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Identification and Control of Unknown Chaotic fast. From a practical point of view, the existing results are not
Systems via Dynamic Neural Networks satisfactory for the controller design.
One main point of this paper is to apply the sliding mode technique
A. S. Poznyak, Wen Yu, and E. N. Sanchez to the weights learning of dynamic neural networks. This approach
can overcome the shortages of chaos identification. To the best of
Abstract—Identification and control problems for unknown chaotic our knowledge, the. sliding m(_)de technique scarcely ha_s bee.n usgd n
dynamical systems are considered. Our aim is to regulate the unknown neural network weights learning [6]. We prove that the identification
chaos to a fixed point or a stable periodic orbit. This is realized by €rror converges to a bounded zone by means of a Lyapunov function
following two contributions. First, a dynamic neural network is used technique. A local optimal controller [4] is used to compensate
as identifier. The weights of the neural networks are adjusted by the the modeling error. The effectiveness of the suggested approach

sliding mode technique. Second, we derive a local optimal controller via ._ . L . )
the neuroidentifier to remove the chaos in a system. The identification is illustrated by its implementation to the Lorenz system, Duffing

error and trajectory error are guaranteed to be bounded. The controller ~€quation and Chua’s circuit.
proposed in this paper is effective for many chaotic systems, including

the Lorenz system, Duffing equation, and Chua'’s circuit. Il. NEURO IDENTIFIER WITH SLIDING MODE LEARNING

Index Terms—Chaos, neural networks, identification, sliding mode

; A general nonlinear system can be described as follows:
control, learning.

¢ = fae, ug, t) (2)

. INTRODUCTION wherez, € R" is the system state vector at time Rt := {t: t >

Control chaos is one of the topics gaining great importandg; u. € R” is a given control action; ang(-): R*™"*! — R"
and attention in physics and engineering publications. Although tieean unknown nonlinear function describing the dynamics of this
model descriptions of some chaotic systems are simple, the dynasystem and belonging to a given claBf nonlinear functions. We
behaviors are complex. Recently, many researchers have manageghjothat a controlk; is admissable if for any initial conditions and
use modern elegant theories to control chaotic systems, most of thamy nonlinearity from®, it is piecewise continuous and it provides
based on the exact chaotic model (differential equations). Linear stat@iecewise differentiable solution: which satisfies the following
feedback [2] is very simple and easily implemented for the nonlinepiecewise continuity assumption:
chaotic systems. The Lyapunov-type method [5] is a more generalAl:
synthesis approach for nonlinear controller design. The feedback . .
linearization [3] technique is an effective nonlinear geometric theory e = @l = 1f (xas we. 5) = flae,wr O]
for nonlinear chaos control. If the chaotic system is partly known, for < Cr+ Dyls — ] (2
example the differential equation is known but some of the paramet?cr)
are unknown, adaptive control methods [10] are required.

In general, the unknown chaos is a black box belonging to
given class of nonlinearities. Therefore, a nonmodel-based met
is suitable. The neurocontroller is popular for controlling unknow

?anys./t € R™ (|s—t| < 1) (Cr and D, are known nonnegative
cgnstants). Notice that for the chaotic systems given by known dif-
Saential equations with a continuous right-hand side (it is necessary
or the existence of a corresponding solution), this property is valid.
The main aim is to design an online fast identifier for the class of
Manuscript received March 24, 1998; revised October 28, 1998 and Janugfiknown chaotic systems and to realize control via this neuroidenti-
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Herei, is the state of the neural netwoM; , W2  andVi +, V2 + Remark 1: One of the possible weight selectiofi§ ; W ] to
are the weight matrixes describing the output and hidden laydtdfil (10) (perhaps excepting a subspace of a smaller dimension) is
connections, respectively, and-) and ¢(-) are sigmoidal vector the pseudoinverse matrix given by
functions responsible for nonlinear state feedback. The most simple . S —
structure without any hidden layers (containing only the input and Wie Wl =[r (- "E':’) — AT+ Psigna)]
output layers) corresponds to the case when | el@e) (12)
0’)(»%1)7],,5

p=q=n and Vi =V, =1. 4) " . . .
where[-]™ stands in the Moore—Penrose sense [1]. This learning law
To simplify our further analysis, following to [7] and [6], To simplify IS Just an algebraic relation depending.an, which can be evaluated

our further analysis, we will use the following dynamic neuraflirectly. Taking into account that™ = (=" /||z||*), the last formula
networks [6], [7]: (12) can be rewritten as follows:

s e . R . . 37 /A/. _ [Tﬁl(wt - :/L'tfr) - fl;i’t + P S|gr{At)]
fo= A Wl W o S ] cea e

