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Chua’s Oscillator : A Compendium of Chaotic 
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ABSTRACT : Chua’s oscillator is the only real physical object known to date in which chaotic 
hehat)ior has been observed experimentally and numerically, and proced rigorously. In sum- 

marizing the chaotic phenomena obsertled so ,far ,from the oscillator we emphasize its uni- 

uersality by showing how the dynamicalphenomena~from other 30 oscillators can be reproduced 
by using Chua’s oscillator. The possibility of its use as an elementary cell in cellular neural 

networks is briefry discussed. 

I. Introduction 

In the last three decades, chaotic phenomena have become a subject of great 
interest in different areas of physics, biology, economics, and other sciences. Once 
considered a rare phenomenon in nature, whose occurrence is subject to very 
special conditions, the accepted belief today is that chaotic phenomena permeate 
almost all relevant physical and biological processes. 

The three standard methods of investigation were applied to the early models 
with chaotic dynamicsPnumerical (l), experimental (2, 3), and analytical (4-7). 
In view of the amount of effort invested in the research of chaos it is somewhat 
surprising that Chua’s oscillator still remains the only real physical object in which 
chaos has been observed numerically and experimentally, and its robustness has 
been proved mathematically. This was made possible by the remarkably simple 
structure of the underlying circuit. Chaos is a nonlinear phenomenon, but we 
would like to analyze it using linear techniques which are more developed. A 
relatively simple circuitry makes it possible to furnish a piecewise-linear form for 
the nonlinearity needed to generate chaos. In fact, as little as two linear segments 
of the nonlinear resistor are sufficient to do the job. A transition to chaos can be 
initiated in several fundamentally different ways. Also, the most common form of 
chaotic behavior-so called chaotic attractors+an assume a multitude of shapes 
and can be classified according to different criteria, e.g. various types of fractal 
dimensions, eigenvalues of the associated equilibria, etc. Such characteristics of 
chaos were being introduced and studied over the past decades by using many 
oscillators, capable of generating certain types of chaos. It was not clear whether 
all known types of chaos can be generated from a single third-order oscillator until 
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FIG. 1. Circuit diagram of Chua’s oscillator. 

a powerful unifying theorem (8) for 3-dimensional, piecewise-linear vector fields 
was proved, implying that Chua’s oscillator (Fig. 1) is the most general, but 
structurally the simplest system capable of reproducing all possible dynamical 
phenomena from a certain class of 3D vector fields. As a consequence, Chua’s 
oscillator can be used to mimic the behavior of other piecewise-linear oscillators 
and also approximate the behavior of many others which exhibit smooth non- 
linearities. The corresponding theorem will be stated and proved in Section III, 
and examples will be given in Section IV on how Chua’s oscillator can be used to 
reproduce the behavior from other dynamical systems. In Section II, we survey the 
rich variety of dynamical behaviors observed so far from Chua’s oscillator. Finally, 
in Section V, we take a brief view on a new, fascinating structure, the cellular neural 
network of Chua’s oscillators, promising to spawn new and even richer phenomena 
with far-reaching applications. 

Figure 1 shows a diagram of the oscillator, whose state equations are given by 

dv, 
_ = $ [G(v, -v,) -.f’(z~)] 
dt I 

dv2 
- = $G(v, -v,)+i,] 
dt 2 

d& -= 
dt 

(1) 

where G = l/R, and f(v,) = Ghv, +i(G,-G,,){lv, +El--_lv, -El} is the v-i 
characteristic of the nonlinear resistor NR with a slope equal to G, in the inner 
region and Gh in the two outer regions. 

By a change of variables, the state equations of Chua’s oscillator (1) can be 
transformed into the following dimensionless form : 
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Chua’s Oscillator 

where 

C2 
a=--, 

CL 

a = RG,, 

dX 
x = ka(y-x-f(x)) 

2 = k(X--y+z) 

dZ 
z = k(-fly,-yz) 

f(x) = bx+l(a-b){lx+lI-1x-11) 1 
R2C2 p=,, $!p 

k=l 
b = RG,,, T=&, and 

if RC2 > 0 

k = -1 if RC2 < 0. 

(2) 

(3) 

Throughout the rest of this paper, we will mainly use the dimensionless form. 

II. Dynamical Phenomena from Chua’s Oscillator 

In this section we illustrate with examples the rich variety of phenomena, 
especially chaotic attractors, which can be generated with Chua’s oscillator. Some 
new phenomena, recently reported from experiments with the oscillator, are sum- 
marized in several subsections. 

2.1. Gallery of attractors 

To show the immense variety of shapes attractors can take on we reproduce 
those from earlier works (9) (Figs 2.1-2.22, 2.31-2.35) and add several more 
attractors that have been observed recently (Figs 2.2332.30). 

Table I provides the parameter values for all attractors in the figures, along with 
the corresponding Lyapunov exponents. 

