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Abstract: When performing nonlinear system identification few tools exist for the a priori 
nonlinear model structure selection of the nonlinear system. This paper presents a possible 
approach as a first step towards selecting a nonlineAtr system model structure, based on 
using the results of Lyapunov exponents, Poincar~ maps and dimension techniques. The 
approach is illusUated by applying it to the Chua circuit, a nonlinear dynamic system 
exhibiting chaotic dynamic behaviour. Copyright © 1997 Elsevier Science Ltd 
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1. INTRODUCTION 

The field of system identification, either in obtaining 
a suitable model to be used for control design or 
alternatively in adaptive control, is well developed 
for linear systems. However the linear model 
identified is only useful if the underlying physical 
process exhibits qualitatively similar dynamic 
behaviour to the linear model in the operating region 
of interest. The emphasis on linear model 
identification is mainly due to a lack of 
understanding of nonlinear systems and the fact that 
as yet there is no general nonlinear systems theory. 
There definitely is no lack of practical problems in 
which nonlinear systems theory would be most 
useful. (Gleick, 1987; Schreiber and Marek, 1982; 
Schreiber, 1986; Kevrekidis et al. 1986; IEEE, 
1995). Due to the lack of familiarity with the 
available nonlinear systems theory in the engineering 
world, the widespread occurrence of nonlinear 
phenomena, that cannot be modelled linearly, has 
been widely ignored. 

With the advent of the qualitative theory of dynamic 
systems (Thompson and Stewart, 1986) and the 
current interest in chaotic dynamic systems (Parker 
and Chua, 1989; Wigdorowitz and Petrick, 1991; 
Thompson and Stewart, 1986; Petrick 1989; IEEE 
1993), advances have been made in developing an 

approach to modelling and analyzing nonlinear 
systems. This paper attempts to present this approach 
with regard to selecting a nonlinear model structure 
for system identification. The nonlinear analysis 
techniques used in this respect which have been 
developed in the literature are Lyapunov exponents, 
Poincar~ maps and Dimension (Parker and Chua, 
1989; Henon, 1982; Shimada and Nagashima, 1979; 
Farmer et al., 1983; Wolf et al., 1985; Benettin et al., 
1980; Eckmann etal., 1986; and Pettis et a[., 1979). 

The aim of this paper is to serve as a tutorial showing 
how these results can be used as a first step in 
obtaining models for system identification of 
practical engineering problems. This is done by 
applying the gJproach to the Chua circuit which has 
been extensively analyzed both analytically and 
experimentally (Matsumoto et al., 1985; Chua et al., 
1986; and Petrick, 1989). The emphasis is not on the 
specific numerical algorithms used to implement 
these techniques, but rather on their application. 

2. MODELLING PHILOSOPHY 

The impact which detennims" tic models exhibiting 
chaotic dynamic behaviour has on modelling was 
discussed in (Wigdorowitz and Petrick, 1991). Here 
only a few essential modelling perspectives needed 
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for selecting a model structure are outlined. It is 
important to have realistic expectations at the start of 
the modelling l~rocess. The engineer who is under the 
impression that modelling will give rise to the "true" 
system is bound to be bitterly disappointed, 
especially if the system exhibits a variety of different 
types of nonlinear dynamic behaviour in the 
operating region of interest. This "true" model is an 
esoteric entity which can never be attained in 
modelling physical systems (Wigdorowitz and 
Petrick, 1991). What can be achieved is a suitable 
model within the operating region of interest, useful 
for the application in mind. The model, whether 
linear or nonlinear, is always only a partial 
description for the system in a particular operating 
region under particular conditions for a specific 
application. 

To be successful the entire modelling process should 
be given as much information about the system as is 
practical. Here a priori knowledge, experimental data 
and experience at modelling are crucial. The process 
of modelling from experimental data is known as 
system identification and is discussed in detail in 
(Ljung, 1987) and (Ljung, 1991). The framework for 
system identificatiori provided in these references is 
used in this paper. 

It is important at the outset to stress the essential 
differences between linear and nonlinear system 
identification. When referring to the dynamics of a 
linear system, and the identification thereof, the 
theory addresses the transient behaviour as the 
system approaches its equilibrium point, which is 
always a fixed point in the state space of the system. 
The poles or eigenvalues are used to describe this 
transient response of the system, and linear system 
identification addresses the issue of finding their 
values. 

