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Abstract— In this paper, we propose a method of robust
nonlinear H1 master–slave synchronization for chaotic Lur’e
systems with applications to secure communication. The scheme
makes use of vector field modulation and either full static state or
linear dynamic output error feedback control. The master–slave
systems are assumed to be nonidentical and channel noise is taken
into account. Binary valued continuous time message signals
are recovered by minimizing the L2-gain from the exogenous
input to the tracking error for the standard plant representation
of the scheme. The exogenous input takes into account the
message signal, channel noise and parameter mismatch. Matrix
inequality conditions for dissipativity with finite L2-gain of the
standard plant form are derived based on a quadratic storage
function. The controllers are designed by solving a nonlinear
optimization problem which takes into account both channel noise
and parameter mismatch. The method is illustrated on Chua’s
circuit.

Index Terms—Chua’s circuit, Lur’e systems, matrix inequali-
ties, parametric uncertainty, synchronization.

I. INTRODUCTION

SECURE communication [3], [11] is an important field
for the application of synchronization theory. The link

between absolute stability theory and synchronization of non-
linear systems has been investigated in a series of papers [7],
[8], [24], [33], in particular for Lur’e systems and master–slave
synchronization schemes. From a control theoretic point of
view, this corresponds to the autonomous case without an
external input (or message signal). Among the methods that
consider a message signal in the synchronization scheme, one
basically makes a distinction between chaotic masking and
vector field modulation (see Kennedy in [3]). With respect
to vector field modulation, we have proposed a new method
of nonlinear H synchronization [25], [26] which applies
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to binary valued continuous time message signals. The syn-
chronization schemes are interpreted within the framework of
modern control theory by taking standard plant representations.
A new notion of synchronization error has been introduced
which is based on the tracking error of the scheme. The aim
of the nonlinear H synchronization scheme is to minimize
the influence of the exogenous input on the regulated output.
The exogenous input contains the message signal and channel
noise. The design has been based on matrix inequalities which
follow from conditions of dissipativity with finite -gain of
the synchronization scheme. Dissipativity of nonlinear systems
is a well-known and fundamental system theoretical concept
which dates back to the work of Willems and Hill and Moylan
[12], [13], [32]. A difference between the method proposed in
[25], [26] and methods of nonlinear H control theory such
as [14], [30] is that in the former a quadratic storage function
is chosen, while in the latter a general continuously differ-
entiable nonlinear storage function is employed. In this way,
matrix inequalities are obtained instead of a Hamilton–Jacobi
inequality. The design of the controller has been achieved by
solving a nonlinear optimization problem based on the matrix
inequalities.

This previous work [25], [26] can be considered as a first
step toward arobustsynchronization theory. In this paper, we
treat the problem ofparameter mismatch, in addition to the
problem of channel noise and take both into account in the
controller design (adaptive control approaches to cope with
parameter mismatch have been investigated, e.g., in [34]). We
discuss the case of full static state error feedback and linear
dynamic output error feedback. For identical master–slave
systems this has been studied in [25], [26]. The class of
nonlinear systems considered is in Lur’e form [16], [31].
Many systems of common interest such as Chua’s circuit
[4], [5], generalized Chua’s circuits [28], arrays of such
cells or cellular neural networks [6], [10], [15], [29] can be
represented in Lur’e form. Chaotic or hyperchaotic behavior
is obtained from these systems for the double scroll,-scrolls,
double-double scroll, and-double scroll hypercube. For the
autonomous case, i.e., without a message signal, parameter
mismatch between the Lur’e systems has been investigated in
[27]. One unexpected result of that study is that it is possible
to allow a large parameter mismatch such that the systems
remain master–slave synchronized up to a relatively small
error. It has been illustrated on Chua’s circuit in [27] that
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the chaotic slave system can be synchronized in this sense
to a master system which behaves chaotically, shows limit
cycle behavior or shows stable equilibrium behavior. Another
example along this direction has been presented in [18], where
full state error feedback has been used to synchronize two
systems which are different (such as Chua’s circuit and the
Lorenz attractor). In this paper, we extend the ideas from the
autonomous case to the case where there exists an external
input. From the example of Chua’s circuit it will follow
that the allowed parameter mismatch is much smaller than
for the autonomous case. By using a single transmission
signal, the dynamic output feedback case leads to a simpler
implementation of the synchronization than the full static state
feedback scheme, but the latter has higher performance and a
better flexibility for defining keys in a cryptographical scheme
[25], [26].

