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Fig. 4. (a), (b) Two incompatible fixed points satisfying (7) for r = 1, and
(c) the corresponding difference pattern.

Remark: Note that item 1) of the Proposition is general while
item 2) applies only if (6) holds. As an example, item 1) applies to
networks with nonlinearities of the general type (3). However, item
2) applies if the sum on n is extended only to odd integers and I,; =
0 for every 7 and j. In particular, for CNN’s, item 2) applies if there
are neither external inputs nor thresholds.

IV. COMMENTS AND CONCLUSIONS

Some relations of incompatibility between fixed points have been
proved for a broad class of recurrent nonlinear neural networks. The
property shown herein sheds some light on the role of self-interactions
in recurrent neural networks. Without self-interactions, the incom-
patibility cannot be removed, even if arbitrary nonlinearities are
introduced in the model.

The results presented in this paper have simple and important
implications in the case of associative memory and pattern recog-
nition, where the fixed points correspond to the stored prototypes
or learned categories. In this kind of applications, the zero self-
feedback assumption is usual, since it corresponds to a reduced
number of extraneous (undesired) fixed-points [5], [9]. However, as
shown above, the prototypes must satisfy pairwise constraints in order
that all of them could be stored as fixed points. In particular, assuming
r = 1, two of them cannot both be stored if their difference pattern
presents one of the configurations shown in Figs. 1 and 2. This holds
true irregarding of the learning strategy used. So, before applying
any learning rule, we can preliminarly check, by inspection, if the
prototypes are compatible.

This incompatibility condition has an effect on the capacity of
locally-interconnected neural networks. An estimation of this effect
is beyond the scopes of the present paper. However, some comments
are necessary. The probability P(m, r) increases as r decreases. This
fact can justify to some extent the experimental results showing that
the capacity is a decreasing function of the neighborhood size [5],

[10]. Note that the incompatibility is a consequence of locality. In the
case of partially interconnected networks with sparse interactions,
the result does not apply. So, using the same overall number of
interactions, the capacity should be larger when these links are
randomly distributed among the units. This is reasonable taking into
account that locality is a further constraint imposed on the network
architecture. However, from the practical realization viewpoint, local
links are preferable.

Finally, it is worth noting that even if the prototypes are compatible,
they cannot necessarily be stored. Compatibility is only a prerequisite.
Thus, the probability of storing a set of m random prototypes is less
than 1-P(m,r).
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Is the Colpitts Oscillator a Relative of Chua’s Circuit?

G. Sarafian and B. Z. Kaplan

Abstract—The topological resemblance of the Colpitts oscillator to that
of Chua’s circuit suggests that the two circuits may also be similar in their
dynamic behavior. The similarity in the dynamics is demonstrated in the
present communication by resorting to computer simulation. We deal in
particular with the unknown chaotic behavior of the Colpitts oscillator.
It is shown by referring to recently published articles that the Colpitts
oscillator and Chua’s circuit are in fact topologically conjugate one to
another.

I. INTRODUCTION

A recent analysis of practical RF VCO based on Colpitts oscillator
[1] seems to add a new interpretation to the rich and interesting
dynamic behavior of the well known Chua’s family of circuits [2]-[3].
It is interesting that there exists direct similarity between one of
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Fig. 1. (a) Model of Colpitts oscillator, see [1]. (b) The canonical realization
of Chua’s circuit family, see [3]. We have retained here the same symbols
that appear in the references.

Chua’s circuits [2] and the well-known practical Colpitts oscillator
circuit [1]. The small difference between the circuits, see Fig. 1(a) and
(b), is due to the slightly different nonlinear device, while the passive
network is the same in both cases. The Chua’s circuit nonlinear device
consists of a two- terminal conductance, whose current is a nonlinear
function of its own voltage (v1). The nonlinear device in the Colpitts
oscillator, on the other hand, is a three-terminal nonlinear element,
where the corresponding current is determined by the voitage on
the second capacitor (v). We show in the present communication
that the relationship between the systems is not merely due to the
topological aspect, but is due also to their similar dynamic behavior.
This issue is partially supported by a recent investigation of VCO’s
based on practical Colpitts oscillator [1]. It indicates that under certain
conditions, the Colpitts oscillator dynamics reveals chaotic behavior
[4]. One of the aims of the present work is to deal with the unknown
chaotic aspect of the well known Colpitts oscillator.