In nonlinear systems it is possible that the steady 
state of the system itself is dynamic. The trajectories 
settle on a structure in the state space after the 
transients have died away, but do not settle down to a 
point. Such systems cannot be represented by linear 
models. This paper addresses the issue of finding 
nonlinear model structures capable of representing 
such systems. The problem of modelling the transient 
behaviour of nonlinear systems remains, but this is 
beyond the scope of this paper. The reader familiar 
with linear systems theory is therefore warned not to 
attempt to draw parallels between nonlinear system 
parameters such as Lyapunov exponents and linear 
parameters like eigenvalues, as they address 
completely different issues. 

3. THE SYSTEM IDENTIFICATION PROCESS 

I~ Design an experiment to obtain the physical 
process input/output experimental data sets 
pertinent to the model application. 

2. Examine the measured data. Remove trends and 
outliers. Apply filtering to remove measurement 
and process noise. 

3. Construct a set of candidate models based on 
information from the experimental data sets. 
This step is the model structure identification. 

4. Select a particular model from the set of 
candidate models in step 3 and estimate the 
model parameter values using the experimental 
data sets. 

5. Evaluate how good the model is, using an 
objective function and the points discussed in 
Section 3. lfthe model is not satisfactory then 
repeat step 4 until all the candidate models have 
been evaluated. 

6. Ira satisfactory model is still not obtained in 
step 5 then repeat the procedure either from step 
1 or step 3, depending on the problem. 

This paper focuses on techniques which can aid in 
the model structure selection, namely step 3. At 
present only a possible systematic viable approach is 
proposed and not a general, infallible methodology. 
The system identification process basically amounts 
to repeatedly selecting a model structure, computing 
the best model parameter estimates and evaluating 
the model's properties (Section 6) to see if they are 
satisfactory. 

4. MODEL STRUCTURE SELECTION 

Before moving on to outline the contribution which 
Lyapunov exponents, Poincar6 maps and Dimension 
estimates can make to the nonlinear systems 
identification process (Section 5), it is necessary to 
clarify what the model structure selection involves. 
The choice of a model structure must be based on an 
understanding of both the identification procedure, 
and the system to be identified. Once a model 
structure has been chosen, the identification 
procedure provides a particular model within this 
structure. If the identification procedure is applied 
correctly this model will be the best one within the 
structure. For a nonlinear structure, this may itself be 
very difficult to attain. The issue is however whether 
the model is good enough for the intended 
application. The importance of model validation can 
thus not be overly emphasized. 

Consider the main aspects influencing the choice of a 
model structure: 

The system identification procedure (Ljung, 1987; 
Ljung, 1991) is outlined below. 

1. What type of model is needed, nonlinear or 
linear, static or dynamic, distributed or lumped? 
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How large must the model set be? This question 
includes the issue of expected model orders and 
types of nonlinearities. 
How must the model be parameterized? This 
involves selecting a criterion to enable 
measuring the closeness of the model dynamic 
behaviour to the physical process dynamic 
behaviour as model parameters are varied. 

It should now be apparent that the actual 
identification procedure boils down to an 
optimization algorithm which is run on the selected 
model structure with the parameterization criterion as 
objective function. The difficulty in nonlinear system 
identification is selecting the model structure. Once 
you have a structure which can give rise to the 
observed dynamics, parameterization becomes a 
numerical problem which can be solved. 

5.2 Frequency spectrum analysis 

Although a frequency spectrum may not give 
conclusive evidence, it can aid in defining the type of 
steady-state dynamic behaviour exhibited by a 
specific system (all parameters and inputs remaining 
constant). For example, oscillatory behaviour is 
characterized by the existence of fixed harmonics at 
specific frequencies, and chaotic behaviour is 
characterized by a bandlimited white noise frequency 
spectrum. The usefulness of frequency spectrum 
analysis is that when used in conjunction with time 
history analysis, it can aid in verifying the results 
obtained. 

5.3 Poincar~ maps 

5. AN OVERVIEW OF THE TECHNIQUES 
CONSIDERED FOR NONLINEAR SYSTEM 

IDENTIFICATION 

When performing system identification on nonlinear 
systems, it is recommended that Poincar6 maps, 
Lyapt/nov exponents and dimension techniques be 
used in conjunction with conventional system 
identification and analysis techniques such as 
correlation analysis, frequency spectrum analysis and 
time history simuldtion. A brief summary of the 
pertinent aspects of each technique relating to its 
application in the analysis of nonlinear systems is 
given. 

