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Abstract— For problem solving in the artificial intel-
ligence, this paper presents a new hyper-distributed
hyper-parallel approach based on the bifurcations
and synchronizations of the hierarchical distributed
chaotic dynamic systems. By using Chua’s circuits
arrays. the realization of the hyper-distributed hyper-
parallel heuristic algorithms for real-time search of any
implicit AND/OR. graph is discussed. The approach
not only combines the advantages of both the tradi-
tional sequential symbolic logic and the conventional
neural network approaches, but also overcomes their
drawbacks in many respects.

I. INTRODUCTION

We can decompose a lot of complicated problems, in
many different ways, into the equivalent combinations of
such subproblems that can also be decomposed further un-
less entirely simplified into the primitive unsolvable or the
primitive solvable problems. By this approach, problem
solving eventually results in the search of an equivalent
implicit AND/OR graph. The efficient search is one of
the most fundamental and crucial to the artificial intelli-
gence (AI) and the knowledge engineering (KE).

Many search algorithms based on the traditional se-
quential symbolic logic have been proposed so far for
robot motion planning, job scheduling, disease or defect
diagnosing, knowledge data-base retrieving, programming
language parsing, game playing, theorem proving, natu-
ral language comprehension, , pattern recognition, and so
forth. Although the algorithms have the advantages in
the respects, such as the determinate acquisition of exis-
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tential optimal solutions and the easy use of some heuris-
tic knowledge to guide the search, they almost can but
be carried out sequentially with complex control strate-
gies, lower processing efficiency and great difficulties in
the systolic implementation.

On the other hand, however, the distributed parallel ap-
proaches to the search and the optimization, based on the
ordinary neural networks like the Hopfield recursive net-
work or the feedforward multilayer networks, might nei-
ther guarantee the network, for any initial state and any
input, always to converge to the stable states with the
minimum energy corresponding to the optimal solutions.
nor real-timely obtain the solutions. Sometimes only ap-
proximate solutions as the compromises hetween the op-
timal and the feasible solutions might be obtained. Many
parameters of the neural networks must be determined by
some time-consuming simulations or by experiences. Fur-
thermore, it is very hard to introduce, as the case may be
during the solving process, some heuristic knowledge into
this kind of neural networks.

As for the real-time search, most of the existent Al ap-
proaches, based either on the symbolic logic or on the
neural networks, have a common essential drawback that
at a time of solving process only one state of the state
space can be provided as inputs, whereby the disposal of
the state space is still sequential virtually.

For the real-time search of any implicit AND/OR graph.
authors have presented in {1] and [2] the search concepts
of propagations and competitions of concurrent waves. the
heuristic distributed parallel algorithms, P*, Py and P
and the implementation scheme based on dynamical clus-
tering competitive neural networks. Nevertheless, the con-
veyances of cost function values and heuristic knowledge
values between cells are implemented implicitly via uni-
versal clocks, whereby there are still many connections
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between the clocks-coding unit and every neural cell. Fur-
thermore, for state transitions and controls, every cluster
of neural cells has comparatively complicated structure.

Under the above mentioned circumstances, this paper
presents a new hyper-distributed hyper-parallel heuris-
tic approach based on the bifurcations and the synchro-
nizations of hierarchical distributed chaotic dynamic sys-
tems. The approach can be used for complicated prob-
lems solving in the AI and the KE areas. By using
Chua’s circuits arrays, the waves’ concurrent propaga-
tions and competitions required by the hyper-distributed
hyper-parallel heuristic algorithms for real-time search of
any implicit graph are realized. Compared with both
the traditional sequential symbolic logic and the conven-
tional neural network approaches, the approach of this pa-
per combines their advantages and overcomes their draw-
backs in many aspects, so that it is characterized by the
hyper-distributed hyper-parallel real-time processing per-
formance, successful acquisition of the existential optimal
solutions, easy utilization of the heuristic knowledge dur-
ing solving process, simultaneous offering of massive states
of the state space as inputs at a time in the solving process,
local connections between processing cells, rather simple
structures of networks and neurons, the feasibility of the
VLSI implementation, and so on.

II. DISCRETE NONLINEAR DYNAMIC MODEL FOR M*
AND SEARCH

The problem M* is defined by

glza(@)= "7 {c@(@) +9(,e@)}, 1)
where z,y € (SUR); a(z),aly) € p; ¥ and R are the fi-
nite sets of the terminal states and nonterminal states,
respectively; p is a set of operators. In order to obtain
the minimum g(zo,a(zg)) for a given initial state ro, the
best operator a(z) in response to state 2 should be taken,
which generates the immediate cost c(a(z)) and the next
state y.