Let us consider an admissable contrpland define the corresponding . { o (i) } T_ (13)
identification error as\; := =+ — #¢. From (1) and (5) we derive O( &1 )uy

To analyze the stability of the estimation error, we define the
) X Lyapunov function a3; = ;||A,||>. Calculating its derivative along
= W, 1 d(&)us. ©)  the trajectories of the differential equations (9) and (10) we get

At = i‘t - .IA.“t = f(a:t,'ut,t) - fL’iTt —_ ‘/[‘71710'(;%15)

Becausef (¢, us, t) is unknown (we only assume thgte @), we Vi= AV Ay = A (=P signA) + 6)
will use the following approximation:

=Y PlA+ Al
+ 6 (7 =1
— min Pl A +

Flae, unt) = Tt — Teor

IN

Al 1]

for a small enough € R™. The vectors; is the approximation error . . .
at timet. In view of (1), its norm can be estimated as Applying the bounds given by (8), we obta—m
, _ Vi < —||A¢|| |min P, — (C- 4+ =D, )|.
N6l = 17 (e — i) — flesur )] < -lAd [ ( 2 )]
“t
T*l/ s ds — f(a:t,'ut,t)H
t—t

If we select a big enougt?; as

min P; > Cr + %Dr (14)

thenV; < 0 and we can guarantee the propetfty — 0. To realize
(14), it is desirable to seleet as small as possible.

7'—l |:/t f(«r,-n'u.qu) — f("lff,'utvt)} ds

<77 / | f(xs,us,s) — flae, ue, t)]| ds.
t—7

Ill. LocAL OPTIMAL CONTROL VIA THE NEURAL IDENTIFIER

Using Al we derive that for any > 0 Given an unknown chaotic system, the control aim is to force it to

set points or a stable trajectory. Because we cannot design a direct
controller based on the chaotic model, an identifier-based controller
is used. Let us assume that the desired tracking trajectory is a solution
of a known nonlinear reference model given by

6:]] < Cr + %DT. 8)

After substituting (7) into (6), we conclude that

Ay= 20710 ey — Wy W] i = (et t), xfERY, 2 (0)=c (15)
T
| @) S ©) where ¢ is a constant. In the case of the regulation problem,
O(Z¢)ue ¢ @(xf,t) = 0. The nonlinear system (1) can be represented as the

o ] neural network (5), plus a modeling errdrf
In order to guarantee the sliding mode behavior (see [8] and [6]), the

following relation must be satisfied: e, ue,t) = Av+ Wi so(x) + W ed(x)ur + ALf
The nonlinear system (1) may be represented as
R ’l?f = 441/} + .”/'1 R f,O'(&f’/f) + .”’/'27 tﬁb(it)u’t + Af
| 7t (10) Wi oo+ W id
B(3 )y + Wi o+ Wa rouy
= ;4,7,} + V"rl) t(T(,i't) + V"rz) t(b(,f’,'t)?l,t + dt (16)

. Wherg& = O'(Ll'L)—(T(Li'L), ggL = (Z’)(I[)—(D(‘IA[)H dL = Af+t1’l7 [&+
Ay = —P signA¢) + 6 (11) W, +¢us. Defining the trajectory erroA; = x+ — ] we get