5.1 Time history analysis 

The usefulness of time history analysis is that it can 
illustrate the qualitative dynamic behaviour of the 
system. For instance, periodicity in the waveform 
indicates the existence of cyclic behaviour. Should 
the waveform oscillate and yet appear to have no 
periodicity, then it may be a candidate for chaotic 
dynamic behaviour. However it is difficult to 
distinguish between quasi-periodicity and chaos 
solely from a time history analysis. Care must also be 
taken to ensure that the transient response has 
subsided in order to interpret steady-state nonlinear 
dynamic behaviour such as limit cycles, quasi- 
periodicity or chaos correctly. 

Poincar6 maps are essentially a technique for the 
analysis of the geometric structure of attractors in 
phase space (Parker and Chua, 1989; Henon, 1982). 
This is only of interest in systems with richly 
nonlinear dynamics. Once it has been established that 
a system has to be modelled nonlinearly, Poincar6 
maps are useful in classifying the type of nonlinear 
behaviour which the system must exhibit. A precise 
mathematical description of Poincar6 maps may be 
found in (Parker and Chua, 1989). Here some of the 
properties of these maps are described. 

1. The Poincar6 map is generally constructed in 
N-dimensional phase space by defining a 
N - 1 - d i m e n s i o n a l  hyperplane and studying the 
intersection of flow trajectories with the 
hyperplane. Different maps are obtained 
depending on the direction of intersection of the 
trajectories and the hyperplane. 

2. The Poincar6 map replaces continuous 
trajectories with a discrete mapping (which may 
be impossible to find). The plane intersection 
time At is not constant. 

3. The essential idea behind the Poincar6 map is to 
reduce the complexity of the system being 
studied. The mapping, which is of lower 
dimension than the system, retains the 
topoiogical qualities of the system (it has 
the same qualitative properties) which simplifies 
analysis. 

Analysing nonlinear systems from time histories 
only, it is necessary to ensure that analyses are 
performed with all possible initial parameter values 
and over all possible parameter variations in the 
operating region of ilaterest. It should thus be obvious 
that for strongly nonlinear systems time history 
analysis is costly and time consuming, and could be 
dangerous as vital areas could be missed. 

It is important to note that the Poincar6 map is only 
valid for the analysis of structurally stable dynamics 
whose Poincar6 map does not qualitatively change 
with infinitesimally small perturbations of either the 
system parameters or the hyperplane. For example, 
there is no Poincar6 map for fixed-point steady-state 
behaviour, for if a hyperplane that intersects the fixed 
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point were slightly perturbed, the map could no 
longer be reproduced. Predominantly linear 
behaviour is characterized by fixed-point behaviour 
in the steady-state for which the Poincar6 map by 
definition is not defined. Figure 1 illustrates a 
Poincar6 map constructed for a limit cycle. The cycle 
is represented by a point on the map. In mapping the 
limit cycle, the complexity of  a three-dimensional 
system is reduced to a two-dimensional discrete 
mapping. This mapping retains all the topological 
properties of  the system. It should also be clear from 
the figure that a fixed point in the state space would 
be unstable on the map, as mapping it would rely on 
the hyperplane being placed at exactly the right 
location. For this reason there is no Poincare map for 
a fixed point. 

J j /  

I2 

Fig. 1. A Poincar6 map conslructcd lilt a limit ~3 t. ic lx  +~ mid 
the first mapping o f  a quasi-periodic cycle (x) 

The usefulness of  the Poincare map is m 
characterizing the geometric structure of  the different 
types o f  steady-state nonlinear dynamic behaviour. 
The system model has to produce limit cycles if the 
Poincar6 map contains one or more simple points. 
Quasi-periodicity, oscillations produced by two or 
more modulated frequencies of  oscillation, is seen on 

the Poincar6 map as a projection of  a k th order 

torus where k is the number of  modulaled 
frequencies in the dynamics. When the underlying 
dynamics are chaotic the Poincar6 map exibits ~ 
fractal geometric structure as the case study in 
Section 7 will show. The following aspects 
distinguish Poincar6 maps of  chaotic systems l'rom 
those of  non-chaotic systems: the geometric object 
on which the trajectories lie is no longer a set of  
simple points or an ell!psoid, but complex. It has a 
very fine, delicate structure with layers within layers. 
This structure is characterized by a fractal dimension. 