This paper is organized as follows. In Section II, we present
master–slave synchronization schemes with full static state
error feedback and linear dynamic output error feedback. In
Section III, we approach the synchronization problem from the
viewpoint of modern control theory, by deriving standard plant
representations. We take into account parameter mismatch
between the Lur’e systems. In Section IV, we derive Theorems
for dissipativity with finite -gain of the synchronization
schemes, these conditions being expressed as matrix inequali-
ties. In Section V, we formulate the robust nonlinear Hsyn-
chronization problem, based on the Theorems of Section IV.
In Section VI, we present an example on Chua’s circuit. Both
static state and dynamic output feedback are applied and a
comparison is made. Channel noise and parameter mismatch
are taken into account in the design.

II. SYNCHRONIZATION SCHEME

In this section, we consider the master–slave synchro-
nization schemes with vector field modulation proposed in
[25] and [26], but with parameter mismatch between the
systems.

A. Full Static State Error Feedback

Consider the master–slave synchronization scheme with full
static state error feedback for nonidentical master–slave Lur’e
systems:

(1)

with master system , slave system , full static state
error feedback controller , and linear filter (Fig. 1). The
index refers to thestatic feedback case. The subsystems
have state vectors , and output vectors

, , . The message signal is .
At the transmitter , a linear transformation
is applied to the state vector. The resulting vector is
sent along the channel and is corrupted by the disturbance
signal or channel noise . At the receiver, full static
state error feedback between the outputof and is
applied with feedback matrix . The nonidentical
master–slave Lur’e systems have system matrices

, , and , where
corresponds to the number of hidden units (if one interprets
the Lur’e system as a class of recurrent neural networks
[16], [23], [31]). The diagonal nonlinearity

is assumed to belong to sector [16], [31]. At
the master system the vector field is modulated by means
of the term with . We choose message
signals which satisfy and are
binary valued. As a typical test signal for the synchronization
scheme, signals of the form sign will be employed.
When taking a chaotic Lur’e system, the norm of is
chosen “small” (compared to the norm of the other terms
in the system dynamics) in order to hide the message signal
in the strange attractor. Furthermore, we assume that the
master system possesses an initial state such that it is input
to state stable for the considered class of message signals
(see Assumption 2 in the sequel). The low pass filter
has system matrices , ,

, . In the synchronization scheme, the original
message will be recovered from one of the components of the
signal .

B. Dynamic Output Error Feedback

Consider now the master–slave synchronization scheme
with dynamic output error feedback and nonidentical mas-
ter–slave Lur’e systems:

(2)

with master system , slave system , linear dynamic
output feedback controller , and linear filter (Fig. 1). The
index refers to thedynamicfeedback case. The subsystems
have state vectors , , , and
output vectors , , , where

. The message signal is and is
a disturbance input. At the transmitter , a linear trans-
formation is applied to the state vector. The
resulting vector is transmitted along the channel. At the
receiver , linear dynamic output error feedback is applied
by taking the difference between and as input to the
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(a)

(b)

