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Identification and Control of Unknown Chaotic
Systems via Dynamic Neural Networks

A. S. Poznyak, Wen Yu, and E. N. Sanchez

Abstract—Identification and control problems for unknown chaotic
dynamical systems are considered. Our aim is to regulate the unknown
chaos to a fixed point or a stable periodic orbit. This is realized by
following two contributions. First, a dynamic neural network is used
as identifier. The weights of the neural networks are adjusted by the
sliding mode technique. Second, we derive a local optimal controller via
the neuroidentifier to remove the chaos in a system. The identification
error and trajectory error are guaranteed to be bounded. The controller
proposed in this paper is effective for many chaotic systems, including
the Lorenz system, Duffing equation, and Chua’s circuit.

Index Terms—Chaos, neural networks, identification, sliding mode
control, learning.

I. INTRODUCTION

Control chaos is one of the topics gaining great importance
and attention in physics and engineering publications. Although the
model descriptions of some chaotic systems are simple, the dynamic
behaviors are complex. Recently, many researchers have managed to
use modern elegant theories to control chaotic systems, most of them
based on the exact chaotic model (differential equations). Linear state
feedback [2] is very simple and easily implemented for the nonlinear
chaotic systems. The Lyapunov-type method [5] is a more general
synthesis approach for nonlinear controller design. The feedback
linearization [3] technique is an effective nonlinear geometric theory
for nonlinear chaos control. If the chaotic system is partly known, for
example the differential equation is known but some of the parameters
are unknown, adaptive control methods [10] are required.

In general, the unknown chaos is a black box belonging to a
given class of nonlinearities. Therefore, a nonmodel-based method
is suitable. The neurocontroller is popular for controlling unknown
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chaotic system. Yeap and Ahmed [9] used multilayer perceptrons
to control chaotic systems. Chen and Dong [2] suggested direct
and indirect neurocontrollers for chaos. Both of them were based
on inverse modeling, i.e., neural networks are applied to learn the
inverse dynamics of the chaotic systems. There are some drawbacks
to this kind of technique, suchas lack of robustness, the demand
of persistent excitation for the input signal and the non-one-to-one
mapping of the inverse model. Another approach is identifier-based
control. Two types of neural networks can be applied to identify
dynamic systems with chaotic trajectories. The static neural network
connected with a dynamic linear model is used to approximate a
chaotic system [2], but the computing time is very long and some
a priori knowledge of chaotic systems is needed. The dynamic
neural networks can minimize the approximation error of the chaotic
behavior [6], however, the number of neurons and the value of their
weights are not determined. It is difficult to identify chaotic systems
off line via neural networks, because the dynamic of chaos are very
fast. From a practical point of view, the existing results are not
satisfactory for the controller design.

One main point of this paper is to apply the sliding mode technique
to the weights learning of dynamic neural networks. This approach
can overcome the shortages of chaos identification. To the best of
our knowledge, the sliding mode technique scarcely has been used in
neural network weights learning [6]. We prove that the identification
error converges to a bounded zone by means of a Lyapunov function
technique. A local optimal controller [4] is used to compensate
the modeling error. The effectiveness of the suggested approach
is illustrated by its implementation to the Lorenz system, Duffing
equation and Chua’s circuit.

II. NEURO IDENTIFIER WITH SLIDING MODE LEARNING

A general nonlinear system can be described as follows:

_xt = f(xt; ut; t) (1)

wherext 2 <n is the system state vector at timet 2 R+ := ft: t �
0g; ut 2 <n is a given control action; andf(�): <n+n+1 ! <n

is an unknown nonlinear function describing the dynamics of this
system and belonging to a given class� of nonlinear functions. We
say that a controlut is admissable if for any initial conditions and
any nonlinearity from�, it is piecewise continuous and it provides
a piecewise differentiable solutionxt which satisfies the following
piecewise continuity assumption:

A1:

k _xs � _xtk = kf(xs; us; s)� f(xt; ut; t)k

� C� +D� js� tj (2)

for anys; t 2 R+ (js� tj � �) (C� andD� are known nonnegative
constants). Notice that for the chaotic systems given by known dif-
ferential equations with a continuous right-hand side (it is necessary
for the existence of a corresponding solution), this property is valid.

The main aim is to design an online fast identifier for the class of
unknown chaotic systems and to realize control via this neuroidenti-
fier. Let us consider the following dynamic neural network:

_̂xt = Ax̂t +W1; t�(V1; tx̂t) +W2; t�(V2; tx̂t)ut (3)

where x̂t 2 <n; �: <p ! <k; A 2 <n�n is a Hurtwitz matrix,
W1; t 2 <n�k; V1; t 2 <p�n; W2; t 2 <n�n; V2; t 2 <q�n; �(�) is
<n�n diagonal matrix, i.e.,�(�) = diag[�(V2; tx̂t)1 � � ��(V2; tx̂t)n]:
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Herex̂t is the state of the neural network,W1; t; W2; t andV1; t; V2; t
are the weight matrixes describing the output and hidden layers
connections, respectively, and�(�) and �(�) are sigmoidal vector
functions responsible for nonlinear state feedback. The most simple
structure without any hidden layers (containing only the input and
output layers) corresponds to the case when

p = q = n and V1 = V2 = I: (4)

To simplify our further analysis, following to [7] and [6], To simplify
our further analysis, we will use the following dynamic neural
networks [6], [7]:

_̂xt = Ax̂t +W1; t�(x̂t) +W2; t�(x̂t)ut: (5)

Let us consider an admissable controlut and define the corresponding
identification error as�t := xt � x̂t: From (1) and (5) we derive

_�t = _xt � _̂xt = f(xt; ut; t)�Ax̂t �W1; t�(x̂t)

�W2; t�(x̂t)ut: (6)

Becausef(xt; ut; t) is unknown (we only assume thatf 2 �), we
will use the following approximation:

f(xt; ut; t) =
xt � xt��

�
+ �t (7)

for a small enough� 2 R+. The vector�t is the approximation error
at time t. In view of (1), its norm can be estimated as

k�tk = k��1(xt � xt�� )� f(xt; ut; t)k

= ��1
t

t��

_xs ds� f(xt; ut; t)

= ��1
t

t��

f(xs; us; s)� f(xt; ut; t) ds

� ��1
t

t��

kf(xs; us; s)� f(xt; ut; t)k ds:

Using A1 we derive that for anyt � 0

k�tk � C� +
�

2
D� : (8)

After substituting (7) into (6), we conclude that

_�t =
xt � xt��

�
� Ax̂t � [W1; t W2; t]

�
�(x̂t)
�(x̂t)ut

+ �t: (9)

In order to guarantee the sliding mode behavior (see [8] and [6]), the
following relation must be satisfied:

�P sign(�t) =
xt � xt��

�
� Ax̂t � [W1; t W2; t]

�
�(x̂t)
�(x̂t)ut

(10)

to obtain the following sliding mode dynamics:

_�t = �P sign(�t) + �t (11)

whereP = diag[P1 � � �Pn] is positive diagonal matrix sign(�t) :=
(sign(�1; t); � � � ; sign(�n; t))

T : Although the right-hand side of (11)
is discontinuous, according to Filippov’s conditions (see [8]), the
existence of an almost everywhere piecewise differentiable solution
can be guaranteed.

Remark 1: One of the possible weight selections[W1; t W2; t] to
fulfil (10) (perhaps excepting a subspace of a smaller dimension) is
the pseudoinverse matrix given by

[Ŵ1; t Ŵ2; t] = [��1(xt � xt�� )�Ax̂t + P sign(�t)]

�
�(x̂t)
�(x̂t)ut

+

(12)

where[�]+ stands in the Moore–Penrose sense [1]. This learning law
is just an algebraic relation depending on�t, which can be evaluated
directly. Taking into account thatx+ = (xT =kxk2), the last formula
(12) can be rewritten as follows:

[Ŵ1; t Ŵ2; t] =
[��1(xt � xt�� )�Ax̂t + P sign(�t)]

k�(x̂t)k2 + k�(x̂t)utk2

�
�(x̂t)
�(x̂t)ut

T

: (13)

To analyze the stability of the estimation error, we define the
Lyapunov function asVt = 1

2
k�tk

2. Calculating its derivative along
the trajectories of the differential equations (9) and (10) we get

_Vt = �T
t
_�t = �T

t (�P sign(�t) + �t)

= �

n

i=1

Pij�ij+�T
t �t

� �min
i

Pik�tk+ k�tk k�tk:

Applying the bounds given by (8), we obtain

_Vt � �k�tk min
i

Pi � C� +
�

2
D� :

If we select a big enoughPi as

min
i

Pi>C� +
�

2
D� (14)

then _Vt< 0 and we can guarantee the property�t ! 0: To realize
(14), it is desirable to select� as small as possible.