Besides the small difference in topology between the Colpitts
oscillator and the Chua’s circuit discussed previously, there exists
another difference that is due to the symmetry of the nonlinearity. The
nonlinearity of the Chua’s circuit possesses an odd symmetry, which
is sometimes represented by piecewise-linear characteristics [2], or
in other cases, it is modeled by an antisymmetric cubic polynomial
[5]. The nonlinearity of the conventional Colpitts oscillator, on the
other hand, is also usually modeled by a third order polynomial [1],
but this polynomial contains a square term as well. As a result, the
latter characteristic is not symmetric. In order to emphasize further
the similarity between the Chua’s circuit and the Colpitts oscillator,
and in order to emphasize the chaotic response, we have now modeled
the Colpitts nonlinearity by symmetric third order polynomial where
the square term is omitted. The dynamic behavior of the Colpitts
oscillator that results from this kind of modeling is reported in this
communication and is strongly related to the well known chaotic
behavior of Chua’s circuit. Modeling Colpitts oscillator with the aid
of pure odd nonlinearity is also of some practical value, since the
oscillator is sometimes built in push-pull configuration. The latter
configuration is associated with a purely odd nonlinearity [6].

II. A MODEL FOR THE CHAOTIC
CoLPITTS OSCILLATOR AND ITS BEHAVIOR
The main items of the model are described in [1]. This is also
shown in Fig. 1(a). The system equations are

d .
C1~%—1L =0
, di
T'1L+L'%+U+’UQ:0
, dv
—1L+Cz-%—f(v)=0. m
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The nonlinearity is modeled here by

f(v):al-v+a3-v3. )
The system equation is therefore [1]
d® dv
Tt ga e e vtk =00

The coefficients a1, as, a3, ks are defined in [1], (11). The system
has been investigated by simulating the system on a digital computer.
The results are presented in Figs. 2 and 3. The phase plane figure in
Fig. 2(a) illustrates the chaotic behavior of the Colpitts oscillator. It
seems to indicate a scrolling phenomenon. It may even represent a
“scroll tripling” type of behavior that has some structural resemblance
to the one that is described in [3, Fig. 13]. Both the time waveform
in Fig. 2 and the related Poincare map seem to exhibit strong chaotic
features. It is interesting to notice the similarity of the attractor in
Fig. 2(a) to those in plate no. 24 and 44 in the gallery of attractors
in [7].

The route to chaos of the system dynamics is illustrated in Fig. 3
by relying on the power spectra of the v(t) signal for four values of
r. Fig. 3(a) demonstrates an ordinary periodic behavior of Colpitts
oscillator. Fig. 3(b) exhibits a power spectrum related to a period
doubling phenomenon in the oscillator dynamics. The spectrum in
Fig. 3(c) exhibits a period-four phenomenon. The power spectrum in
Fig. 3(d) appears to be chaotic related.

[II. THE HELPFUL CONTRIBUTION OF THE BIAS
VARIABLE IN EXPLAINING THE SYSTEM DYNAMICS

The original Colpitts oscillator system variables in (1) were re-
placed in [1] by slow.variables that enabled us to employ the
Harmonic Balance method. One of the slow variables entitled by
us as a bias (the z(¢) variable in [1] ) is one of the main items of the
present interpretation. The bias variable was helpful both for the linear
and especially for the nonlinear approximations in [1]. This variable
assists in interpreting the system output as consisting of a relatively
rapid oscillating term that is superimposed on a slowly alternating
bias. Even a simple consideration of (3) already reveals the helpful
interpretation gained by emphasizing the bias contribution. One can
suggest that

“

As a result, (3) may be modified to two equations; one that governs
the rapidly oscillatory term and another that governs the slow variable
z(t). In addition, we are also interested in identifying the equalibria
positions of z(t), which seem to serve as the foci of the rapid
oscillations as is demonstrated in Fig. 2(b). Hence, the equation
representing the equalibria points of 2 is (zo indicates an equilibrium
point of z(t))

v(t) = z(t) + rapidly oscillatory variable.

a3-20+k3'23=0. (5)
As a result, three solutions can be obtained
Q;
zo1 =0, 202:_”_(1):_3' 203 = +4[—— ©)
3 3

This existence of three solutions is helpful in explaining the
tendency of the system to reveal a quasi triple scrolling phenomenon.
The three equilibria points in (6) can be expressed in terms of the
original nonlinearity coefficients in ?2)

ai ay
200 =0, z02=—4/——, Zo3=-+4/——-
az as

The quasi-triple scrolling behavior is interpreted as related to es-
sentially three types of oscillations burst. Some of the oscillations