5.4 Dimension 

Fractal dimension techniques are useful in that they 
can define the minimum number of  first-order 

differential equations needed to model the dynamics 
of  a system. This is valuable as it limits the nonlinear 
model structure size. 

lhe concept of  a fractal dimension requires some 
explanation. Dimension is intuitively understood in 
terms of  the measurable properties with which an 
object can be uniquely described. A line for example 
has length, that is, one dimension. A plane has length 
and width, that is, two dimensions. In a similar way a 
cube will have three dimensions. A dot however 
cannot be measured, so assigning it a dimension of  
zero is plausible. In topology it is possible to 
construct objects which do not conform to any of  the 
standard dimension descriptions. Take a line for 
example and remove the middle third. Recursively 
continue removing the middle third of  the remaining 
lines. The structure which remains is a set o f  dots 
distributed over the length of  the line. This structure, 
the cantor set, is a prime example o f  a geometric 
object which is neither a line nor a point, but 
;omething in between. These types of  objects are 
given a fractal dimension. 

Roughly speaking, a dimension provides a measure 
of  how much space a set fills. It is a measure of  the 
prominence of  irregularities of  a set when viewed at 
very small spatial scales (Falconer, 1990). A strange 
attractor, a geometric structure similar to the cantor 
~et, underlying a chaotic dynamic system is 
characterized by a fractal dimension since it does not 
occupy the complete phase space (Thompson and 
.";tewart, 1086). Thus systems with chaotic nonlinear 
dynamics are characterized by non-integer (fractal) 
dimension, while non-chaotic systems have integer 
dimension. Note that systems with dominantly linear 
behaviour would have dimension = 0 (fixed-point 
behaviour). 

l'he current problem is to determine a common 
definition of  dimension since at present no precise 
detinition of  a fractal exists which does not result in 
certain fractal sets being excluded. It is important to 
realize that different definitions o f  dimension may 
give different values of  dimension for the same set 
(Falconer, 1990). The qualitative information 
conveyed is however the same throughout. 

As ~he aim in this paper is to use dimension as the 
lower bound on the number of  first-order differential 
equations needed to model the dynamics o f  a system, 
tl~e choice of  which definition o f  dimension to use 
depends primarily on the ease and efficiency of  
computation (Parker and Chua, 1989; Farmer et al., 

1983; Grassberger and Procaccia, 1984; and 
Procaccia, 1985). The definition used throughout this 
paper is that of  Nearest Neighbour Dimension (Pettis 
et al. 1979). 
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5.5 Lyapunov exponents 

Lyapunov exponents represent a reliable technique 
for indentifying the type of steady-state nonlinear 
dynamic behaviour a system exhibits (see Table 1). 
A reliable method exists (Shimada and Nagashima, 
1979; Wolf et al., 1985; and Benettin et al., 1980) 
for computing all the Lyapunov exponents from a 
system model. Using the algorithm in (Wolf et al., 
1985) gives only the largest Lyapunov exponent 
which, although it limits what one can say about the 
system order or stability, is the largest exponent 
which in stable nonlinear systems indicates the type 
of nonlinear steady-state behaviour: chaos, periodic, 
or fixed-point behaviour. 

Lyapunov exponents are computed by monitoring the 
long-term evolution ( t ~ ~o ) infinitesimally small 
volume element comprising the initial state 
conditions of a model. The length of the volume 
element principal axis p~(t) the i th one- 
dimensional Lyapunov exponent according to 
equation (1). Here the term principal axes signifies 
the set of vectors which span the subspace in which 
the dynamics occur. These axes must be linearly 
independent, but need not be orthogonal. 