T

—PsignA,) = “‘% — Ad = [Wi Wa]

to obtain the following sliding mode dynamics:

where P = diag[P - -- P,] is positive diagonal matrix sigr\;) := A = Az + Wi o (20) + W 1d(@)we + di — o(at, 1).
(sign(Ay ), ---,signA,,. )" Although the right-hand side of (11) (17)
is 'dISCOI’ItInUOUS, according to F|I|pp9vs gondlt_lons (S_ee [8]), thﬁ/e select the control action; as (see [4])

existence of an almost everywhere piecewise differentiable solution

can be guaranteed. w =y, + [Wa, 1 d(8,)] " ua (18)
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where u; , € R" is direct control part andiz: € R" is a
compensation of unmodeled dynamik. Becausep(zy,t),
Wi to (i) and Wy +é(#:) are available, we can seleet, ; as

Ui, ¢ = [Wv&té(jt)]_ lp(af, 1) — Axp — W1 so(de)].
Therefore, (17) becomed; = AA; + uy ¢ + dq. A local optimal

(minimal variance) control [4] may be applied to compensate the

unmodeled dynamics. We may select stable matrike® and@. to
satisfy the following conditions. The paijrd, R'/?) is controllable,

1493
Taking into account that;" > 0, we conclude
=t 17 1 1
T [__ / x?;*} = T {__vm _v;}
T—00 7T Jo T—00 T T
(19) .
< lim |::VO*:| =0.
Therefore, (22) is established. The theorem is proved. [ ]

The control goal now is to minimizéd; R~'d, and ¥ (us, ). To

the pair (Q/%, 4) is observable, and a special local frequencW'n'm'ZeHdtHH 1, we should minimize? ~*. From (20), if we select
condition [11] fulfills, which turns out to be equal to the matrix ¢ and Q. to prowde a POS't'Ve solution for (21), we must choose

inequality
A'RT'A-Q. > LA"R!

-R[ATR™!

- R™'4]

—R'A]" > 0. (20)

Thus, all of these conditions are equal to the following assumption

[11].
A2: There exist positive definite matrixes and ). such that the

matrix Riccati equation
A"P.+ PA4+P.RP.+Q.=0 (21)

has positive solution?..
Theorem 1: For the neural network (5) subjected Ad and A2,

the given system (1), and the reference model (15), the tracking er

A7 satisfies

T 1
lim —

T—00 T

/ [A:FIQLA: + U2, LRC'HQ, L] dt
0

— 1
< lim —

(22)

T—00 T

/ [d{ R™"d; + W (us +)] dt
Q

where R. is given positive define matrix andb(us,.) =
ZAflyPcug,t + 'ué:,‘Rc’u‘z,t.

Proof: In order to analyze the tracking error stability,
introduce the following Lyapunov functiod;* = A" P.AY, P. =
P. >0, whose time derivative is equal to

Vi = ATT(ATP 4+ PAAT + 207 Py 4 207 Pod,.

(23)
Using the matrix inequality [6]
XY+ v < X'AX +YPATY
which is valid for any matrixesX,Y € R™*™ and any0< A =
AT € R"*" the term2A;T P.d; can be estimated as

2ATTP.d, < AITP.RT'P.A} + d! Rd,. (24)

= R}, = A7'Q.A~". To minimize the energetic function
¥ (uz,+) at every time for the givene} and:,, which are assumed to
be realized and not dependentwn ¢, we should solve the following

optimization problem as

{ min ¥(uz,¢),

Ug ¢

subject: afuy, ¢+ uz,) <

where«a andj3 are given matrixes reflecting the physical constraints.
For example, in the case of the saturation type restriction, we have
« = I. This problem is a standard quadratic programming problem.
We name the:3 ,(t) as the locally optimal control [4], because it is
ggjculated based only on local informati¢n; andi;). In the case

of no restrictionsy2 ¢+ can be found analytically and turns out to be
the LQ-optimal control law (see [11])

uj . = —2R;'P.A}. (26)

IV. SIMULATION RESULTS

In this section, three typical chaotic system are chosen to demon-
strate the abilities of the neuroidentifier and local optimal controller,

W& ased on these identification estimates.