2.2. Period-adding bifurcations 
In this phenomenon [see, for example (IO, ll)], windows of consecutive periods 

are separated by regions of chaos. In other words, as the parameter is varied, we 
obtain a stable period-n orbit, n = 1, 2,. . . , followed by a region of chaos, then a 
stable period-(n + 1) orbit, followed by chaos, and then a period-(n+2) orbit and 
so on. Examples from one such sequence are given in Fig. 3. 

2.3. Homoclinic and heteroclinic orbits in Chua’s oscillator 
Closely related to the appearance of chaotic behavior in dynamical systems in 

general are the so-called homoclinic and heteroclinic trajectories. A homoclinic 
trajectory is one whose limit point in both forward and backward times is the same 
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Fig. 2.1 Fig. 2.2 

Fig. 2.4 

Fig. 2.5 Fig. 2.6 

FIG. 2. A gallery of attractors from Chua’s oscillator. 

saddle-type equilibrium point. On the other hand, two different equilibrium points 
are the limit points in forward and backward time, respectively, for a heteroclinic 
trajectory (see Fig. 4). 

2.4. Coexistence phenomena 
In general, for the same set of parameters, there exist many stable and unstable 

limit sets. The system trajectory will converge to a particular attractor if the initial 
conditions are chosen in the basin of attraction of the attractor. Thus which of the 
coexisting attractors we observe in experiments depends on the initial state of the 
system. Coexistence of attractors is an interesting phenomenon where the inter- 
action of attractors can give rise to different dynamical phenomena (some of which 
is described in Subsection 2.6). Recently, coexistence of three distinct chaotic 
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Fig. 2.7 Fig. 2.8 

Fig. 2.9 Fig. 2.10 

Fig. 2.11 

FIG. 2pcontinued. 

Fig. 2.12 

attractors has been reported in (12), where two asymmetric attractors coexist with 
a symmetric one (Fig. 5). Some other coexistence phenomena, including point 
attractors, periodic attractors, and chaotic attractors are shown in Fig. 6. 

A common phenomenon in chaotic systems is the coexistence of nonstable orbits 
near chaotic attractors. Figure 7 illustrates such coexistence with the double scroll 
attractor. 

2.5. Routes to chaos 
2.5.1. Period-doubling route to chaos. When the parameter CY is changed, an 

equilibrium point loses its stability and a stable limit cycle emerges through an 
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Fig. 2.13 Fig. 2.14 

Fig. 2.15 Fig. 2.16 

Fig. 2.17 

FIG. 2--continued. 

Fig. 2.18 

Andronov-Hopf bifurcation. As the parameter is changed further, the stable limit 
cycle eventually loses stability, and a stable limit cycle of approximately twice the 
period emerges, which is usually referred to as a period-2 limit cycle. Similarly a 
period-4 limit cycle appears after the period-2 limit cycle loses its stability. This 
bifurcation occurs infinitely many times at ever-decreasing intervals of the par- 
ameter range, which converges at a geometric rate, determined by the well-known 
Feigenbaum constant, to a limit (bifurcation point) at which point chaos is observed. 
This is called a period-doubling route to chaos, an example of which is shown in 
Fig. 8. 

2.5.2. Torus breakdown route to chaos. In this route to chaos the system undergoes 
several Andronov-Hopf bifurcations. After two Andronov-Hopf bifurcations, we 

712 
Journal of the Frankhn Institute 

Elsewcr Sc,ence Ltd 



Chua’s Oscillator 

Fig. 2.19 Fig. 2.20 

Fig. 2.21 Fig. 2.22 

Fig. 2.23 

FIG. 2-continued. 

Fig. 2.24 

obtain a toroidal attractor. At the third Andronov-Hopf bifurcation, chaos is 
likely to appear. Both the torus breakdown route to chaos and the period-doubling 
route to chaos can be conveniently interpreted and explained in terms of the 
characteristic multipliers of the corresponding Poincare map (13). In (11) an 
example of this route from a physical Chua’s oscillator is presented. 

2.5.3. Intermittency route to chaos. Intermittency is the phenomenon where the 
signal is virtually periodic except for some irregular (unpredictable) bursts. In 
other words, we have intermittently periodic behavior and irregular aperiodic 
behavior (11). In this route to chaos, the system is first periodic, then becomes 
chaotic as it exhibits intermittency. In (ll), intermittency due to a tangent bifur- 
cation is observed from a physical Chua’s oscillator. 
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Fig. 2.25 Fig. 2.26 

Fig. 2.28 

Fig. 2.29 

FIG. 2-continued. 