III. L OCAL OPTIMAL CONTROL VIA THE NEURAL IDENTIFIER

Given an unknown chaotic system, the control aim is to force it to
set points or a stable trajectory. Because we cannot design a direct
controller based on the chaotic model, an identifier-based controller
is used. Let us assume that the desired tracking trajectory is a solution
of a known nonlinear reference model given by

_x� = '(x�; t); x�t 2 <
n; x�(0) = c (15)

where c is a constant. In the case of the regulation problem,
'(x�t ; t) = 0: The nonlinear system (1) can be represented as the
neural network (5), plus a modeling error�f

f(xt; ut; t) = Ax +W1; t�(x) +W2; t�(x)ut +�:f

The nonlinear system (1) may be represented as

_xt = Axt +W1; t�(x̂t) +W2; t�(x̂t)ut +�f

+W1; t~� +W2; t
~�ut

= Axt +W1; t�(x̂t) +W2; t�(x̂t)ut + dt (16)

where~� := �(xt)��(x̂t); ~�t := �(xt)��(x̂t); dt = �f+W1; t~�+
W2; t

~�ut: Defining the trajectory error��

t = xt � x�t we get

_��

t = Axt +W1; t�(x̂t) +W2; t�(x̂t)ut + dt � '(x�t ; t):

(17)

We select the control actionut as (see [4])

ut = u1; t + [W2; t�(x̂t)]
�1u2; t (18)
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where u1; t 2 <n is direct control part andu2; t 2 <n is a
compensation of unmodeled dynamicdt. Because'(x�t ; t); x

�

t ;
W1; t�(x̂t) andW2; t�(x̂t) are available, we can selectu1; t as

u1; t = [W2; t�(x̂t)]
�1['(x�t ; t)� Ax�t �W1; t�(x̂t)]: (19)

Therefore, (17) becomes_��t = A��t + u2; t + dt: A local optimal
(minimal variance) control [4] may be applied to compensate the
unmodeled dynamics. We may select stable matrixesA; R andQc to
satisfy the following conditions. The pair(A;R1=2) is controllable,
the pair (Q1=2

c ; A) is observable, and a special local frequency
condition [11] fulfills, which turns out to be equal to the matrix
inequality

ATR�1A�Qc �
1

4
[ATR�1 �R�1A]

� R[ATR�1 �R�1A]T � 0: (20)

Thus, all of these conditions are equal to the following assumption
[11].

A2: There exist positive definite matrixesA andQc such that the
matrix Riccati equation

ATPc + PcA + PcRPc +Qc = 0 (21)

has positive solutionPc.
Theorem 1: For the neural network (5) subjected toA1 and A2,

the given system (1), and the reference model (15), the tracking error
��t satisfies

lim
�!1

1

�

�

0

[��Tt Qc�
�

t + u2; tRcu2; t] dt

� lim
�!1

1

�

�

0

[dTt R
�1dt +	(u2; t)] dt (22)

where Rc is given positive define matrix and	(u2; t) =
2��Tt Pcu2; t + uT2; tRcu2; t:

Proof: In order to analyze the tracking error stability, we
introduce the following Lyapunov function:V �t = ��Tt Pc�

�

t ; Pc =
Pc> 0; whose time derivative is equal to

_V �t = ��Tt (ATPc + PcA)�
�

t + 2��Tt Pcu2; t + 2��Tt Pcdt:

(23)

Using the matrix inequality [6]

XTY + Y TX � XT�X + Y T��1Y

which is valid for any matrixesX;Y 2 Rn�m and any0<� =
�T 2 Rn�n; the term2��Tt Pcdt can be estimated as

2��Tt Pcdt � ��Tt PcR
�1Pc�

�

t + dTt Rdt: (24)

Substituting (24) in (23) and adding and subtracting the term
��Tt Qc�

�

t and�uT2; tRcu2; t; we formulate

_V �t � �T
t (A

TPc + PcA + PcRPc +Qc)�t

+ 2��Tt Pcu2; t + uT2; tRcu2; t + dTt �
�1dt

���Tt Qc�
�

t � uT2; tRcu2; t: (25)

Because ofA2, the first term of (25) is equal to zero. Thus, (25) is

k�tk
2

Q + ku2; tk
2

R � 	(u2; t) + dTt R
�1dt � _V �t (�t):

Then, integrating each term from 0 to� and dividing each term by
� , we obtain

lim
�!1

1

�

�

0

�T
t Qc�t dt+ lim

�!1

1

�

�

0

uT2; tRcu2; t dt

� lim
�!1

1

�

�

0

dTt R
�1dt dt+ lim

�!1

1

�

�

0

	(u2; t) dt

+ lim
�!1

�
1

�

�

0

_V �t :

Taking into account thatV �t � 0, we conclude

lim
�!1

�
1

�

�

0

_V �t = lim
�!1

�
1

�
V �t +

1

�
V �0

� lim
�!1

1

�
V �0 = 0:

Therefore, (22) is established. The theorem is proved.
The control goal now is to minimizedTt R

�1dt and	(u2; t): To
minimizekdtk2R , we should minimizeR�1. From (20), if we select
A andQc to provide a positive solution for (21), we must choose
R�1 = R�1

min
= A�TQcA

�1. To minimize the energetic function
	(u2; t) at every timet for the givenx�t andx̂t, which are assumed to
be realized and not dependent onu2; t; we should solve the following
optimization problem as

min
U

	(u2; t);

subject: �(u1; t + u2; t) � �

where� and� are given matrixes reflecting the physical constraints.
For example, in the case of the saturation type restriction, we have
� = I. This problem is a standard quadratic programming problem.
We name theu�2; t(t) as the locally optimal control [4], because it is
calculated based only on local information(x�t and x̂t). In the case
of no restrictions,u2; t can be found analytically and turns out to be
the LQ-optimal control law (see [11])

u�2; t = �2R�1c Pc�
�

t : (26)

IV. SIMULATION RESULTS

In this section, three typical chaotic system are chosen to demon-
strate the abilities of the neuroidentifier and local optimal controller,
based on these identification estimates.

(1) The Lorenz System:The Lorenz model is used for the fluid
conviction description, especially for some feature of the atmospheric
dynamic [10]. The uncontrolled model is given by

_x1 = �(x2 � x1) + u1;

_x2 = �x1 � x2 � x1x3 + u2;

_x3 = � �x3 + x1x2 + u3

where x1, x2, and x3 represent measures of fluid velocity and
horizontal and vertical temperature variations, respectively.�, �, and
� are positive parameters representing the Prandtl number, Rayleigh
number, and geometric factor, respectively. If�< 1, the origin is a
stable equilibrium. If

1<� � ��(�; �) := �(� + � + 3)=(�� � � 1) (27)

the system has two stable equilibrium points(� �(�� 1);

� �(�� 1); (�� 1)) and one unstable equilibrium (the origin). If
��(�; �)<�, all three equilibrium points become unstable. As in the
the commonly studied case, we select� = 10 and� = 8=3 which
leads to��(�; �) = 24:74: In the next example we will consider the
system with� = 10, � = 8=3, and� = 28. In order to construct a
model-based controller, first, we design an online neuroidentifier as

_̂xt = Ax̂t +W1; t�(x̂t) +W2; t�(x̂t)ut (28)

whereA = diag(�8;�8;�8): The initial conditions forx̂t can
be any small value. Here we selectx̂0 = [1;�5; 0]T : The weights
W1; t and W2; t are 3 � 3 matrixes. The elements of�(�) and
�(�) are selected as�(xi) = (2=1 + e�2x ) � 0:5; �(xi) =
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(a)

(b)

(c)

Fig. 1. (a) Identification results. (b) Identification results. (c) Identification
results.

(0:2=1 + e�0:2x ) � 0:05: P = diag(20; 20; 20); � = 0:01: The
identification results are shown in Fig. 1.

The solid lines correspond to the state of the uncontrolled Lorenz
system and the dashed lines are the states of the neural network
identifier. We observe that the average identification error is not
more than ten. Because we adopt the sliding mode learning, this
dynamic neural network can follow the fast system very well. We
know that most of the existed updating laws of neural networks cannot
give so quick a response. Therefore, based on those neuromodels,
it is difficult to design an online controller which can guarantee
a respectively good trajectory behavior. The drawback of these
neuroidentifiers is that their weights change very quickly and, as a

Fig. 2. Lorenz System.

result, it is not easy to use them in any control loop. If apply the
derived sliding mode identifier to the local optimal controller, we
can avoid these large deviations.