Fig. 1. (a) Synchronization scheme with master systemM and slave system
S. Vector field modulation is applied toM by means of the signald, which
is the output of the low pass filterR with as input the message signalr. For
M andS we consider Lur’e systems with parameter mismatch between the
systems. The outputs ofM andS arep andq, which are linear transformations
of the state variablesx and z, respectively. The signalp is sent along the
channel and is corrupted by means of the signal�. A binary valued continuous
time message signal is considered which is recovered by defining a tracking
error for the overall system and applying a controllerC to the slave system.
We consider the cases of full static state error feedback and linear dynamic
output feedback for this controller, leading to the schemesfR; Ms, Ss; Csg
and fR; M

d
, S

d
; C

d
g, respectively. (b) Control theoretic interpretation

of the synchronization scheme by means of its standard plant representation
with exogenous inputw and regulated output�. The aim ofrobust nonlinear
H1 synchronizationis to minimize the influence from the exogenous input
on the regulated output. The exogenous input contains the message signal,
the disturbance signal� and the parameter�m�x related to the parameter
mismatch between the master–slave systems.

controller with system matrices , ,
, . Furthermore, . The

transmitted signal is corrupted by the signal. The system
matrices of the master–slave Lur’e systems, the nonlinearity

, the vector field modulation and the low-pass filter
are the same as for the scheme (1). The same class of
message signals is considered as in the state feedback case,
but will be recovered from one of the components of the
signal .

III. STANDARD PLANT REPRESENTATIONS

In this section, we derive standard plant representations
for the synchronization schemes (1) and (2), taking into
account the parameter mismatch between the master–slave
systems.

A. Full Static State Error Feedback

Defining and denoting the state equation of
synchronization scheme (1) as

(3)

with continuous nonlinear mappings :
and : , one obtains

(4)

According to the proof of Theorem 14 in [27] and [33], we
decompose this as

(5)

with

with and
. According

to [25], we define the tracking error , where
[1; 0; 0; ; 0] selects the first component of . The main
motivation for defining this tracking error is that the signal
cannot converge to zero when an external input is applied to
the master system. For the synchronization scheme, we obtain
then the standard plant representation [1], [19] (Fig. 1)

(6)

with state vector and regulated output . The
interpretation for the exogenous input will be given in
Section IV. By definition, one has ,

, . Note that the system matrices
of the standard plant representation do not depend on,

, . The influence of the parameter mismatch is contained
in .

B. Dynamic Output Error Feedback

Defining and denoting the state equation of
synchronization scheme (2) as

(7)

with continuous nonlinear mappings
, , and

: , one obtains

(8)

Like in the state feedback case, we decompose this as

(9)
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where

with and as
defined in the state error feedback case. Defining the tracking
error , the following standard plant representation
is obtained (Fig. 1):

(10)
with state vector and regulated output. For
the interpretation of the exogenous input we refer again to
Section IV.

IV. DISSIPATIVITY WITH FINITE -GAIN

In this section, we first formulate assumptions on the
nonlinearity and the boundedness of the trajectories of the
master system. An interpretation for the exogenous input of
the standard plant representations is given. Then conditions
for dissipativity with finite -gain and a quadratic storage
function are derived for the synchronization schemes. These
conditions are expressed as matrix inequalities.

We make the following two assumptions.
Assumption 1:The nonlinearity in (10) belongs

to sector :

(11)

where denotes the th row vector of . The same
assumption is made for in (6).

The following inequalities hold [2], [16], [31]:

(12)

It follows from the mean value theorem that for differentiable
the sector condition on corresponds to [7]

(13)

Assumption 2:The master systems and are input
to state stable in the sense that there exist initial statesand
a positive real constant such that

(14)

for all continuous time reference inputs which satisfy
.

The viewpoint that we take here is pragmatic in the sense
that in practice one is not interested in employing a master
system that possesses unbounded trajectories. Note that for a
zero external input the upper bound is a measure for
the “size” of the attractor of the chaotic master system [7].
The Lur’e systems, matrix and initial states are chosen
such that the master system satisfies Assumption 2. Using
the expression for one obtains
with and

. In case one obtains
where . From Assumption

2, one has . Note that this upper
bound might be conservative. On the other hand, this approach
has led to useful criteria for robust synchronization of the
autonomous synchronization scheme, discussed in [27]. For
the upper bound we will consider a positive constant scaling
factor

(15)

In order to analyze the I/O properties of the standard plant
representation of the synchronization scheme with static state
feedback (6), we consider the quadratic storage function [12],
[13], [32]:

(16)

and a supply rate with finite -gain :

(17)

with regulated output and exogenous input. As exogenous
input we take , which consists of the
reference input, disturbance signals and a constant signal
related to the parameter mismatch between the master–slave
systems. The system (6) is said to be dissipative [12], [13],
[32] with respect to supply rate (17) and the storage func-
tion (16) if , . The following Theorem
holds.

Theorem 1: Let diag be a diagonal matrix
with for . A sufficient condition for
dissipativity of the synchronization scheme with full static
state feedback (6) with respect to the storage function (16)
and the supply rate with -gain (17) is given by the matrix
inequality
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(18)

with

Proof: The condition (15) is expressed as
. Together with the sector condition on(11),

this condition is employed in an application of the-procedure
([2, p. 23]) in checking the condition . This means
that positive real constants and are introduced such that

and by defining diag :

Using the expression for the supply rate
and choosing this condition becomes

Using and the equation of the standard
plant representation (6), this can be written as the quadratic
form with . This expression
is negative for all nonzero if is negative definite.

In order to analyze the I/O properties of the standard plant
representation of the synchronization scheme with dynamic
output feedback (10), we consider the quadratic storage func-
tion

(19)

and the supply rate with finite -gain (17) and exogenous
input .

Theorem 2: Let diag be a diagonal matrix with
for . A sufficient condition for

dissipativity of the synchronization scheme with dynamic
output feedback (10) with respect to the storage function (19)
and the supply rate with -gain (17) is given by the matrix
inequality

(20)

with

Proof: According to the proof of Theorem 1, we use the
inequality and the inequality from the
sector condition on . By employing these inequalities in the

-procedure, one obtains
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(a)

(b)

Fig. 2. Robust nonlinear H1 synchronization of Chua’s circuit using full static state error feedback. (a)�T es (-), scaled version of message signal sign
[cos (0:5t)] (- -) and scaled version of recovered message signalsign(�T es) (-.). The parameter mismatch of the master with respect to the slave system is
�a11 = 0.001. (b)�T es for a too large parameter mismatch�a11 = 0.01. The original message is not recovered in this case.

and by defining diag : Using and the equation of the standard
representation (10) this can be written as the quadratic
form , with . This
expression is negative for all nonzero if is negative
definite.
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(a)

(b)

Fig. 3. Static state error feedback (continued). (a) Transmitted signalsp which are a linear transformation of the state variablesx of the master system,
with p1 (-), p2 (- -), p3 (-.). Applying vector field modulation, the message signal is invisible on the chaotic carrier signal. (b) Control signalu applied
to the slave system using full static state error feedback, withu1 (-), u2 (- -), u3 (-.).

V. ROBUST NONLINEAR H SYNCHRONIZATION

In this section, we explain how to design the controllers
and based on the matrix inequalities (18) and (20). In

nonlinear H control theory (see e.g., [14], [30]) a controller
for a given nonlinear plant is designed by considering a supply

rate with finite -gain. The optimal nonlinear H control
law corresponds to the minimal achievable-gain which
makes the closed-loop system dissipative. The optimal solution
is characterized by means of a Hamilton–Jacobi inequality
with respect to a general continuously differentiable nonlinear
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(a) (b)

(c)

Fig. 4. Static state error feedback (continued). Behavior of the master and slave systems in the autonomous case, for the parameter mismatch of Fig. 2(a)
and initial conditionx(0) = z(0) = [0:1; 0; 0]. (a) (x1; x2) of the master system. (b)(z1; z2) of the slave system. (c)x � z with respect to time.