(1) The Lorenz SystemThe Lorenz model is used for the fluid
conviction description, especially for some feature of the atmospheric
dynamic [10]. The uncontrolled model is given by

o(ws —x1) + up,

;l’1
&g = pxT1 — T2 — T3 + U2,

— Baz + 122 + us

where z1, =3, and x3 represent measures of fluid velocity and
horizontal and vertical temperature variations, respectively, and
A are positive parameters representing the Prandtl number, Rayleigh

Substituting (24) in (23) and adding and subtracting the terftimber, and geometric factor, respectivelyp K 1, the origin is a

AT QAT and Aul (Rous ¢, we formulate
V<A (A"P.+ P.A+ P.RP. + Q.)A,
+2A7 Pous, s +ug (Reus s +df A™'dy

—ATTQ.AT —ul (Reous, . (25)

Because ofA2, the first term of (25) is equal to zero. Thus, (25) isp* (s, 3)

I6e + Nz, ellze, < @luz o) +df B de = Vi (As).

stable equilibrium. If

1<p<p(o,B)i=0a(c+3+3)/(c—53-1) (27)

the system has two stable equilibrium pointsy/3(p — 1),
+/B(p —1), (p — 1)) and one unstable equilibrium (the origin). If
< p, all three equilibrium points become unstable. As in the

the commonly studied case, we selece 10 and 3 = 8/3 which
leads top™ (s, 3) = 24.74. In the next example we will consider the

Then, integrating each term from O toand dividing each term by system withs = 10, 3 = 8/3, andp = 28. In order to construct a

7, we obtain
-1
lim —/
0

T—o0 T

ATQ.A, dt + Tim 1

T—0o T

/ u§1tRuuQ7L dt
0
— 1 o — 1 o
< lim — di R™ d¢ dt + lim — U(uz,¢) dt

T*}OCT
1 [,
g
T Jo

+ lim

T—00

model-based controller, first, we design an online neuroidentifier as

i;}t = fli’t + ‘/I/vl7 tO’(;i’t) + ‘/I/v27 t(,b(éi't)ut (28)
where A = diag(—8,—8,—8). The initial conditions for#, can
be any small value. Here we selekt = [1, —5,0]7. The weights
Wy,+ and W, , are 3 x 3 matrixes. The elements af(-) and
a(-) are selected ag(x;) = (2/1 + 7)) — 0.5, ¢(a;) =
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@) Fig. 2. Lorenz System.

result, it is not easy to use them in any control loop. If apply the
derived sliding mode identifier to the local optimal controller, we
can avoid these large deviations.

Then we implement the control law given by (19) and (26).
The adaptive controller is based on the constructed neural network
identifier. To simplify the computation, we assume the control input
is free (it is not subjected to any restrictions). We select

0.05 0 03 0
RC_{O 0.05}’ Qo =1, B_{o 0.3}

the solution of the corresponding Riccati Equation is

0.84 0
P"‘{o 0.84}'

The nonlinear reference model to be followed is selected as a circle
] = x5, a3 =sin(z}), x5 =50 (29)

with initial conditions equal ta:;(0) = 1, #5(0) = 0. The trajectory
tracking results are shown in Fig. 2. We observe that the average
trajectory error does not exceed ten.

(2) The Duffing Equation:This describes a specific nonlinear cir-
cuit or the hardening spring effect observed in many mechanical
problems [5] and can be written as

.7:’1 = T2,

To = —pro1 — pgmf — pra + qcos(wt) + uy (30)

Fig. 1. (a) ldentification results. (b) Identification results. (c) IdentificatioMh€rep, p1, p2, ¢, andw are constants and, is the control input.

results. It is known that the solution of (30) exhibits almost periodic and

chaotic behavior in the uncontrolled case if we select= 1.1,

, 020, . o . B p2 = 1, p = 0.4, ¢ = 2.1, andw = 1.8. Because the Duffing

(0.2/1 4 ¢7777) = 0.05. P = diag(20,20,20). 7 = 0.0 The ,qcinatoris a two dimensional (2-D) dynamic, to identify this system

|dent|f|cat|.on.results are shown in Fig. 1. we use the same neural network as in (28), but with 2-D state space,
The solid lines correspond to the state of the uncontrolled Lorené_, A = diag(=8,-8),20 = [L.—5]". W, ., and Wa,, are 2 x

system and the dashed lines are the states of the neural netwprk sirixes. The elements @f(-) and o(-) are selected as in (12)
identifier. We observe that the average identification error is n@t — 4jag(20,20) and ~ = 0.01. The controlled Duffing equation
more than ten. Because we adopt the sliding mode learning, thifers from the Lorenz system because it has only one control input.
dynamic neural network can follow the fast system very well. Wiye also force the Duffing equation to the periodic orbits, as in (29).
know that most of the existed updating laws of neural networks cannmtie corresponding results are shown in Fig. 3. We note that the local
give so quick a response. Therefore, based on those neuromodgisimal controller is independent of the chaotic systems, because this
it is difficult to design an online controller which can guaranteeontroller is based only on the neuroidentifier. Numerical simulations
a respectively good trajectory behavior. The drawback of theskhow that good identification results provide a small enough tracking
neuroidentifiers is that their weights change very quickly and, asearor.
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Direct Canonic Synthesis of
All-Pass Digital Filter Structures

T. Venkateswarlu

Fig. 4. Chua’s Circuit.

Abstract—A structure for realization of the nth-order all-pass digital
filter is presented. A known synthesis approach is used to obtain filter
(3) Chua’s Circuit: This is an interesting electronics system thastructures. The method is simple and the resulting structure contains:
displays rich and typical bifurcation and chaotic phenomena, SUCh_rg_gltipliers and n unit delay elements. '_rhese structures possess modular-
double scroll and double hook [2]. To study the controlled circui{t,y and are, hence, attractive for VLSI implementation.
we formulate its equation in the following form: Index Terms—All-pass, digital filters, modularity, structure, VLSI,
wave characterization.
Char = Gaz — 1) — g(ar) + us
Coio = G(a1 — x2) + w3 + uo, Lis = —x, A method for realizingnth-order all-pass digital filters has been
reported in [1]. This method uses thalomain procedure for realizing
whereg(z1) = mox1 + §(m1 — mo) [|z1 + Bp| + |1 — Bpl|], z1, all-pass digital filters and is similar to the methods reported in [2]
xs, 3 denote, respectively, the voltages acr6gsand C» and the and [3] for the multidimensional case. Another approach to realize
current throughZ. It is known that with(1/C1) = 9, (1/C») = 1, digital filters is to use an analog reference configuration and then
(1/L) =7, G = 0.7, mg = —‘5, my = _g, B, = 1, the circuit apply the wave characterization to obtain the corresponding digital
displays a double scroll. To demonstrate the effectiveness of tiléer structure.
approach suggested in this study, we also use the same neural netwolk is known that the cascade digital filter structures, designed
as in (28). The controlled tracking behavior is shown in Fig. 4. comprising generalized-immittance-converters (GIC's) and resistors,
possess many advantages such low sensitivity, low noise and the
absence of limit cycles characteristics, as compared to the direct form
cascade structures [4]-[5]. The aim of this paper is to show that an
We present a new control method for unknown chaotic systenaternatenth-order all-pass digital filter can be obtained by using an
The identifier uses the sliding mode technique to increase the learnigalog reference configuration, comprising GIC’s and resistors.
speed of neural network weights. This approach can be considered
as an alternative to LSM to avoid the recurrent/differential back- Manuscript received August 25, 1998. This paper was recommended by
propagation learning. Based on the identifier, the local optimal COntm‘?ﬁgla;eutﬁglrtoi"se\.lvi,\t/lharg‘?:”Ill:acult of Engineering. Universiti Telekom
IS used.' S,I,mmat'or,], results ShO.W that for d.lf'ferent Chaps u,n,dg[Jkit Beruang, Jalan Ayer Keroh yLama, 72450 Mgléka, Malaysia (e-mai‘l:
different initial conditions, the derived control via the neuroidentifiefariu@unitele.com.my).
turns out to be very effective. Publisher Item Identifier S 1057-7122(99)09751-2.
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