The model can be used for formalizing many prob-
lems in the areas, such as dynamic programming, machine
learning, optimal control, information coding, software en-
gineering, automation theory, and artificial intelligence.

As for Al problem solving, searching an implicit
AND/OR graph G results in

¢ min pi(a(n)) px(a(n))
glnyam) £ TF LY e(nm)+ Y2 gnia(ni)}
p1(a(n)) p1(a(n))
(2)

where edges (n,n;) with the cost value c(n,n;), for i =
p1(a(n)),---,pr(a(n)), belong to the same hyper-edge of
node n, and k is the possible maximum number of the
edges of a hyper-edge. The set composed of all the
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primitive solvable and primitive unsolvable problem nodes
corresponds to & of model M*, with a(n) = ¢, and
g(n,a(n)) = 0 or g(n,a(n)) = oo for primitive solvable
or primitive unsolvable node 7, respectively. The empty
operator ¢ implies doing nothing. The best operator a(n)
means the optimal hyper-edge selection from the set of
hyper-edges of n.

In terms of power set of state nodes, the above Al search
model can be regarded as a discrete dynamical system
defined by the state equation

XH'l =A(X:),t=071‘27~~-» (3)

where X € 2R™ is the state set within the power set of
states n € R™, and A maps the current state set X, to the
next state set X4, under the optimal constraint shown in
(2). Starting with an initial state nq, if repeated applica-
tions of A generate such obits that can’t extend any longer
and has finite value of total costs, thus search process fin-
ishes successfully. Nevertheless, because the map function
A could be expressed only formally in an implicit form, it
is very difficult and almost impossible for the map A to
be found both previously and explicitly, and then directly
to be used in Al problem solving.

Consequently, we propose a hyper-distributed hyper-
parallel representation, a state of X; expressed by a pro-
cessing cell and the mapping A embodied by the changes
of the states of processing cells. The processing cells are
organized as the hierarchic arrays, each processing cell is a
chaotic nonlinear dynamic system composed of the Chua’s
circuits.

III. HIERARCHIC DISTRIBUTED CHAOTIC MODEL FOR
Al PROBLEM SOLVING

A. Architecture of the System

The architecture of the hyper-distributed hyper-parallel
implementation of AI problem solving, shown in Fig. 1,
basically consists of three sections : the cellular neural
network section (CNNS), the evaluation section (ES) and
the generator section (GS). The CNNS makes use of the
bifurcation phenomena and synchronization mechanisms
of the distributed chaotic dynamical systems composed of
the two-layer two-dimension arrays of Chua’s circuits, in
order to implement the concurrent propagations of states
wave, the concurrent transmissions of cost function val-
ues and heuristic values, and the competitive activation
mechanisms. The ES simultaneously provides, in terms
of the bias current sources, every cellular cell of CNNS
with the current practical costs and the estimated heuris-
tic costs. The GS is responsible for establishing new cells
of the CNNS , and making up the connection patterns and
bifurcation parameters of cells. In principle, the GS can
be implemented by using some kinds of association mem-
ory or other ordinary approaches without any essential
difficulties.
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Figure 1: The architecture of chaotic network implemen-
tation for AI problem solving

node j is primitive unsolvable.

node v 18 primitive solvable.

Figure 2: The example of a partial implicit AND/OR
graph resulted from some Al problem.

From below we are mainly concerned with the CNNS.
Both the first layer and the second layer of the CNNS are
the two-dimension array, each cell of which is a chaotic
dynamic system. Using the Fig. 2 example of an implicit
AND/OR graph derived from some Al problems the par-
tial structures of the first and the second layer are illus-
trated in Fig. 3 and Fig. 4, respectively. A cell of the
Chau’s circuit in the first layer represents a discovered
node or a discovered edge of an implicit AND/OR graph,
as that cell my and cell (my,iy) of Fig. 3 correspond to
node m and edge (m,¢) of Fig. 2, respectively. A cell of
the second layer represents a discovered node or a hyper-
edge of an implicit AND/OR graph, as that the cell mg
and cell [(ig,jg,k2), mo] of Fig. 4 correspond to node m
and hyper-edge [(i, j, k), m] of Fig. 2, respectively. The
linear resistor of every Chua’s cell is taken as the bifurca-
tion parameter under the control of relevant states of the
adjacent cells, that are indicated over the linear resistor of
Fig. 3,4,5. There is a branch of constant current source
(CCS) in every cell, which conducts the necessary cost
function values and some heuristic knowledge values via
the cell into the networks. The CCS also performs as an-
other bifurcation parameter. The rectifier unit I or unit II
between cells in the first or the second layer performs the
such rectifier-like function as makes the minimum current
of all the existing inputs flow through it. The connec-
tion between the first and second layer is shown in Fig.
5, and there are intercouplings only between such cells as
represent the same node of the implicit graph.