storage function. On the other hand, in our previous work on
nonlinear H synchronization and in the present paper, we
consider a quadratic storage function which leads to matrix
inequalities. The nonlinear H synchronization problem, as
defined in [25], [26], corresponds to

such that
and diagonal

(21)

where denotes the parameter vector of the controller
or , i.e., or ,
respectively, where “ ” denotes a columnwise scan of a
matrix. In therobustnonlinear H synchronization problem,
the parameter is maximized, in order to achieve maximal
robustness with respect to parameter mismatch between the
master–slave systems, as follows from (15). Using a penalty
method [9] the problem can be formulated as follows:

such that (22)

where is a positive real constant. In this way, the influence
from the exogenous input on the regulated output is minimized,
taking into account the reference input (message signal), the
disturbance signal and the parameter mismatch. Because
it is well-known from control theory that perfect tracking
is impossible for all possible reference input signal, binary
valued continuous time reference inputsare considered such
that the message signal can be recovered from sign
[25], [26]. The constraint can be eliminated by taking
the parametrization . The same applies to . In
practice, one solves

such that

(23)

where denotes the maximal eigenvalue of a symmetric
matrix and a small positive constant. The constraint is dif-
ferentiable as long as the two largest eigenvalues ofdo not
coincide. Otherwise a generalized gradient can be defined [22].
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Fig. 5. Static state error feedback (continued). Simulation of the synchronization scheme for the same case as Fig. 2(a) but with zero mean white Gaussian
channel noise� with standard deviation 0.0001.

The optimization problem is nonconvex. However, suboptimal
solutions yield satisfactory results as we will show by an
example in the following section.

VI. EXAMPLE: CHUA’S CIRCUIT

In this section, we illustrate the robust nonlinear Hsyn-
chronization method on Chua’s circuit:

(24)

with nonlinear characteristic

and parameters 9, 14.286, ,
in order to obtain the double scroll attractor [4], [5], [20].
The nonlinearity (linear
characteristic with saturation) belongs to sector [0, 1]. Hence,
Chua’s circuit can be interpreted as a Lur’e system

where

(25)

We assign the double scroll behavior to the slave system by
taking , , . The parameter mismatch
is considered with respect to this nominal slave system.

We first consider the synchronization scheme with full
static state error feedback (1). Cryptographical aspects of this

scheme are discussed in [25], where or an additional
multilayer perceptron with square and full rank interconnection
matrices may be used for the definition of a secret key, used
by sender and receiver for enciphering and deciphering. We
illustrate the working of the scheme here for [1; 1;
1], and [1; 0; 0]. For the reference model

a first order Butterworth filter is chosen with cut-off
frequency 10 Hz. For robust nonlinear Hsynchronization,
the nonlinear optimization problem (23) has been solved with

1, 0.01. In order to limit the control energy,
an additional constraint has been taken into
account. The optimization problem has been solved using
sequential quadratic programming [9] (constr in Matlab). As
starting point for the optimization problem a random matrix,
generated according to a normal distribution with zero mean
and variance 0.1, was chosen. Further we select ,
0.1, 100, 1. In Figs. 2–5, a resulting controller,
corresponding to 1.47 and 6.84, is shown. The
scheme has previously been investigated in [25] for identical
master–slave systems. Fig. 2 shows the recovery for binary
valued continuous time reference inputs or message signals,
for nonidentical master-slave system. A perturbation of the
element of the matrix 0.001 is taken for
the master system with respect to the nominal slave system
with , , . For 0.01
the original message cannot be recovered. This illustrates a
difference between the synchronization scheme with reference
input (1) and its autonomous case, i.e., without a message
signal, considered in [27]. In the autonomous case a large
parameter mismatch can be allowed such that the systems
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(a)

(b)

Fig. 6. Robust nonlinear H1 synchronization of Chua’s circuit using dynamic output feedback. (a)�T ed (-), scaled version of message signal sign[cos (0:5t)]
(- -) and scaled version of recovered message signal sign(�T ed) (-.). The parameter mismatch of the master with respect to the slave system is�a11 =
0.001. (b)�T ed for a too large parameter mismatch�a11 = 0.005. The original message is not recovered in this case.