Fig. 2.30 

2.6. Chaos-chaos intermittency and 1 /f noise 

It is known that interaction between chaotic attractors can give rise to inter- 
mittency-a random switching process between attractors after long periods of 
“laminar phases”, when the trajectory stays near one of the attractors. A charac- 
teristic statistical property of the chaos-chaos type intermittency is the slope of its 
power spectrum in the low-frequency region. Such a property has also been 
observed (14) in Chua’s circuit for parameter values near the birth of the Chua 
double scroll attractor. The power spectrum was numerically found to follow the 
law S,(W) cc v’, 6 = 1.1 + 0.1, i.e. the graph on the double logarithmic scale clings 
to the ideal l/f line corresponding to 6 = 1. The 1 /f spectrum has been observed 
previously in many processes of different origin, e.g. the fluctuations of the current 
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Fig. 2.31 Fig. 2.32 

Fig. 2.33 Fig. 2.34 

Fig. 2.35 

FIG. 2-continued. 

in electron devices, the fluctuations of the Earth’s rotation frequency, the fluc- 
tuation of the muscle rhythms in the human heart, etc. and has been found to obey 
the above universal law. The intermittency phenomenon can be used as a l/fnoise 
generator and can lead to a better understanding of the ubiquitous yet still poorly 
understood l#‘phenomenon. 

2.7. Stochastic resonance from Chuu’s circuit 
The phenomenon of stochastic resonance (SR) is observed in bistable nonlinear 

systems driven simultaneously by an external noise and a sinusoidal force. In this 
case, the signal-to-noise ratio (SNR) increases until it reaches a maximum at some 
optimum noise intensity D which depends on the bistable system and on the 
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Fig. 3.1 Fig. 3.2 

Fig. 3.3 Fig. 3.4 

Fig. 3.5 

FIG. 3. Attractors from a period-adding bifurcation sequence 

frequency of the external sinusoidal force. In the absence of a periodic modulation 
signal, the noise alone results in a random transition between the two states. 
This random process can be characterized by the mean switching frequency IV,~, 
depending on the noise intensity D and the height of the potential barrier separating 
the two stable states. In the presence of an external modulation imposed by the 
sinusoidal signal A sin (wt), the potential barrier changes periodically with time. 
The modulation signal amplitude A is assumed to be sufficiently small so that the 
input signal alone does not induce transitions in the absence of noise. A coherence 
between the modulation frequency IV and the mean switching frequency w, emerges 
when the system is simultaneously driven by a periodic signal and a noise source. 
As a result, a part of the noise energy is transformed into the energy of the periodic 
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Chua’s Oscillator 

FIG. 4. Coexistence of homoclinic and heteroclinic orbits. The fixed parameters are 
c1 = 8.29203, fl = 12.061126, y = 0, a = ~ 1.1428571, h = -0.7142857, k = 1. Initial con- 
ditions : x = 1.5 190097983888 14, y = - 0.004298524877956949, z = - 1.567578825979665 
(heteroclinic orbit) ; _x = 0.00083672759, ,r = 0.000095 I 12528, z = - 0.00053929635 (homo- 

clinic orbit). 

modulation signal so that the SNR increases. This phenomenon is qualitatively 
similar to the classical resonance phenomenon. However, unlike the classical circuit 
theory where one tunes the input frequency w to achieve resonance in an RLC 
circuit, here w is fixed at some convenient value and one tunes the noise intensity 
D to achieve SR. 

In Chua’s circuit, the SR phenomenon can be observed (15) in conjunction with 
the chaos-chaos type intermittency (14) arising in a small vicinity of the bifurcation 
curve in the x-b parameter space when two spiral attractors merge to form the 
double scroll attractor. In this case, the SNR of the amplified output signal is 
observed to be significantly greater than the SNR of the input signal-a novel 
phenomenon which cannot be achieved with a linear amplifier. 

2.8. Signal mn&icution oia chaos 

Apart from the stochastic resonance phenomenon described above, another 
mechanism for achieving voltage gain (up to 50 dB has been demonstrated exper- 
imentally) from Chua’s circuit has been discovered recently (16). 

The mechanism of this voltage gain is different from that of stochastic resonance 
because the effect is observed even when Chua’s circuit is operating in a spiral 
Chua’s attractor regime far from the bifurcation boundary where stochastic res- 
onance takes place. 

2.9. Chua’s circuit with smooth nonlinearity 
Most of the studies on Chua’s circuit and Chua’s oscillator assume a piecewise- 

linear nonlinearity, although an arbitrary nonlinearity can be used. Since the 
characteristics of nonlinear resistors in real circuits are always smooth, a question 
arises as to whether the phenomena in piecewise-linear and smooth models 
coincide. This question is approached in (17) by demonstrating that most phenomena 
from the piecewise-linear Chua’s circuit (e.g. the double scroll) carry over to the 
smooth model with a cubic polynomial for the nonlinear function. Also most of 
the bifurcations (period-doubling, for instance) in the smooth model appear to be 
similar to those in the piecewise-linear model (see, for example, (18) which also 
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Fig. 5.1 

Fig. 5.2 

Fig. 5.3 

FIG. 5. Coexistence of three chaotic attractors. The fixed parameters are c1 = 15.6, 
/I = 28.58000012, y = 0, a = - 1.14285714, h = -0.7142857, k = 1. Initial conditions: 
x = - 1.955798, y = -0.2269574, z = - 1.85494 (attractor 1); I = 1.955798, 
I: = 0.2269574, z = 1.85494 (attractor - 1) ; x = 0.65153, _v = 0.10764, z = - 1.5407 (odd- 

symmetric attractor 2). 
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Fig. 6.1 

Y 

Fig. 6.2 

FIG. 6. Coexistence of two point attractors, two chaotic attractors (Fig. 6.1), and a periodic 
attractor (Fig. 6.2). The fixed parameters are c( = 9.50028501, p = 14.2857, 7 = 0, 

cl = -1.142856, b = -0.142857, k = 1. 

gives an implementation of a cubic polynomial u-i characteristic using analog 
multipliers). 

2.10. Selflsimilar and universal structures in two-parameter study of transition to 
chaos 

Using the Poincark map technique, the exact description of the system [Eq. (I)] 
can be reduced to a two-dimensional map which, in turn, can be approximated by 
a one-dimensional map (19) generally called Chua’s ID map in the literature. 
Such an approximation is possible because of the strong dissipation of the system 
which “flattens out” the dynamics. This map happens to be bimodal in certain 
parameter regions, which means that it has both a maximum and a minimum on 
an interval which is mapped onto itself. The condition is responsible for the 
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Fig. 7.1 Fig. 7.2 

Fig. 7.3 Fig. 7.4 

Fig. 7.5 Fig. 7.6 

FIG. 7. Unstable periodic orbits, In Fig. 7.13 the unstable periodic orbits are shown super- 
imposed; in Fig. 7.14 the coexisting double scroll Chua’s attractor is shown. The fixed 

parameters are x = 9, p = 100/7, y = 0, (I = -S/7, h = - 5/7, k = 1. 

complicated structure of the boundary of chaos in a two-parameter bifurcation 
diagram. 

In a typical one-parameter bifurcation sequence, if we tune only one parameter 
in Chua’s circuit, we usually see a typical period-doubling cascade, which exhibits 
remarkable properties of quantitative universality (20) and self-similarity, namely, 
an interval encompassing regions of different dynamical regimes reproduces itself 
under a change in scale by the universal factor 6 = 4.6692. . . (see, for example, 

(21)). 
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Fig. 7.7 Fig. 7.8 

Fig. 7.9 Fig. 7.10 

Fig. 7.11 

FIG. 7--continued. 

Fig. 7.12 

If we turn to a two-parameter study, we can no longer restrict ourselves to the 
Feigenbaum scenario which is a codimension- 1 bifurcation phenomenon. In (22) 
the construction of a binary tree of superstable orbits is performed for the ID 
Chua’s map to show that beside the Feigenbaum critical lines, the boundary of 
chaos contains an infinite number of codimension-2 critical points, defined by a 
set of infinite binary codes. The topography of the parameter plane near the 
corresponding critical points reveals a property of two-parameter self-similarity : 
a two-dimensional structure of regions of different behavior is reproduced under a 
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Unstable periodic orbits 

2. - 

1. 

0. 

-0. 

-1: 

-2: 

II 
-3 -2 

Fig. 7.13 

Double Scroll Chua’s attractor 

Fig. 7.14 

scale change along appropriate axes in the parameter space. These self-similar two- 
dimensional patterns are universal (up to a linear parameter change) for all bimodal 
maps, and depend only on the code of the associated critical point. Moreover, two 
universal scaling numbers have been found for the two-parameter 1 D maps, which 
are a generalization of the Feigenbaum number. 

2.11, Antimonotonicity phenomenon 
Antimonotonicity-concurrent creation and annihilation of periodic orbits, or 

inevitable reversals of period-doubling cascades-was shown to be a fundamental 
phenomenon for a large class of nonlinear systems (23). Experimental (24) and 
numerical (10) evidence was given that this phenomenon is typical for a wide range 
of parameters in Chua’s circuit and Chua’s oscillator, respectively. 



Oscillator 

Fig. 8.1 Fig. 8.2 

Fig. 8.3 Fig. 8.4 

Fig. 8.5 Fig. 8.6 

FIG. 8. Period-doubling route to chaos. The fixed parameters are b = 16, y = 0, a = -S/7, 
h = -5/7; k = 1 ; c( = 8.8 (period-l), LX = 9.05 (period-a), c( = 9.12 (period-4), c( = 9.162 

(period-s), z = 9.3 (spiral attractor), c( = 9.8 (double scroll attractor). 