1 p~ (t) 
,~ = l i m - l o g /  

,-,,o t Po (t) 
(l) 

Table 1: Steady state identification using Lyapunov 
exponents 

third fourth order attracting set 
order 
(-,-,-) (-,-,-,-) fixed point 
(0,-,-) (0,-,-,-) limit cycle 
(0,0,-) (0,0,-,-) quasi-periodic (2) 

(0,0,0,-) quasi-periodic (3) 
(+,0,-) (+,0,-,-) chaos (strange attractor) 

(+,+,0,-) hyperchaos 

The units of Lyapunov exponents are information 
bits per second. Physically Lyapunov exponents refer 
to the expansion and contraction of flows in different 
directions in phase space. The orientation of the 
volume elements changes continuously with the 
evolution of the flow. This makes it impossible to 
give a well-def'med direction to each exponent. 
Takens (1980) showed, as summarized in Table 1, 
that at least one Lyapunov exponent is zero if the 
dynamics do not exibit fixed-point steady-state 
dynamic behaviour. This zero corresponds to an 
unchanging principal axis vector tangent to the flow. 
In addition Takens (1980) showed that expansion in 

a particular direction yields positive Lyapunov 
exponents and contraction yields negative exponents. 
For a dissipative system to be bounded, that is for the 
dynamics to stay on some bounded geometrical 
structure, contraction has to outweigh expansion, 
giving 

4 < 0 (2) 
i 

If this sum is positive, trajectories will escape the 
bounded volume in phase space under consideration 
and hence the system is unstable and is not an 

attractor. The case where ~.. , j2 = 0  is a 

mathematically pathological case which is practically 
unimportant. Non-chaotic systems do not have 
positive Lyapunov exponents. When a system 
becomes chaotic, at least one Lyapunov exponent 
becomes positive, which indicates an expanding flow 
direction. While this seems to contradict the notion 
of a stable system, the contraction still outweighs the 
expansion, implying a folding in the dynamics 
resulting in widely separated trajectories which 
merge and keep the dynamics bounded in phase 
space. Each positive exponent reflects a "direction" 
in which the system experiences repeated stretching 
and folding that decorrelates nearby states on the 
attractor. This means that the dynamic behaviour of 
the chaotic system with initial conditions having 
finite precision cannot be predicted in the long term, 
which is a hallmark of chaos. Thus, there exists a 
finite time limit beyond which quantitative prediction 
and hence simulation becomes meaningless. The 
largest positive Lyapunov exponent value is useful in 
quantifying this predictability margin. 

More than one Lyapunov exponent is referred to as 
hyperchaos. As stated previously, if the system does 
not exhibit fixed-point steady-state dynamic 
behaviour, then one Lyapunov exponent must be 
zero. Therefore a stable system must be at least third- 
order if it is to exhibit chaotic dynamic behaviour, 
since it has to have three Lyapunov exponents, 
namely one negative, one positive and one zero. 
Table 1 shows the possible combinations of 
Lyapunov exponents in third- and fourth-order 
autonomous systems, and the corresponding type of 
steady-state dynamic behaviour. 

6. PRACTICAL SYSTEM IDENTIFICATION 
USING POINCARI~ MAPS, LYAPUNOV 

EXPONENTS AND DIMENSION 

Having introduced Lyapunov exponents and 
Poincar6 maps, as well as dimension techniques, it is 
now shown how these techniques can be used for 
nonlinear system identification. The physical process 
used to illustrate the approach is the Chua circuit 
(Matsumoto et al., 1985; and Chua et al., 1986). This 
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is a time-invariant autonomous system. This system 
is an analogue electronic system, simple enough to 
present all the required nonlinear phenomena needed 
.to illustrate the process of identifying general 
nonlinear system, without clouding the issues with 
the need to understand the physical properties needed 
in modelling a complex system. 

M.H. Petrick and B. Wigdorowitz 

power spectral density shown in Fig. 3 indicates 
aperiodic behaviour. The power spectrum appears 
noiselike over a finite bandwidth which in 
conjunction with the time history response indicates 
that this potentially is a chaotic dynamic system. The 
results though are inconclusive. 