Q)]
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Fig. 2. Numerical evaluations related to the dynamics of the
circuit in Fig. 1 for the following normalized circuit elements:
1/Cs = 2.2,1/Cy = 24,L = 1,7 = 0.249,017 = l,a3 = —0.2.
The initial values for the numerical evaluation are
v(0) = 0.05,v2(0) = 0.05,:£(0) = 0.01. (a) Chaotic attractor

in (v — v2) plane. (b) The related waveform versus time v(t). (c) The
related Poincare map in (v — v2) plane when i, = 0.
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Fig. 3. Power spectra for v(t) of the Colpitts oscillator for various values
of r. (The variation of r is related to respective changes in the resonant
circuit Q.) The value of r is employed as the parameter for inducing the
system’s route to chaos. (a) r = 1.00, (b) r = 0.30, (c) » = 0.28, (d)
r = 0.249. Horizontal axis: frequency (rad./s), vertical axis: power (mean
squared amplitude of v(t)) (dB).

seem to be centered around zero, while the two other seem to be
centered around the positive and negative values zo2 and zo3 in (7)
(see Fig. 2(a)).



376

IV. CONCLUSION

The various models associated with the Chua’s circuit have been
recently found helpful in demonstrating and explaining the various
facets of chaos [3]. Attempts are made in the literature to discover
new members of the large family of Chua’s circuits and to find their
close relatives [8], [9]. An example for such a recently discovered
relative is described in [10], where a nonautonomous related circuit
is discussed. (The latter circuit can also be regarded as a relative of
the RL diode circuit). The present communication deals with the well
known Colpitts oscillator, which is shown to be topologically similar
to Chua’s circuit. It is also shown here that when the nonlinearity of
the active device in the Colpitts oscillator is modified to be purely
odd, then the circuit exhibits chaotic phenomena closely related to
those exhibited by the classical [3] Chua’s circuit. Hence, yet another
relative of Chua’s circuit has been discovered.

A reviewer has pointed out that recent works of Chua et al. [8],
[9] have established mathematically the exactly detailed relationship
between Chua’s oscillator and relatively many other 3-D systems.
The works prove that such 3-D systems are topologically conjugate
to Chua’s oscillator (or in circuit terms, they are equivalent to
Chua’s oscillator [11]). A Chua’s oscillator is obtained by adding
a resistor in series with the inductor in Chua’s circuit [11]. The
classical Chua’s oscillator [11] is, therefore, conjugate to the circuit
in Fig. 1(b). Hence, by demonstrating that there exists a robust
relationship between the Colpitts oscillator in Fig. 1(a) and the Chua’s
oscillator [11], one can show that the two systems of Fig. 1 are not
simply loose relatives, but they are even strongly related and can be
regarded as being conjugate one to the other. Reference [9], which is
strongly related to [8], cites an example due to Arneodo et al. [12] of
a 3-D system that is strictly proved in [9] as being conjugate to the
Chua’s oscillator. It is interesting that the latter example ((10) in [9])
is in fact the same equation as the one that represents the presently
discussed Colpitts oscillator (3). Hence, we can conclude that the two
member systems of Fig. 1 are not merely related, but they are even
conjugate one to the other. Therefore, due to the helpful remarks of
the reviewer, we are assured that the answer to the question posed in
the title of the present communication is strongly yes.
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On the Relationship Between the Chaotic
Colpitts Oscillator and Chua’s Oscillator

Michael Peter Kennedy

Abstract— In this letter, we show that the two-region third-order
piecewise-linear dynamics of the chaotic Colpitts oscillator may be
mapped to a Chua’s oscillator with an asymmetric nonlinearity.

1. INTRODUCTION

It has recently been shown that the dynamics of a chaotic Colpitts
oscillator (shown in Fig. 1(a)) can be captured by a third-order
autonomous circuit model containing just one nonlinear element—-a
two-segment piecewise-linear resistor (Fig. 1(b)), [1].

The circuit is described by a system of three autonomous state
equations

Ve
Cl th =IL—IC
VBE Vee + Ve
TBE _ _YEETVBE _p g
Cs 7 Ror t—1Is
I .
Ld_Lt =Vee - Ve + Ve — ILRL.

We model the transistor as a two-segment piecewise-linear voltage-
controlled resistor Nr and a linear current-controlled current source.

Thus
1,=10 if Vee <Vrw
B= Zﬂ-%lﬂ if Ve > Vry
Ic =8rlB

where Vry is the threshold voltage (= 0.75 V), Ron is the small-
signal on-resistance of the base-emitter junction, and (Br is the
forward current gain of the device.

Fig. 2 shows a chaotic attractor in this two-region piecewise-linear
oscillator.
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