2.12. Devil’s staircase,from the driven Chua’s circuit 
One of the remarkable properties of nonlinear oscillators is their ability to lock 

onto certain subharmonic frequencies when driven by an external source of energy. 
Associated with the phase-locking property is usually the appearance of “stair- 
cases” of phase-locked states when the parameters are varied over a certain range. 
The picturesque name devil’s staircase is used to describe the intricate, often fractal, 
structure of such staircases. Figure 9 shows the devil’s staircase in Chua’s circuit 
obtained by plotting the ratio of winding numbers and period numbers as a 
function of the normalized forcing angular frequency (see, for example (25)). The 
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FIG. 9. Devil’s staircase from the sinusoidally driven Chua’s circuit. 

self-similar structure of the staircase tree and the devil’s staircase becomes apparent 
when magnified pictures are drawn of the portions of the devil’s staircase. 

2.13. Other d~wzumical phenomena jLom the driven Clzua’s oscillator 
Extensive computer simulations and physical experiments were performed in a 

two-parameter study (26) to describe several types of transition to chaos in the 
nonautonomous Chua’s circuit. Also in an experimental and numerical study 
(27) of Chua’s oscillator some new phenomena-frequency entrainment of chaos, 
period-preserving bifurcations-have been reported, along with many other 
phenomena previously observed from different oscillators. 

III. Global Unfolding Theorem 

In this section, we show that Chua’s oscillator is topologically conjugate (up to 
time scale) to a large class of piecewise-linear vector fields. The class of vector fields 
we are considering will be 

3-dimensional, 
continuous, 
piecewise-linear with three regions separated by boundary planes, and 
odd-symmetric with respect to the origin. 

We will call this class of vector fields %?. Without loss of generality, we can assume 
that the boundary planes are of the form eTx = f 1, where e, = (1 ,O,O)‘. Then 
every member of the class % can be represented by 
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i 

A,x+b, eTx 2 1 

h = A,x, -1 <eTx d 1 (4) 

A,x-b, eyx d -1. 

By continuity, we must have 

A0 = A, +beT. 

Thus class ?Z is a 12-parameter family of ordinary differential equations. The global 
unfolding theorem (8) tells us that (most of) this class is topologically equivalent 
to the Chua’s oscillator which has six parameters. System (4) can be written as : 

k = A,x+i(leTx+lI-lerx-1I)b. (5) 

Let us denote the characteristic polynomials of A, and A, as follows : 

x(A,) = 3.‘-~,3.~ +p&ps 

x(A,) = A’ -q,i2+q2A-q3. (6) 

If (p,, ,LL~, p3) are the eigenvalues of A, and (v,, v2, vJ are the eigenvalues of A,, then 
the coefficients of the characteristic polynomials are expressed as 

Pl = PI +p2 fp3 q, = VI +v,+v, 

p2 = ~1~2+~2k+~3~1 q2 = vlv2+v2v3+v3vl 

P-i = plp2p3, 43 = vIv2v3. (7) 

Theorem 1 (Global Unfolding Theorem) 
Consider system (4). Let the entries of A, be denoted as 

aI I aI2 aI3 

A, = a21 

: I 

a22 a23 (8) 

axI a3> a33 

Suppose that A, satisfies the inequality 

a12a12a2, +a12a13a3, -a12a13a22 -a13a13a32 f 0. (9) 

Let us define 

k A f’-42 k, 
3 __-- 

( ) ql -PI k, 
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If the coefficients of the characteristic polynomials of A, and A, satisfy the inequalit- 
ies 

PI --41 + 0 (10) 

kz # 0 (11) 

k3 f0 (14 

k, # 0 (13) 

then the vector field in the form (4) is topologically equivalent to a Chua’s oscillator 
with the parameters 

k, 
xx -- 

k: 

l)=$ 
2 3 

k, 
’ = k,kj 

-~2+q2 k, 

)- PI-41 k2 

k = sgn (k3). 

Proof: Define the matrix K as follows : 

(14) 

1 0 0 

K= alI 4, aI3 . (15) 

C:= l alp,, C:= I al,q2 C;= I aI,+ I 

By the hypothesis, K is nonsingular. Using the transformation y = Kx, we obtain 
a system of the form 

ji = KA,Kp’y+~(le:Kp’y+ll-\eTKp’y-lI)Kb. 

It is clear from the definition of K that the first row of K-’ is of the form (l,O, 0). 
This implies that eTK_ ’ = e:. After some algebraic manipulation, it can be shown 
that 

0 1 0 
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Now KA,K-’ = K(A, +beT)K-’ = KA,K-‘+Kbey. If we write Kb = 
(d,, &, 6,)‘, then 

KA&’ = [,.k,, 4. I’. 

Calculating the characteristic polynomial of KA,,K-’ and comparing it with Eq. 
(6), we obtain 

ii;, 4, !‘l[$ = [;;r;:]. 

Thus Kb is uniquely determined by the parameters (p,,pz,p3, q,, q2, q3). 
In particular, we obtain the following equivalent form for system (4) : 

0 1 0 

jr=0 0 ly 

i I q, -q2 41 

+~Wy+ll-IeTy-11) 

: 

PI -YI 

--P2+92+41(PI -41) (16) 

P3--4i-92CPI -q41)+41(-P2+42+4,(P, -41)) 1 

which is uniquely determined by the eigenvalues of A, and A,. 
When Chua’s oscillator is written in the form of Eq. (4), we get 

i 

-ka(l+a) kcc 0 

j 

-k(l+b) ka 0 

A, = k k -k k. 

0 0 -k/I -ky I 

(17) 

It can be shown after some involved algebraic manipulation that if the inequalities 
(lo)-( 13) are satisfied and the parameters satisfy Eq. (14), then the eigenvalues of 
A, and A, in Eq. (17) satisfy Eq. (6), up to a positive scale factor. Given these 
parameters, it is clear that the matrix K corresponding to Chua’s oscillator is 
nonsingular, so we can also write the state equations of Chua’s oscillator in the 
form of Eq. (16)1_. Thus we have shown that given the conditions in the theorem, 
both Chua’s oscillator and a vector field of the form of Eq. (4) can be transformed 
into the same form, and are thus topologically equivalent. n 

This theorem can be summarized as the following algorithm : 

1. Calculate the coefficients (pI,p2,p3, q,, q?, q3) of the characteristic poly- 
nomials of A0 and A,. 

t After renormalization of time. 
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2. Check whether the inequalities (9), and (1 O)-( 13) are satisfied. 
3. Calculate the parameters of Chua’s oscillator using Eq. (14). 

In Step 2 of the algorithm, if the inequalities are not satisfied, in general it is 
possible to satisfy these inequalities by perturbing the entries of A,, or A, slightly 
to get a system with similar behavior. 

IV. Applications of the Global Unfolding Theorem 

Because of the generality of Chua’s oscillator, other chaotic systems can be 
modelled using Chua’s oscillator. The reader is referred to (8, 28) for several 
examples of circuits and systems belonging to the class % of vector fields defined 
above which have been transformed into a “qualitatively similar” Chua’s oscillator. 
These examples include the systems studied in (29-32). In this section we will 
illustrate this procedure with several additional examples. 

In the following examples, the system under consideration is either already a 3- 
dimensional piecewise-linear three-segment continuous odd-symmetric vector field 
where the partition planes are parallel, or else can be approximated by one. 
When the vector field is not piecewise-linear, we approximate it by calculating the 
Jacobian matrices at the equilibrium points and using them to define the linear 
vector field in each region. 

We then find the eigenvalues in each linear region and apply the above algorithm 
to find the parameters for Chua’s oscillator. For cases where the vector field does 
not satisfy the inequalities in Step 2 of the algorithm, we perturb the eigenvalues 
(or equivalent eigenvalue parameters) slightly. 

4.1. Examplefrom ArGodo et al. 
The systems studied in (3>35) satisfy the following differential equation : 

a’+,u,k’+p,k+p”A = +A’. (18) 

In (34), the cubic nonlinearity is replaced by a three-segment piecewise-linear 
nonlinearity resulting in a vector field in ‘4. We have two cases, depending on 
whether the right hand side is + A3 or - A3. 

Case 1 (right hand side is + A’) : 

k = v 

_p=z 

i = X3 -/L”X-~,y-/L>z. 1 

(19) 

The equilibrium points are as follows : (A, O,O), (0, 0, 0), and (- &, 0,O). 
From Eq. (19), the Jacobian matrix is 

0 1 0 

M= 0 0 1 

3x2-P” -PI -Pz 
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We choose p,, = 9.6, p, = 5, and /_L* = 1 ; the Jacobian matrix at the equilibrium 
points in the two outside regions is 

M= [ ,i* i I,] 
In the inner region the Jacobian matrix at the equilibrium point is 

Mo= [-;,6 “I :,]’ 

As the Jacobian matrix is already in companion form, the corresponding equi- 
valent eigenvalue parameters can be read off directly : 

p, = - 1.0, pz = 5, 

q, = - 1 .o, qz = 5, 

p3 = -9.6 

q3 = 19.2. 

Since p, = q, (i.e. the inequality (10) in Step 2 of the algorithm in the preceding 
section is not satisfied), we add a small perturbation 6p, = 0.05, and dq, = -0.05 
to obtain 

p’, = -0.95, p; = 5, p; = -9.6 
q’, = - 1.05, q; = 5, q; = 19.2. (21) 

The corresponding dimensionless parameters are 

a = -313.6291, /I = -307.2771, y= -1, 

a = -0.9968661, b = -0.9965362, T = -0.9665529, 

k= -1. 