The first point to emphasize is that for nonlinear 
system identification, the first step is to model the 
physical process in the neighbourhood of an 
operating point (equilibrium point of the system) or 
in a bounded region of the state space. Models must 
then be obtained within each region of the state space 
within the operating region of interest. This is 
particularly important when a change in the type of 
qualitative dynamic behaviour occurs for different 
model parameter values. To begin, the Chua circuit 
output time history response as shown in Fig. 2 is 
considered for an initial perturbation in the state 
variable values. Initially the dynamic behaviour of 
the system must be analyzed to determine whether it 
exhibits nonlinear dynamic behaviour which can be 
qualitatively reproduced by a linear model. If this is 
the case then a conventional linear system 
identification should be used. As a first 
approximation a system can be modelled linearly in 
the neighbourhood of an operating point if its steady- 
state dynamic behaviour is of fixed-point type at the 
operating point. If the dynamics exibit steady-state 
cycling then this cannot be reproduced by a linear 
model and a nonlinear model will have to be resorted 
to. The steady state Chua circuit output response 
(Fig. 2) is definitely cyclic. 

too 

4 

3 

2 

I 

0 

-I 

-3 
-4 

Fig. 2. Experimental Claua Circuit Output Response 
Waveform 

Thus the system must be modelled by a nonlinear 
model. The next question is what type of nonlinear 
behaviour does the system exhibit? The time history 
in Fig. 2 appears regular, but is there any periodicity 
in this oscillatory behaviour? This question has to be 
answered in order to establish whether this is 
periodic, quasi-periodic or chaotic behaviour. From a 
frequency analysis of the waveform in Fig. 2, the 

10 ~ 

10z ~ 

10 o 

10 -~ 

1[? .4 
0 o12 

Power Spectral Density 

01, o16 0'8 

Fig. 3. Power Spectrum of the Output Waveform in Fig. 2 

The nature of the steady-state dynamics has been 
provisionally identified, but will have t o  be 
confirmed by further analysis. The basis for all 
further analysis is the idea of attractor reconstruction, 
the philosophy and mathematical basis of which is 
given in (Parker and Chua, 1989; Takens, 1980). 
This technique topologically reconstructs the system 
attractor (the phase space structure that the 
trajectories approach in steady state) from 
experimental time series data of a single state 
variable. The first step in reconstructing an attractor 
is to determine the dimension of the attractor. The 
process of establishing this parameter ensures that 
the reconstructed attractor is an embedding of  the 
original dynamic system. This means that the 
reconstructed system has retained the topological 
properties of the original system (loosely speaking is 
qualitatively identical), that is the original and 
reconstructed attractor both have the same Lyapunov 
exponents and dimension. 

6.1 Dimension estimation from the time series data 

In the process of computing the fractal dimension of 
a chaotic attractor from the time series data of one 
state variable, the first step is to determine an 
embedding of the attractor. An embedding is 
obtained by choosing equally spaced time samples of 
the time series of only one state variable to represent 
the reconstructed state variables of the system. For 
example, suppose you have the time series data set 
{x(t I),x(t 2),...x(tN) } of a single state variable 
on an attractor, an embedded attractor may be 
obtained by constructing delay coordinates 

{x(t,),x(t,+~ ),...x(t,+,,,, )} where r is called the 
sample delay time and m the embedding dimension. 
The parameter 2" must be chosen so as to ensure that 
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the points used to represent the different phase space 
coordinates are not too close in value in order to 
avoid any periodicity in the original waveform and 
not too far apart such that the coordinates are 
uncorrelated on the chaotic attractor, if the attractor 
is chaotic. Experience, has found the technique to be 
insensitive to the choice of  Z'. 

The embedding dimension is found in the process of 
computing the dimension of  the attractor as shown in 
Fig. 4. Initially the system embedding dimension is 
assumed to be one. The system dimension is then 
calculated using any of the dimension definitions 
such as D,e~e,t neighbour o r  Dcorrclatio n (Parker and Chua, 
1989; Farmer et al., 1983; Grassberger and 
Procaccia, 1984; Procaccia, 1985; and Pettis et al., 
1979). 

dimension estimation 

/ 
/ 
, 

) 

// 
/ / 

/ 

embedding dimension 

Fig.4. An estimation of the dimension of the Chua 
attractor from time series data. The nearest 
neighbour dimension (Pettis et al., 1979) is 
estimated as the embedding dimension increases. 
As soon as the estimate settles to a constant value 
an embedding has been obtained. The dimension 
estimate is taken to be the fractal dimension. 
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type of dynamic behaviour and the minimum number 
of first-order nonlinear differential equations 
required to reproduce this type of dynamic behaviour 
has been obtained. 

