \begin{array}{c} ^{2\,\mathrm{pts.}} \\ i_{R_L}(R_L=4\,\mathrm{k}\Omega) = & \begin{array}{c} ^{2\,\mathrm{pts.}} \\ ^{2\,\mathrm{pts.}} \end{array} \\ i_{R_L}(R_L=9\,\mathrm{k}\Omega) = & \begin{array}{c} ^{3\,\mathrm{pts.}} \end{array} \end{array}$$

3. Find component values such that all three circuits shown behave identically.

Parameter: $I_1 = mA$, $V_1 = V$, $R_1 = k\Omega$ and $R_2 = k\Omega$

4. Find an equivalent representation for the I/V characteristics at terminals A and B of the circuit below consisting of only a current source I_x and resistor R_x .

Draw the schematic of the equivalent circuit consisting of a current source I_x and resistor R_x . Label the components and terminals A and B.

Calculate the values of I_x and R_x for $I_1 = mA$, $V_2 = V$, $I_3 = mA$, $R_1 = k\Omega$, $R_2 = mA$ $k\Omega$, and $R_3 =$

$$I_{\mathcal{X}}= egin{array}{cccc} & & & ^{1\,\mathrm{pt.}} & & \\ & & & & & 8 & & \\ & & & & R_{\mathcal{X}}= & & & & 9 & & \end{array}$$

5. Calculate the value of current i_x . Parameter $I_1 = \text{mA}$, $V_2 = \text{V}$, $V_3 = \text{V}$, $V_3 = \text{k}\Omega$, $V_2 = \text{k}\Omega$, $R_3 = k\Omega$ and $R_4 = k\Omega$.

$$i_{\chi}=rac{12 ext{ pts.}}{10}$$

6. For evaluation, circuit (a') is temporarily connected to circuit (a) and the following measurements are taken with the ampère- and volt-meters shown in circuit (a') (for different values of R_L):

i)
$$V = V A = mA$$

ii) $V = V A = mA$

ii)
$$V = V A = mA$$

a) Determine the values of V_T and R_T such that circuits (a) and (b) behave identically.

$$V_T= egin{array}{c} {
m op} & {
m op} \ R_T= & {
m op} \ {
m 11} \end{array}$$

b) The apprentice is asked to verify the measurement, but inadvertently mixes up the volt- and ampèremeters. What readings does he get when redoing measurement (i) above? Use the values from part (a) for V_T and R_T .

$$V =$$
 $A =$
op
13
op
14

7. Find component values such that all three circuits shown behave identically. Given: $I_1 = mA$, $V_1 = V$, $R_1 = k\Omega$ and $R_2 = k\Omega$.

17	opt
$V_T =$	15 opt
$R_T =$	16 opt
$I_N =$	17 opt
$R_N =$	18

8. Find the value of current i_2 . Parameters: $V_1 = V$, $I_1 = mA$, $R_1 = k\Omega$, $R_2 = k\Omega$, $R_3 = k\Omega$, $R_4 = k\Omega$. Hint: Use source transformation.

- 9. Find the Thevenin equivalent for port A-B in the circuit shown below. Use the following component values: resistors $k\Omega$, voltage sources V, current sources MA.
 - $V_T = egin{array}{c} ext{opt.} \ ext{20} \ ext{opt.} \ ext{R}_T = \ ext{21} \end{array}$

Password: