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are considering a realization of the chaotic chip and its efficient Torus-Doubling Bifurcations in Four
engineering applications. Mutually Coupled Chua’s Circuits
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A A A whereve,;, voej, ir; are the voltages across capacit6rs;, Cs;,
+ ’V‘ VVV - Wv + ; ’ 7 J . . ; 7
Ro Ry 2 and the current flowing through the inductby, respectively, and
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L T is thev— characteristic of the Chua’s diodér; shown in Fig. 1(b).
) Thus the state equations describing the system in Fig. 1(a) are as
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Fig. 1. (a) Circuit diagram of four mutually coupled Chua’s circuits coupled dt Cas L2 ars @28, "
via resistorsR... (b) v— characteristic of Chua’s diod® . dira 1
2 = — —[vces + Roir:
It I3 [vees + Roirs]
by Ashwin and Swift, we choose the hyperplane of constanas dvers _ 1 i(vcm —vera) — f(veia)
the Poincag section, wheré;, is the current flowing through the dt Cua [ R4
inductor L in one of the Chua’s circuit. We observe the points where +i(’von ¥ vors 4 ve1s — Svena)
ir, = I, for some fixedl, and project them onto the-—vc2 plane. R. o ’ o
Although the state space of the system is 12-D, this projection of tiyg,.., 1T )
dynamics onto a two-dimensional Poingasection still reveals the — 7, = ¢, E(“CH —veaa) L
important features of the torus-doubling phenomena. The system OJZ-L4 )
four mutually coupled Chua’s circuits we examine in this paper isT = - ﬂ[vcm + RoiL4] (3)

described in Section Il. An interesting landscape of torus-doublingn ' . . ) . .
bifurcation phenomenon observed from the system is presentedfere ffc is the resistance of the linear coupling resistors and
= 01, Cz] = (s, LJ' = L, Roj = Ro, R‘]' = R, and

Section Ill. Some results numerically simulated via the softwargjf ’ )
INSITE [11] are also presented in this section to illustrate results frompes = N forj = 1,2, 3, 4.
the model agreeing qualitatively to the experimental observations.
Ill. TORUSDOUBLING BIFURCATION IN FOUR
MuTuALLY CoupLED CHUA'S CIRCUITS
Il. DESCRIPTION OF THESYSTEM
The system we examine in this paper is shown in Fig. 1(a). Foyr1 poincag Map for Torus-Doubling Bifurcations

identical Chua’s circuits [12]-[14 tuall led via six li . oo
identical Chua's circuits [12]-{14] are mutually coupled via six linear The asymptotic behavior in thec1—vc2 phase plane of Chua’s

resistorsi.. The parameters in each Chua’s circuits are assumed to tl)recuit is muddled by an infinite tanale of intersections of the
identical to those in the other Chua’s circuits initially. The dynamic; > Siectory unon itself Zn offective methgd to untanale such a mess of
of each uncoupled Chua’s circuit is governed by the following sta{e! yup ) S g'e su

equations: points and extract some useful asymptotic information is to analyze

the dynamics of the associated Poircanap.

dven s 171 In our investigation we use the curreit flowing through the
Vel . L . L, .
ar Ci; [y(vczf —wvoij) — f(’t'clj)} inductor L of one Chua'’s circuit to define the Poinéasection and
Jvers IJ 1J observe the points where the trajectories cross the plare I and
’de;z’ =ao {ﬁ(l’(ﬂj —voej) + 1’,“} project them onto the corresponding—vc2. I is a constant current
v 25 LA chosen to fix the Poincarsection. In this way, the dynamical behavior
di 1 . . e pirel . ,
i — — = [vea; + Rojir,), j=1,2,3, 4 (1) ©f each coupled Chua’s circuit can be observed on the Pancar

dt Ly section on an oscilloscope.
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(b)

Fig. 2. Trajectory projection (left) and corresponding Poigcarap (right) in thev-{—vo plane of various torus-doubling bifurcation phenomena: Fixed
parameter valuesz, = —0.74 mS,G, = —0.41 mS,C; = 10 nF,Cy = 100 nF,L = 18.68 mH,Ry = 192, R. = 10 K. (a) 7y torus attractor;
parameter valuesik; = 1652, Ry = 16922, R3 = 917 Q, R4 = 3628(). (b) Period-2 limit cycle; parameter valueB; = 8012, Ry = 1910¢2,

Rz = 917%), Ry = 3628(). (c) > torus doubling (type-Il); parameter valueR; = 724}, Ro = 195092, Rz = 917, R4 = 3628). (d) 1% torus
doubling (type-Il loci consisting of type-I loci); parameter valuég; = 9512, R, = 19108, Ry = 9172, R4y = 3628¢).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 2, FEBRUARY 1998 189

SO0 500RG

(9)

=00m; 500N

(h)
Fig. 2. (Continued.) Trajectory projection (left) and corresponding Poirkcanap (right) in thevc;—vco plane of various torus-doubling bifurcation
phenomena: Fixed parameter valués; = —0.74 mS,G, = —0.41 mS,C; = 10 nF,C> = 100 nF,L = 18.68 mH,Rg = 19Q, R. = 10 K. (e)
Period-3 limit cycle; parameter value®; = 13622, Ry = 1715Q, Rz = 917, Ry = 3628%). (f) T; torus; parameter valuedty = 136012, Ro

= 1300¢2, Rz = 1700¢2, Rz = 9172, R4y = 3628¢). (h)

= 16962, Ry = 917¢), Ry = 3628¢). (g) Period-6 limit cycle; parameter valueR; =
= 3628 .

T torus doubling; parameter value®; = 13282, R; = 16902, Rz = 917 Q, R4
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(k)

o

Fig. 2. (Continued.) Trajectory projection (left) and corresponding Poircanap (right) in thevc;—veo plane of various torus-doubling bifurcation
phenomena: Fixed parameter valués; = —0.74 mS,G, = —0.41 mS,Cy = 10 nF,C> = 100 nF,L = 18.68 mH,Ry = 190, R. = 10 k2. (i)
Period-5 limit cycle; parameter value®; = 118012, R, = 169012, Rz = 917}, Ry = 3628(). (j) T5 torus; parameter valuedl; = 113912, R>

= 191092, R3s = 917 Q, R4 = 36281). (k) Period-10 limit cycle; parameter valueB; = 1090€2, R> = 1655, Rz = 917 Q, R4 = 3628%. (I)
Ty torus doubling; parameter value®; = 1094, R, = 1655, R3 = 917 Q, Ry = 3628 1.
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Fig. 2. (Continued.) Trajectory projection (left) and corresponding Poirkcanap (right) in thevc;—vco plane of various torus-doubling bifurcation
phenomena: Fixed parameter valués; = —0.74 mS,G;, = —0.41 mS,Cy = 10 nF,C2 = 100 nF,L = 18.68 mH, Ry = 1%, R. = 10 k2.
(m) Period-7 limit cycle; parameter valueR; = 345, Ro = 1914Q, Rz = 917Q, R4 = 36282. (n) T7 torus; parameter value®; = 3482, Ro =
19149, R3 = 917¢), R4 = 36282. (0) T3¢ torus doubling; parameter valueR; = 15592, R, = 1228}, Rz = 9172, R4, = 3628¢).

3.2. Torus-Doubling Bifurcation Phenomenon the parameters, these limit cycles bifurcate into torus attractors. Thus
Observed from the System to each limit cycle corresponds a torus attractor and to the period
The following parameters values for the Chua’s circuits of th@oubling of limit cycles corresponds torus doubling of torus attractors.
system shown in Fig. 1(a) are fixed for our study: To describe the torus attractor corresponding to periodic orbit,
we defineT,, as a two-dimensional torus embedded in the phase
¢ =10 nF,C> = 100 nF,L = 18.68 mH, B = 1900 &, space which wraps aroundtimes, in correspondence with a period-

Ro = 194 (which includes the inherent 14.5 &Ohgr; series " ,orindic orbit. While an-periodic orbit gives us: intersection

resistance of the inductak), Ga = —0.74 mS, andG), = points with a suitable Poindarplane, the intersection &, with

—0.41 mS. a suitable plane would result in simple closed curves. In our

We first chooseR. = 10 K so that the four Chua’s circuits areexperiments we only varyg, and R, and keepRs and R, fixed.
synchronized with each other in the sense that corresponding voltagig 2(a)—-(0) show the trajectories and the corresponding Pd@ncar
and currents in the four Chua’s circuits @denticalfunctions of time. map in thevc1—ve2 plane associated with various period-doubling
Then, we adjust the values of the linear resist®s(j = 1, 2, 3, 4)  and torus-doubling bifurcations observed experimentally with a fixed
of each coupled Chua’s circuit and observe a sequence of periedupling resistorR. = 10 K2, while varying the linear resistaR;
doubling bifurcations of limit cycles. We also find that by changingf each coupled Chua’s circuit. Whel, = 16522, R, = 1692
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Fig. 3. Coupled Chua’s circuits. Trajectory projection (left) and corresponding Péingp (right) in the:c; —v¢» plane of various torus-doubling bifurcation
obtained from numerical simulation. Parameter valdés:= —0.74 mS,G;, = —0.41 mS,C; = 10 nF,C> = 100 nF,L = 18.68 mH,Ry = 199, R.

= 10 k. (a) T» torus doubling; parameter valueB; = 161012, R> = 184012, R3 = 11350, Ry = 2715%. (b) Period-5 limit cycle; parameter values:
R1 = 1479Q), R, = 180012, Rz = 92012, R4, = 3380¢2. (c) T5 torus; parameter value®; = 1475€2, Ry = 1788}, R3 = 9202, R4 = 3380¢.