6.2 Estimating the largest Lyapunov exponent from 
time series data 

In order to verify the conclusions (Section 6.1) as to 
the type of dynamic behaviour and to determine the 
rate of decorrelation of nearby trajectories for the 
chaotic dynamics expected, the largest Lyapunov 
exponent using any one of the algorithms in (Wolf et 
al., 1985; Eckmann et al., 1986) is computed. These 
algorithms are based on the idea of  time delay 
attractor reconstruction introduced in Section 6.1. 
Having first computed the dimension of the attractor 
(Section 6.1), the embedding dimension and sample 
delay time are already known for the estimation of  
the largest Lyapunov exponent. 

Recall how the largest Lyapunov exponent may be 
interpreted: a positive Lyapunov exponent implies 
chaos. If the largest Lyapunov exponent is zero, this 
points to periodic or quasi-periodic behaviour, while 
for fixed-point behaviour the largest exponent is 
negative. In addition the largest Lyapunov exponent 
defines the rate of information increase (positive 
value) or decrease (negative value) in a system. 

The value computed for the experimental Chua 
circuit waveform (Fig. 2) was 0. 7. The units of  the 
Lyapunov exponent are bits per second. This implies 
that measuring the output waveform to an accuracy 
of 16 bits, the uncertainty in the measurement 
implies that from this measurement the uncertainty in 
future predictions with a perfect model for the 
trajectory would be the size of the entire attractor 
after 16/0. 7=22.86 seconds. 

In Fig.4. the dimension definition implemented was 
D . . . . .  t neishbour (Pettis et al., 1979). The embedding 
dimension is now increased and the dimension is 
again computed. This process continues until the 
dimension estimate slope settles to a value which is 
no longer sufficient to reach the next full integer. The 
value at which the dimension estimate settles down is 
the dimension of  the attractor and the corresponding 
embedding dimension is the embedding of  the 
attractor. From Fig. 4., the Chua system at the 
particular operating point has a fractal dimension of  
between 2 and 3, which confrere that the steady-state 
dynamics are indeed chaotic. It further shows that the 
type of steady-state behaviour observed cannot be 
modelled using less than three first-order nonlinear 
differential equations. Hence an indication of the 

6.3 Analyzing the geometric structure of  the 
attractor 

Having now determined the type of  steady-state 
dynamic behaviour, the minimaI order of  the model, 
as well as the limits of predictability of a model if the 
system is chaotic, more insight into the geometric 
structure of the attractor in phase space on which the 
dynamics occur is needed to get closer to identifying 
the model structure. This may be provided by phase 
plane portraits and Poincar6 maps. To begin with, the 
phase portraits of the embedded attractor are 
investigated. These can be drawn while the largest 
Lyapunov exponent is computed as suggested in 
(Wolf et al., 1985). The resulting phase portrait is 
shown in Fig. 5. 
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Fig. 5. Phase portrait of the reconstructed attractor 

It is known from the dimension estimate, that for the 
Poincar6 maps a 3 dimensional attractor should be 
considered, which was done. All the Poincar6 
crossections which were used to inspect the attractor 
structure cannot be presented here. The interested 
reader is referred to (Petrick and Wigdorowitz, 1993) 
or (Matsumoto et aL 1985) for samples of Poincar6 
maps of this system. 

7. MODELLING 

To summarize the model structure identification at 
this stage, the dimension has provided a minimal 
model order, Lyaplmov exponents have given a 
measure of the predictability limitations of a model 
and conclusively determined the type of steady state 
dynamic behaviour and Poincar6 maps and phase 
portraits have given insight into the attractor phase 
portrait. 

This information provides the key to modelling. The 
essence of the nonlinear model structure 
identification amoufits to determining a nonlinearity 
with which the minimal model order can give the 
type of state space geometrical structure seen on the 
Poincar6 maps and phase portrait (Fig. 5). The 
emphasis and key to nonlinear model structure 
identification is to use a qualitative approach. For 
chaotic dynamic systems this is a necessary condition 
since quantitative agreement is impossible in the long 
term (Wigdorowitz and Petrick, 1991; Thompson 
and Stewart, 1986; and Petrick, 1989) (22.86 seconds 
for the Chua circuit!). 