Then we implement the control law given by (19) and (26).
The adaptive controller is based on the constructed neural network
identifier. To simplify the computation, we assume the control input
is free (it is not subjected to any restrictions). We select

RC =
0:05 0
0 0:05

; QC = I; R =
0:3 0
0 0:3

the solution of the corresponding Riccati Equation is

Pc =
0:84 0
0 0:84

:

The nonlinear reference model to be followed is selected as a circle

_x�1 = x�2; _x�2 = sin(x�1); x�3 = 50 (29)

with initial conditions equal tox�1(0) = 1; x�2(0) = 0: The trajectory
tracking results are shown in Fig. 2. We observe that the average
trajectory error does not exceed ten.

(2) The Duffing Equation:This describes a specific nonlinear cir-
cuit or the hardening spring effect observed in many mechanical
problems [5] and can be written as

_x1 = x2;

_x2 = � p1x1 � p2x
3

1 � px2 + q cos(!t) + ut (30)

wherep, p1, p2, q, and! are constants andut is the control input.
It is known that the solution of (30) exhibits almost periodic and
chaotic behavior in the uncontrolled case if we selectp1 = 1:1,
p2 = 1, p = 0:4, q = 2:1, and ! = 1:8. Because the Duffing
oscillator is a two dimensional (2-D) dynamic, to identify this system
we use the same neural network as in (28), but with 2-D state space,
i.e., A = diag(�8;�8); x̂0 = [1;�5]T ;W1; t and W2; t are 2�
2 matrixes. The elements of�(�) and �(�) are selected as in (12)
P = diag(20;20) and � = 0:01: The controlled Duffing equation
differs from the Lorenz system because it has only one control input.
We also force the Duffing equation to the periodic orbits, as in (29).
The corresponding results are shown in Fig. 3. We note that the local
optimal controller is independent of the chaotic systems, because this
controller is based only on the neuroidentifier. Numerical simulations
show that good identification results provide a small enough tracking
error.
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Fig. 3. Duffing Equation.

Fig. 4. Chua’s Circuit.

(3) Chua’s Circuit: This is an interesting electronics system that
displays rich and typical bifurcation and chaotic phenomena, such as
double scroll and double hook [2]. To study the controlled circuit,
we formulate its equation in the following form:

C1 _x1 = G(x2 � x1)� g(x1) + u1

C2 _x2 = G(x1 � x2) + x3 + u2; L _x3 = �x2;

whereg(x1) = m0x1 +
1

2
(m1 �m0) [jx1 + Bpj + jx1 � Bpj]; x1;

x2; x3 denote, respectively, the voltages acrossC1 andC2 and the
current throughL. It is known that with(1=C1) = 9; (1=C2) = 1;
(1=L) = 7; G = 0:7; m0 = � 1

2
; m1 = � 4

5
; Bp = 1; the circuit

displays a double scroll. To demonstrate the effectiveness of the
approach suggested in this study, we also use the same neural network
as in (28). The controlled tracking behavior is shown in Fig. 4.

V. CONCLUSION

We present a new control method for unknown chaotic systems.
The identifier uses the sliding mode technique to increase the learning
speed of neural network weights. This approach can be considered
as an alternative to LSM to avoid the recurrent/differential back-
propagation learning. Based on the identifier, the local optimal control
is used. Simulation results show that for different chaos under
different initial conditions, the derived control via the neuroidentifier
turns out to be very effective.
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Direct Canonic Synthesis of
All-Pass Digital Filter Structures

T. Venkateswarlu

Abstract—A structure for realization of the nth-order all-pass digital
filter is presented. A known synthesis approach is used to obtain filter
structures. The method is simple and the resulting structure containsn
multipliers and n unit delay elements. These structures possess modular-
ity and are, hence, attractive for VLSI implementation.

Index Terms—All-pass, digital filters, modularity, structure, VLSI,
wave characterization.

A method for realizingnth-order all-pass digital filters has been
reported in [1]. This method uses thez-domain procedure for realizing
all-pass digital filters and is similar to the methods reported in [2]
and [3] for the multidimensional case. Another approach to realize
digital filters is to use an analog reference configuration and then
apply the wave characterization to obtain the corresponding digital
filter structure.

It is known that the cascade digital filter structures, designed
comprising generalized-immittance-converters (GIC’s) and resistors,
possess many advantages such low sensitivity, low noise and the
absence of limit cycles characteristics, as compared to the direct form
cascade structures [4]–[5]. The aim of this paper is to show that an
alternatenth-order all-pass digital filter can be obtained by using an
analog reference configuration, comprising GIC’s and resistors.
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