B. Bifurcation Mechanisms

In this paper the Chua’s circuit cell is extended by at-
taching a DC current source I, as shown in Fig. 6, so that
each Chua’s cell becomes a three-dimensional autonomous
affine dynamical system.

The Chua’s cell is described by

%y—%&x+l if |x| < E,
dX _
dat = o I ‘
Ey-gx- g +1 if|x|>E,
(4)
— 1 G
%_C—ZZ—a(y—x),
dz __ 1
@ =-1¥

where G, = G+ G,4,G} = G+ Gy, I’ = (G} - G,)E when
x < —E ( the D_; region) and I' = (G, — G,)E when
x > E (the D, region), I is the bias current from the
DC current source.

The nonlinear resistor Ng has the following piecewise-
linear driving-point ( DP ) characteristic:
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Figure 3: The structure of the first layer chaos array for
AT solving.

Ip =

GbVR + (Gb - Ga)E if VR < -E,

FVR)={ G.VR if —-E < VR <E,

GyWVR +(Ga—GpE if VR > E,
(4)
where E > 0,G, <0, and G, < 0.

At first, the following consequences are well known for
the case of bias current I = 0. When G > |Gq4| or G <
|Gpl, the circuit has a unique equilibrium point P? at the
origin, and when G > |G} it also has two virtual equilibria
P; and P}. Because G, < 0, the equilibrium point P°
is unstable and the vector field in the region Dy pushes
trajectories away from it until crossing the boundary and
entering the outer region D1 or D_1. In the outer regions,
although that the virtual eqgilibria P, and P\ are stable
or unstable depends on G > 0 or G < 0, trajectories are
pushed by the dissipative or nondamping vector field and
all converge toward the corresponding virtual eqilibria P,
and P} until it enters the Dy degion. As result, a periodic
steady-state trajectory called a limit-cycle attractor P° is
produced.

Except the above cases, the circuit has three equilib-
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Figure 4: The structure of the second layer chaos array
for AI solving.

rium points at P~, P9, and P*. Assume that the Jaco-
bian matrix of the above state equations has eigenvalues:
Y, Ok Ejwk, k = 0,1, and has the corresponding real eigrn-
vector E"(P) and the complex eigenplane E°(P), where P
is the label of a equilibrium point. Taking R as the bifur-
cation parameter, the parameters of the circuit can be se-
lected, so that when R is large the outer equilibrium points
P~ and P* are stable (namely, v < 0,07 < 0,w; #0)
and the inner equilibrium point P° is unstable (namely,
70 > 0,090 < 0,wy # 0 )[5]. Depending on the initial
state of the circuit, the system remains at one outer equi-
librium point or the other, say at point P*. As the R
is decreased, the o; becomes positive, whereby the outer
equilibrium points become unstable. Because the v; re-
mains negative, the trajectories in the D; region converge
toward the complex eigenplane E°(P%) and spiral away
from the point Pt along E¢(P*) until they enter the Dy
region. For 79 > 0 and o9 < 0, the equilibrium point at
the origin in the Dy region is characterized by that the
trajectories follow a helix of exponentially decreasing ra-
dius whose axis lies in the direction of E"(P?). Therefore,
trajectories that enter Dy from D.; either cross over to
D_; or are turned back toward D.y. The stable period-
k limit cycle, k = 1,2,---, and furthermore the chaotic
Spiral-Chua strange attractor will occur.

Next, we consider the case of the existence of a shunt
DC current I. The equilibrium poins are defined by
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0=y -x-Alz+I

0=32-&(y-x) (6)

The equilibrium points can be determined graphically
by intersecting the load line Iz = —GV g + CiI with the
DP characteristic Iz = f(Vg) of the nonlinear resistor
Ng, as shown in Fig. 6(b).

Whether there is a shunt DC current or not, as long as
the equilibrium points are located on the same piecewise-
linear segment of the nonlinear resistor, the Jacobian ma-
trices JFa or JFb in both cases of I = 0 and I # 0 are

entirely identical, i. e. ,

[0 -1 0 7
1 G G .
JFa=|a "G @ | iflx|<E,
G
L0 & -& .
™
- 0 _% 0 -
Ip, = & & & | ix>E
G Gi
L 0 & -&

Correspondingly, the eigenvalues, the eigenvectors, the
stabilities of the equilibrium points and the dynamical be-
haviours nearby the equilibrium points lying on the same
piecewise-linear segment of nonlinear resistor are not influ-
enced by the shunt DC bias current. The above discussion
about the bifurcation parameter R in the case I = 0 are
all suitable for the case I # 0.

By moving load line, the practical equilibrium point for
the case of I # 0 could be changed into a virtual equilib-
rium point as long as the DC bias current is large enough,
as in Fig. 6 the P* and P? changed into the virtual points
PI+ and PJ, respectively. It implies that even under the
same bifurcation parameter R, a stable equilibrium point
in the case of I = 0 may disappear in the case of I # 0. Be-
cause of virtual point P,+ the trajactory enters into the re-
gion Dy from D1, then due to virtual point P} it returns
to the region Dy, from Dy again. Therefore, the corre-
sponding multi-period limit cycle attractor or a strange
attractor might happen. On the other hand, however, it
is noticed that the moving load line can keep P; being a
practical stable equilibrium point as P,

For given parameters G,, G, E and C}, the critical value
I* of the bias CCS can be derived from EG, = —GE +

C1I*, namely,

(Ga+G)E/C,  for P* and P},
I'= (8)
—(Ga+G)E/C, for P~ and Py.

Therefore, if [I| < |I*| and under the same parameter
R, the dynamic behaviours nearby P, P{ and P} are
entirely similar to P~, P® and P*, respectively. If }I| >
|I*, although the parameter R unchanged, a new kind of
attractors different from the original attractor will arise.
In this sence the bias DC current I is also referred to as a
bifurcation parameter.

When G — oo, the limit-cycle attractor P¢, yielded by
the unstable eqilibrium point PY, the virtual eqilibria Py
and Py, are not affected by the bias current I.

C. Synchronization Mechanism

As for the synchronizations between the cell’s states and
the transmissions of the cost values and heuristic knowl-
edge values, they are resulted from the following deriva-
tion. The state equations for the two cells in Fig. 3, that
are intercoupled via a voltage buffer, are as follows:

X = &y =X — f(x')) + i'a,

y=x-y -2,

Z.' = —ﬂly’s

% = a(y - X - £(x)) + i, ®)
y=x-y-z,

z = -Qy.

Assuming that all circuit components of the coupled
cells are matched exactly and considering, owing to the
voltage buffer between the cells, that x’ = x, we obtain

D = (v -y) - (@' - 2),
ﬂ#l=—ﬂ{y’ —yy)~ o 1o

Therefore, we have (y'(t) — y(t)) — 0 for ¢ — oo. This
implies also

. o
O,
i —1im (m,i)s

where i(, ;) is the estimated cost value of the edge (m, i) of
the implicit graph, including the heuristic knowledge value
concerning the problem m; and i',;; + i(m,q) is assumed to
be the minimum current among all the input currents of
the rectifier unit I.

IV. IMPLEMENTATION OF SEARCH ALGORITHMS P},

A. State-Encoding Attractors

For the hyper-distributed hyper-parallel algorithms,
P*, Py and P}, of searching any implicit graph, [1] de-
fines the following states of a node: ready state 77, acti-
vated state @, cut state ®, and hidden state ® used for
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top-down search; ready state A, activated state W, cut
state ®, and hidden state @ used for bottom-up search.
Moreover, any edge has the following states: ready state
~, flow state —, blocked state b4, and hidden state © for
top-down search; ready state =, flow state <, blocked
state bq, and hidden state @ for bottom-up search.

Except that cut state ® for nodes and blocked state
ba for edges are regarded as the common states for both
top-down search and bottom-up search, the others of top-
down and bottom-up search states are independent with
each other(1].

The states of a node or an edge of an implicit AND/OR
graph can be encoded in terms of different attractors exist-
ing for different bifurcation parameter values in the corre-
sponding Chua’s cell. Because the hidden states represent
that a node or an edge has not been discovered so far, it is
the existence of the corresponding Chua’s cell that means
the nonhidden state of the node or the edge, whereby en-
coding the hidden state by a specified attractor of a Chua’s
cell is not necessary. Furthermore, the first layer and the
second layer of chaotic arrays are used for top-down and
bottom-up search, respectively, and a node, an edge and
a hyper-edge correspond to different Chua’s cell, therefore
the following four attractors of a Chua’s cell are sufficient
for encoding all the states of a node and a edge.

The attractor P~ or P;, a stable equilibrium point,
represents the ready state 7 and A of a node, ready state
~ and % of an edge, and is taken as the initial state of any
existing Chua’s cell. The stable equilibrium point, P* or
PI+ , represents the activated state @ and & of a node, the
flow state — and < of an edge. The strange attractor P*
represents the cut state ® of a node and the blocked state
ba of an edge. When the control conditions of bifurcation
parameter R of a cell are not met, then R — 0, i. e. ,
G — oo makes the cell turn into the limit-cycle attractor
P¢ around the unstable equilibrium point P°.

B. Implementation of Concurrent Waves Propagations

The concurrent propagations of @ or —, and ¥ or «
states waves for algorithm P}, are embodied in the con-
current propagations of attractors P; along the first and
the second layer of the CNNS, respectively. The attractor
P* or P} of a Chua’s cell can be propagated to the ad-
jacent cells in the same layer by means of synchronization
mechanisms (11).

By means of the bifurcation effect of the bias DC cur-
rent I, the attractor P® of a Chua’s cell in the second
layer can be propagated to an adjacent cell of the sec-
ond layer, as long as all the input currents of the rectifier
II between the two cells are beyond the critical value I*.
Then through the changes of bifurcation parameters R
of Chua’s cells, the corresponding cells of the first layer
are concurrently forced into attractor P¢. Consequently,
the concurrent propagations of ® and bd states waves are
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realized in this way.

On the other hand, however, P~ is set as the cell’s
initial state, so the propagations of P~ between the cells
are not taken into account, Because of different circuit
parameters, there are no propagations between the cell
with P¢ and the cells with other attractors.

For the example of Fig. 2, when the cell Jj1 of the first
layer of the CNNS becomes P+ state and the j is found
by the GS to be a primitive unsolvable problem node,
thus cell jg, at first, changes its own state from P¢ into
P~ on account of the bifurcation condition ®j of cell
Jo through the intercoupling between layers as shown in
Fig. 4, 5, and next the DC current i; enough large beyond
threshold I* will be injected into the cell Jo via the bias
DC shunt, whereby finally cell jo is further transformed
from P~ into P*. Moreover, due to the P* of J2, the ji
of the first layer is coerced into the attractor P¢ from P+,
and through the cell [(j3), s2] expressing hyper-edge (s, j)
of implicit graph Fig. 2 the cell s and s1 are synchronized
into P*, P° from P~, P*, respectively. The cells (mq,ip)
and (mq,kq) also change into P° on account of P° state
of j3 belonging to the same hyper-edge. While for the
case of primitive solvable node v, cell vy is activated to
P* from P~ and vg behaves from P¢ to Pt via P~ with
the bias I =i, = 0.

C. Implementation of Concurrent Waves Competitions

The rectifier units I and IT of the CNNS implement the
competitive activations required by the hyper-distributed
hyper-parallel heuristic algorithms. For examples, the rec-
tifier unit I between cells iy, (my,i;) and (ay, iy ) selects
and makes the minimum current of tm+i(m,i) and tati(q,i)
flow into iy, so as to synchronize iy with P* and to trans-
mit the accumulated cost values and the local heuristic
knowledge values to iy.

D. Global Performance

When a cell, e. g. , myp, of the first layer of the CNNS be-
comes Pt the GS retrieves the information about whether
the corresponding node m of the implicit graph is a primi-
tive unsolvable or a primitive solvable, If the case is neither
primitive unsolvable nor primitive solvable, then the GS
finds out all the son nodes of m of the implicit graph, and,
for the first retrieved son node, makes the CNNS yield an
corresponding new Chua’s cell in both the first and the
second layer array. For the son node i of m, the inter-
coupling patterns between the cells, my,i and (mjy.iy),
of the CNNS’s first layer will be made up, as shown in
Fig. 3. For the AND son nodes i,j,k, of m, the connec-
tion patterns between cells, my,ig,jo and ko, via the
intermediate cell [(ig, j2,k2), mg], of the CNNS’s second
layer, are shown in Fig. 4.

At first, the first layer’s cell {7 corresponding to the
starting node ¢ of an implicit graph is compelled into
the attractor Pt from P~ with the injected bias current
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t¢ = 0. Then, as mentioned above, the attractor P+ will
be concurrently propagated to the adjacent Chua’s cells
of the first layer with the bias currents expressing the nec-
essary cost values and heuristic knowledge values. Once
such a cell of the first layer that expresses a primitive solv-
able or a primitive unsolvable problem node becomes P+,
the concurrent propagations of the Pt and P will take
place in the second layer of the CNN, as stated above.
Once the cell (5 of the second layer is set to the attrac-
tor P* from P, the search process finishes with success.
Consequently, the optimal solutions of the given implicit
AND/OR graph are indicated by the cascades of the sec-
ond layer’s cells with attractor P+ and the intermediate
cells whose bias DC currents in the shunt are allowed to
flow through the next rectifier unit I and to transmit to
the successive cells of the second layer of the CNNS.
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