Consider the Chua double scroll attractor in Fig. 5. 
What state-space structure underlies this attractor? 
Can this type of structure be generated by only one 
equilibrium point? It is known that a stable 
equilibrium point itself can either yield fixed-point 
behaviour, limit cycling, quasi-periodicity and 
perhaps chaos, but this will not be on a structure as 
complex as the double scroll shown in Fig. 5. Such a 
phase portrait would b.e expected to be constituted of 

several interacting equilibrium points. The question 
is how many and where are they? The phase portrait 
in Fig. 5 shows oscillations occuring mainly around 
two points in the state space at approximately 
+(2.7,0,-2.7). This implies that there must be two 
equilibrium points at these locations. These 
equilibrium points however do not have fixed-point 
type behaviour. They probably have undergone limit 
cycling. The next question is how do these 
equilibrium points interact, or in other words what 
makes trajectories jump from the basin of attraction 
of one of these points to that of the other? Closer 
investigation of the Poincar6 maps and phase portrait 
around the point (0 ,0 ,0)  indicates that while 
trajectories may come close to this point, they always 
depart from it either to the region around 
(2.7,0,-2.7) or (-2.7,0,2.7). This seems to 
indicate that there is probably another unstable 
equilibrium point around(0,0,0).  

There thus are three equilibrium points, two stable, 
but having undergone a Hopf bifurcation, and one 
unstable. The two stable equilibrium points are 
approximately at (2.7,0,-2.7) and (-2.7,0,2.7) 
and the unstable equilibrium point at approximately 
(0,0,0) .  Now a nonlinearity needs to be found that 
can produce this scenario in the phase space. Denote 
the three state variables required as x , y  and 2 .  The 
following structure is proposed as a first attempt: 

dr  

dt  

dy 
dt 

dz  

dt  

- a Ilx + aj2y + al3z + b h ( x )  

- a2~x + a22Y + a232 

- a31x + a32Y + a33z 

(3) 

where h ( x )  is a nonlinearity. The idea is to select a 
model structure with the minimum number of 
nonlinearities for simplicity and ease of  computation 
in estimating the model parameters. From the 
required equilibrium points it follows that 

a31 =a33 = 0  and a21 =a23.  This gives a 
simplified model structure 

dr  
dt - a l l x  + aj2Y + a13z + b h ( x )  

dy 
dt  - a21 ( x  + z)  + a22y (4) 

dz 

dt  - a32y 

It is also known that the nonlinearity has to be equal 
to the line h ( x )  = - x  at x = y = z = 0 and at 
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of ways in which this can be achieved, as shown in 
Fig. 6. 

Having thus determined a possible model structure 
the next step is to determine the slopes of the 
nonlinearity h(x) ,  and the parameters 

all,a12,...,~33 and b such that the system 
equations qualitatively exhibit the required steady- 
state dynamic behaviour. For a non-chaotic system a 
quantitative comparison between the model and 
physical process should also be done. This stage in 
modelling the system is complex. In (Petrick, 1989) 
this work was done using a piecewise linear 
nonlinearity h(x )  implementation and found very 
sensitive to exact parameter values. 

Nonlinearities for equilibrium pointe 
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-1! i i 

-10 -6 O 15 

Fig. 6. Various nonlinearities able to give the required 
equilibrium points 

Up to now all the modelling done has focused on 
finding a structure able to give a geometrical 
structure in phase space. The time characteristics of 
the nonlinear oscillation have thus far been ignored. 
The Lyapunov exponent value however is a measure 
of the predictability margin representing the time 
characteristics. Having succeeded in finding a 
structure that gives the required qualitative dynamics, 
the model time is now scaled such that the 
magnitudes of the model Lyapunov exponents and 
experimentally determined Lyapunov exponents 
agree. 

While this exercise may appear contrived since a 
working model of the Chua circuit already exists, it 
has been illustrated how one could possibly approach 
the nonlinear model structure identification using 
techniques from nonlinear system analysis. This 
approach has been successfully used other nonlinear 
systems such as the van der Pol oscillator• 

8. CONCLUSION 

It has been illustrated how using Poincar6 maps, 
Lyapunov exponents and dimension techniques, it is 
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possible to determine nonlinear model structures for 
systems that cannot be represented by linear models. 
Furthermore these techniques provide a sound basis 
for determining whether to use linear or nonlinear 
model structures. Although the example is very 
simple, it is believed that the approach presented in 
this paper provides a reliable and time effective 
method for nonlinear model structure identification 
for systems whose dynamics lie on low-order 
dimensional attractors. 
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