(22) 

By using these parameters we obtain the attractor shown in Fig. 10.5(b) which is 
qualitatively similar to the attractor in Fig. 1 (a) of (35). 

Case 2 (right hand side is -Ai) : 

i = y 

p=z 

1 

(23) 

i = -x3 -/Lox-~,y-~~z. 

The e uilibrium points 

“- 

are as follows: (&,O, 0), (0, 0, 0), and 

(- -Po,O,O) 
From Eq. (23), the Jacobian matrix is 
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x1 x 

Fig. 10.h Fig. lO.lb 

Fig. 10.2a Fig. 10.2b 

Fig. 10.3b 

FIG. 10. Chaotic attractors from different systems, mimicked by Chua’s oscillator. On the 
left (Fig. lO.la, 10.2a, etc.) we show an attractor from the original system, while on the 
right (Fig. 10.1 b, 10.2b, etc.) we show the corresponding attractor from Chua’s oscillator. 

The parameters are shown in Table 11. 
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Fig. 10.4~3 Fig. 10.4b 

Xl 

Fig. 10.5a d,. 10.5b 

r, 

Fig. 10.6a Fjlg. 10.6b 

FIG. IO--continued. 
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Fig. 10.7a 

FIG. IO-continued. 

Fig. 10.7b 

We choose /A,, = - 5.5, p, = 3.5, and p’z = 1.1, and in the two outside regions the 
Jacobian matrix at the equilibrium points is 

0 

1 

-3.5 -1.1 I 

In the inner region, the Jacobian matrix at the equilibrium point is 

0 

1 . 

-3.5 -1.1 

j 

The equivalent eigenvalue parameters are given by 

p, = -1.1 = -1.1: pz 3.5, pi = 5.5 
(24) 

q, = q? = 3.5, q3 = - 11.0. I 

NOW we add a small perturbation Sp, = 0.055, and 6q, = -0.055 to obtain 

p’, = -1.045, p’2 = 3.5, p; = 5.5 

q’, = -1.155, 4’2 = 3.5, q; = -11.0. 
(25) 

The corresponding dimensionless parameters are 

r = 119.4383 p = 123.2917, y= -1, 

a = - 1.007900, h = -1.008732, r = -1.10751, (26) 

k= -1. 

By using the dimensionless parameters above, we obtain the attractor shown in 
Fig. 10.6(b) which is qualitatively similar to the attractor in Fig. 1 (b) of (35). 
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4.2. Example from Dmitriev and Kislov 
In the oscillator system studied in (3638) the nonlinearity is a cubic polynomial 

which becomes constant in an outer region. This can again be approximated by a 
piecewise-linear function, if we ignore the outer region. 

The state equations are 

R=y 

p = -x-6yfz (27) 

i = Y(F(X)-z)--y 

where 

i 

0.528a if xc-l.2 

F(x) = ~x(l -x’) if - 1.2 < x < 1.2. 

-0.528cn if x>1.2 

The equilibrium points are given by 

y=o 

-x-6y+z = 0 

y(F(X-z)-fTy = 0. 

Case 1. When x < - 1.2, then 

y=o 

-x-6yfz = 0 

y(OS28c(--z)-oy = 0, 

(28) 

(29) 

(30) 

so we have 

X = 0.52&z! 
x -1.2 

u = _____ < ~ = 
0.528 0.528 

-2.2727 

(31) 

y=o 

z = 0.528~. 

Case 2. When - 1.2 < x < 1.2, then 

y=o 

-X-6y+z = 0 

y(cxx(l -x2)-z)-0y = 0, (32) 

so we have x=0, x= kdw c(, cc 3 1. The three equilibrium points are 

(&=K 0, J=iE, (0, 0, O), and (-,/m,O, -Jm). 
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Case 3. When x > 1.2, then 

so we have 

4’=0 

-x--fiy+z = 0 

y(-0528r-,_)-qll= 0, (33) 

x = -0.5282 ( x 1.2 
G! = ___ < ~ = 

-0.528 -0.528 
-2.2727 

) 

y=o 

z = -0.528X (34) 

We will consider values of M where there are no equilibrium points in the outer 
regions (1x1 > 1.2). From Eq. (27), at the origin the Jacobian matrix is 

0 1 0 

x”) --CT --y 

At the two other equilibrium points, the Jacobian matrix is 

0 1 0 

-1 -6 1 1 

Let c1 = 16, 6 = 0.43, g = 0.71, and = 0.1. We have y 

0 1 0 

M,= I -1 -0.43 I 1 -2.9 -0.71 -0.1 

with eigenvalues 

vI = - 1.18562, v7 = 0.32781 +jl.55655, r!3 = 0.32781 -,jl.55655 (35) 

and 

0 1 0 

MO= I -1 -0.43 1 I 1.6 -0.71 -0.1 

with eigenvalues 

~1, = 0.61184,~, = -0.57092fjl.45797,~~ = -0.57092-j1.45797. (36) 