remain synchronized up to a relatively small synchronization
error, even when a master system with periodic behavior or
stable points is considered for a chaotic slave system. The latter
is different for the nonautonomous case, as is illustrated on
Fig. 4. The transmitted signals and control signals are shown

on Fig. 3. Fig. 5 shows the synchronization scheme for the
parameter mismatch 0.001 and zero mean Gaussian
channel noise with standard deviation 0.0001. The amount of
noise that can be tolerated is smaller than for the case without
parameter mismatch [25]. The simulations for the deterministic
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(a)

(b)

Fig. 7. Dynamic output feedback (continued). (a) Transmitted signalp which is a linear combination of the state variablesx1; x2 of the master system.
Applying vector field modulation, the message signal is invisible on the chaotic carrier signal. (b) Control signalu applied to the slave system.

case were done using a Runge–Kutta integration rule [21]
(ode23 in Matlab). Stochastic systems have been simulated
using an Euler integration rule [17].

The case of robust nonlinear Hsynchronization of Chua’s
circuit using dynamic output error feedback is shown on
Figs. 6–8. Cryptographical issues of this scheme are discussed
in [26]. The matrix , together with parameters of Chua’s
circuit, can be chosen as a key. In the example here we

take one-dimensional outputs ( 1) with [0.5;
0.5; 0], a one-dimensional control signal with

[1; 0; 0] and [1; 0; 0]. The same
low pass filter was chosen as for the static feedback
case. The optimization problem (23) has been solved for

5, 0.01. An additional constraint 60
is taken into account. A third-order SISO controller has
been selected, which turned out to be the minimal order



902 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 10, OCTOBER 1997

Fig. 8. Dynamic output feedback (continued). Simulation of the synchronization scheme with parameter mismatch�a11 = 0:0001 and zero mean white
Gaussian channel noise� with standard deviation 0.0001.

for achieving a good performance. As starting point for the
optimization problem, random matrices were chosen for the
controller according to a normal distribution with zero mean
and standard deviation 0.1, , 0.1, 100,
and . In Figs. 6–8, a resulting controller with
26.63 and 1.59 is shown. This scheme has been investi-
gated for identical master–slave systems in [26]. In Fig. 6,
a perturbation 0.001 is considered for the master
system with respect to the slave system. Perfect recovery is
obtained for binary valued continuous time reference inputs,
but not for a larger parameter mismatch 0.005. The
transmitted signal and control signal are shown on Fig. 7.
Simulations with zero mean white Gaussian channel noise with
standard deviation 0.0001 and parameter mismatch
0.0001 are shown on Fig. 8. Hence, the performance of
the full static state error feedback controller is better than
for the dynamic output feedback controller, while the latter
may lead to a simpler implementation of the synchronization
scheme.

VII. CONCLUSION

The influence of parameter mismatch between master–slave
Lur’e systems has been studied with respect to the method
of nonlinear H synchronization. By representing the syn-
chronization schemes in standard plant form and deriving
conditions for dissipativity with finite -gain, matrix in-
equalities have been derived. Controller design based on
these matrix inequalities involves the solution of an opti-
mization problem. The controller is rendered robust with
respect to channel noise and parameter mismatch between the

master–slave systems. The method further offers the possi-
bility for incorporating channel models in the scheme. Both
full static state error feedback and dynamic output error
feedback have been investigated. For the latter method one
can transmit a single signal, which may lead to a sim-
pler implementation of the synchronization scheme. The full
static state feedback method on the other hand has a higher
performance. This has been illustrated on Chua’s circuit.
While in previous work we have shown that for the au-
tonomous case a large parameter mismatch is tolerated for
master–slave synchronization of the scheme up to a relatively
small synchronization error, a smaller parameter mismatch is
required for adequate performance of the scheme with message
input.
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