Q, Ry = 9172, and Ry, = 36282, the system exhibits @; torus shown in Fig. 2(d). Here, the type-Il loci consist of two type-I curves
as shown in Fig. 2(a). This torus attractor results from a bifurcati@s defined in [5], i.e., the torus lies on a surface generated from a
of a period-1 limit cycle. WhenR, = 801¢), R, = 19102, R; combination of type-I and type-Ii torus-doublifdzurther variation
= 917 Q, and R4 = 3628, the period-1 limit cycle bifurcates Of £1 and R, while keepingR; and R, fixed, we observe period 3
into a period-2 limit cycle. The projection of this trajectory onto théf19- 2(€)] and period 6 limit cycles [Fig. 2(g)] and the corresponding
ve1—ve» plane and the corresponding Poirieanap of the output T tor_us [Flg._2(f)] _andT6 tprus a@tractors [Fig. 2(_h)]' We _als_o find

, ) . L . a period 5 [Fig. 2(i)] and its period-doubled period 10 limit cycle
voltagesve: and ves from the third Chua’s circuit are shown in [Fig. 2(k)] along with the correspondiri, [Fig. 2()] andTio torus
Fig. 2(b). IncreasingR; slightly to R, = 934 2 while keeping the : :

) ) T C attractors [Fig. 2(I)]. A period-7 and & torus attractor were also
rest fixed, a bifurcation is observed, resulting if:atorus attractor
[Fig. 2(c)]. In this case, the loci on the Poineaséction corresponds !In [5], type-l doubling of a closed curve resulting from a map (in our

to the type-Il curve doubling phenomenon defined in [5]. Howevefase the map is the Poinéamap) occurs when a simple curve is transformed
into another curve twice its length, but folded to resemble the original curve.

with B, = 951 Q2 while keeping the other resistors as above, W, || doubling occurs when a simple curve is transformed into two disjoint
observed another interesting typeTof torus doubling bifurcation, as curves similar to the original curve.
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Fig. 3. (Continued).Coupled Chua’s circuits. Trajectory projection (left) and corresponding P@noap (right) in thevc;—vco plane of various
torus-doubling bifurcation obtained from numerical simulation. Parameter vafigs= —0.74 mS,G, = —0.41 mS,C; = 10 nF,C> = 100 nF, L

= 18.68 mH,Ry = 192, R, = 10 K. (d) I torus doubling; parameter valueB; = 10002, R, = 1900(2, R3 = 8802, R4 = 38901).

found as shown in Fig. 2(m) and (n). In Fig. 2(0) we show that the2]
T torus in Fig. 2(j) has doubled via a type-II torus doubling [5], i.e.,
each circle in Fig. 2(j) has bifurcated into 2 circles close to each othef?!
It can be concluded, based on our experimental observations from
the system shown in Fig. 1(a), that a period-doubling bifurcatior4]
precedes the torus-doubling bifurcation of a torus, and a period-
limit cycle bifurcates into df;, torus; in other words, a period-
period-doubling bifurcation is associated with &p torus doubling
bifurcation. The torus-doubling bifurcation phenomenon in the systerys)
is robust and can be observed from each coupled Chua’s circuit of
the system for several different combinations of valuegef (6]
To confirm our experimental measurements, the system was sim-
ulated numerically using the system model equations (3) via th
software INSITE [11] and the results are shown in Fig. 3(a)—(d). Due
to the sensitivity to the initial conditions and parasitics, it is difficult
to get exactly the same data set which matches the experimeniﬁ]
observations to the numerical observations. Nevertheless, it can
noted from the figures that our simulation results are in good qual-
itative agreement with those shown in Fig. 2, and hence validatifitp]
the mathematical model (3) for describing the system in Fig. 1(a).
We see in Fig. 3(c) that the Poinéasection has a folding structure, 11]
suggesting a nearby torus breakdown route to chaos. [12]

IV. CONCLUDING REMARKS (13]

In this paper we present several torus-doubling bifurcation phenom4]
ena observed experimentally and simulated numerically from four
mutually coupled Chua’s circuits. It is shown from these observations
that the torus-doubling bifurcation phenomenon is robust in sué !
a system. It can be observed for several different combinations of
parameter values of the linear resist@®gj = 1, 2, 3, 4). However [16]
the exact behavior is very sensitive to the initial conditions and to
changes in the values of the resistdts(j = 1, 2, 3, 4). Therefore,
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Experiments indicate that the topological structures of the attractors forced oscillatory circuits containing saturable inductors, Nionlinear

of each coupled Chua’s circuit in this system has a torus-like
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The power spectra generated by the system are different from those
generated by the uncoupled Chua’s circuit, and may find interesting
applications in sound synthesis [15].
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