So, the corresponding equivalent eigenvalue parameters are given by 
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p, = -0.530000, p2 = 1.7530, p3 = 1.5000 

q, = -0.530000, q2 = 1.75299, q3 = -3.0000. 
(37) 

Again we add a small perturbation, Sp, = 0.00265, dq, = -0.00265, to obtain 

p; = -0.52735, p; = 1.7530, p; = 1.5000 

q’, = -0.53265, q; = 1.75299, q; = -3.0000. I 
(38) 

These equivalent eigenvalues correspond to the following set of perturbed eigen- 
values : 

,/A’, = 0.61212, ,uL/? = -0.56974+j1.45805, p; = -0.56974-il.45805 

v’, = -1.18641, v; = 0.32688+j1.55621, v; = 0.32688-j1.55621. I 
(39) 

The corresponding dimensionless parameters are 

CI = 2971.482, fl = 2978.630, y = -0.99647, 

a = - 1.00033354, b = - 1.00033688, z = -0.533989, (40) 

k= -1. : 

By using the dimensionless parameters above, we obtain the attractor shown in 
Fig. 10.4(b). 

For the convenience of the reader, we show in tabular format (see Table II) the 
parameters of several systems in %? and the parameters of corresponding Chua’s 
oscillators that generate qualitatively similar behavior. The matrix T defines the 
equivalence between the system in 4L3 and Chua’s oscillator as follows : 

2 

x=Ty 

II z” 

where .?, _v”, Z are the state variables of the dimensionless Chua’s oscillator. The 
regions D,, D_ and D, in Chua’s oscillator correspond to 1 B 1, .f d - 1, and 
).f/ < 1, respectively. In Fig. 10 we show the attractors of the systems and the 
attractors of corresponding Chua’s oscillators. 

V. Generation of Wave Phenomena in CNN Arrays of Chua’s Oscillators 

The appearance of rotating spiral waves has been observed in many chemical 
and biological processes, including those in the cardiac muscle (39), retinae (40), 
and chemical oscillators such as the Belousov-Zhabotinsky reaction (41). Most of 
these systems have been successfully modeled by continuum models via partial 
differential equations. However, the above phenomena can be reproduced (42) 
more efficiently by using CNNs of discrete coupled cells. For the purpose of 
generating spiral waves we consider the nonlinear system of coupled Chua’s oscil- 
lators (written in dimensionless form, with k = 1) 

*!J = a(.Yi,, -x,J -f(xz,,)) + D[x,+ I,j + uxi- 1 ,i + Xi,,+ 1 + Xi,,- I -4Xrj] 
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FIG. 11. Spiral wave generated in a 100 x 100 array of identical Chua’s oscillators 

P . ‘J = ,Y,>, -4’s,, + zi,, (i,j = 1,2 ,..., I) 

L-,,i = - pJQj - :‘ZiIj. 

The nonsymmetric three-segment PWL functionJ’(x) is given by 

(41) 

J’(x) = (1/2)[(s,+S~).‘i+(S”-S,)(IS--,I-lI,()+(S~-S”)(IX-B2I-IB21)1 

(42) 

where in this case we consider breakpoints B, = - 1, B, = (so-s,)/(so-s?). The 
fundamental regime in each individual cell is a cyclical one and is achieved by 
choosing the parameter values, e.g. as follows: c( = 10, p = 0.334091, y = 0, 
s, = 0.020706, s,, = - 0.921, s2 = 1.5. The strong asymmetry of functionfprovides 
for a high-relaxation character of the limit cycle, which is necessary for the dynamics 
to be stable. Figure 11 shows a fully evolved spiral with the diffusion coefficient 
D = 5. Many other interesting phenomena and patterns can be generated in 2- and 
3-dimensional arrays, for example autowaves (43), Turing patterns (44), and scroll 

waves (45). 

VI. Conclusions 

Chua’s circuit has proven to be an excellent paradigm for the generation of a 
multitude of different dynamical phenomena, and can thus obviate the need to 
consider many different models to simulate those phenomena. Chua’s oscillator 
has unified the nonlinear dynamics of the entire 12-parameter family of piecewise- 
linear vector fields into a single system defined by Eq. (2), hence it is not necessary 
for beginners in nonlinear dynamics to study all those papers with diverse notations 
and jargons. 

Even more significantly, arrays of Chua’s circuits appear to be a suitable can- 
didate for important applications ranging from image processing to the simulations 
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of biological processes. The building of the monolithic IC chip of Chua’s circuit is 
an important step towards building large arrays via VLSI technology, and will 
make it possible to reproduce, in real time, almost all reaction-diffusion situations 
described in the literature with a relatively simple low-cost system. 
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