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The effect of time-correlated zero-mean Gaussian noise on chaotic synchronization is analyzed
experimentally in small-size arrays of Chua’s circuits. Depending on the correlation time, an
improvement of the synchronization is found for different values of the noise amplitude and
coupling diffusion between circuits.

Recently there has been considerable interest in
stochastic resonance, i.e. the enhanced response of
a system to an external signal induced by noise
[Wiesenfeld & Moss, 1995; Gammaitoni et al., 1998;
Luchinsky et al., 1998], a phenomenon in which
noise has a creative role. Moreover, the influence
of noise has also been studied within the context
of arrays of cells [Lindner et al., 1996; Braiman
et al., 1995a, 1995b; Gailey et al., 1997; Shuai et al.,
1998]. Here, the coupling strength and the noise in-
tensity play an important role for array enhanced
stochastic resonance [Lindner et al., 1995]. The
applications of noise to biological systems or in en-
gineering problems could be of special relevance.
On the other hand, the behavior of uncoupled
chaotic systems under the influence of external noise
has been the subject of recent work [Maritan &
Banavar, 1994; Pikovsky et al., 1994; Herzel &
Freund, 1995; Malescio, 1996; Gade & Basu, 1996;
Longa et al., 1996; Shinbrot et al., 1993; Sánchez
et al., 1997, 1999]. The main idea behind these
papers is that uncoupled chaotic systems cannot be

synchronized by means of an identical noise signal
(Gaussian noise of zero mean), except for a noise
with some nonzero bias.

In this Letter, the role of a time-correlated
Gaussian noise on diffusively chaotic coupled cells is
analyzed. The dynamical noise used in this Letter
is a Gaussian noise of zero mean of the Ornstein–
Uhlenbeck type [Sancho et al., 1982], characterized
by a correlation function

〈ξ(t)ξ(t′)〉 =
α

τ
exp

(−|t− t′|
τ

)
(1)

where τ is the correlation time and α is the noise
amplitude. In the limit τ → 0 the white-noise limit
is recovered. We emphasize here the case of global
noise, where the noise is identical at each site, as
opposed to the case of incoherent or local noise,
where the noise is uncorrelated from site to site.

Experiments have been performed with N

resistively coupled Chua’s circuits (N = 3) [Madan,
1993; Chua, 1995] in the chaotic regime, according
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to the design introduced by [Sánchez et al., 1997,
1999]. Each circuit, j = 1, 2, 3, in the array is
defined by the following evolution equations,

C1
dV1,j

dt
=

1

R
(V2,j − V1,j)− h(V1,j)

+
1

Rc
(V1,j+1 + V1,j−1 − 2V1,j)

C2
dV2,j

dt
=

1

R
(V1,j − V2,j) + iL,j

L
d iL,j
dt

= −V2,j − r0 iL,j

(2)

where V1, V2, and iL, the voltages across C1 and
C2 and the current through L, respectively, are
the three variables that describe the dynamical sys-
tem, resulting from a straightforward application of
Kirchhoff’s law. The parameters have the following
meaning: C1 and C2 are the two capacitances, L
the inductance, R the resistance that couples the
two capacitors and r0 the inner resistance of the
inductor. Circuits were connected through capaci-
tor C1 by resistances Rc, leading to a diffusion term

in the potential differences [Chua, 1995], with a cou-
pling coefficient D ∝ 1/Rc. Circuits at the bound-
aries are only connected with one neighbor.

The three-segment piecewise-linear characteris-
tic of the nonlinear resistor (Chua’s diode) is defined
by,

h(V1) = GbV1 +
1

2
(Ga −Gb)[|V1 +Bp|

− |V1 −Bp|] (3)

where Ga and Gb are the slopes of the inner and
outer regions of h(V1), respectively, and Bp = 1 V
defines the location of the breaking points of the
three-slope nonlinear characteristic h(V1).

An experimental setup of three identical Chua’s
circuits driven by noise has been built. Their
components are defined by (C1, C2, L, r0, R) =
(10 nF, 100 nF, 10 mH, 20 Ω, 1.1 kΩ). The slopes
of the nonlinear characteristic h(V ), Eq. (3), are
defined by Ga = −8/7000 and Gb = −5/7000.
Figure 1 shows the schematic diagram of the
experimental setup. The circuits were sampled with
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Fig. 1. Schematic diagram of the experimental setup used to introduce noise in a multiplicative way in an array of diffusively
coupled Chua’s circuits. Noise is added to voltage V1 and is used to drive the nonlinear element of the circuit [see Eq. (4)].
The noise is buffered from all VCCS’s ensuring thereby no interaction between the circuits except that due to the coupling
resistances Rc. The white Gaussian noise generated by the function generator is transformed by the high-cut filter in a
Gaussian noise of zero mean of the Ornstein–Uhlenbeck type [see Eq. (1)] with a correlation time τ = RbCb, which is then
added to the signal from capacitor C1 (also buffered). The low-frequency cutoff of the filter, determined by RaCa, is fixed
at ≈ 1 Hz, and the high-frequency cutoff is adjustable by tuning Rb (Cb = 1µF). The output noise finally passes through a
variable-gain operational amplifier (not shown) before being applied to the circuits.



Experimental Improvement of Chaotic Synchronization 2323

0 0.01 0.02 0.03 0.04 0.05
−0.4

−0.2

0

0.2

0.4

Time (s)

A
m

pl
itu

de
 (

V
)

(a)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m (b)

0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1

|t−t‘| (s)

C
or

re
la

tio
n 

F
un

ct
io

n (d)

−0.2 0 0.2
0

0.2

0.4

0.6

0.8

Noise Amplitude (V)

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n

(c)

Fig. 2. Characterization of a time-correlated Gaussian noise obtained after a white zero-mean Gaussian noise is passed
through a single-pole filter. (a) Temporal evolution of the color noise with amplitude 500 mV (peak-to-peak) and correlation
time τ = 5 ms. (b) Power spectrum of the noise signal. (c) Probability function distribution. The line shows a fitting of
the experimental results to a Gaussian curve. (d) Correlation function (continuous line). The dashed-line corresponds to the
theoretical curve given by Eq. (1).

a digital oscilloscope (Hewlett-Packard 54825A)
with a maximum sampling rate of 4 × 109 sam-
ples per second, 1.5 GHz bandwith, and a record
length of 32000 points, connected to a PC for data
processing.

The external noise has been introduced mul-
tiplicatively using a recently introduced circuit
[Sánchez et al., 1997, 1999] that enables to drive
the nonlinear element by using the voltage from an
external source. The nonlinear element is driven,
in general, by the voltage coming from an external
source, not necessarily the voltage coming from ca-
pacitor C1, as may happen in the case of a standard
Chua’s circuit. Thus, it is a voltage controlled cur-
rent source (VCCS) with a characteristic defined
by Eq. (3). This yields the following evolution
equation for the voltage across the capacitor C1,

C1 V̇1 =
V2 − V1

R
− h(V1 + ξ(t)) (4)

where it is easy to see that the noise term yields a
multiplicative contribution.

The time-correlated noise, ξ(t), [Eq. (1)], is
obtained electronically by passing the output volt-
age of a white Gaussian noise generator, ξw(t),
through a single-pole active filter with a time
constant τ = Rb Cb, before being applied to the
circuit as it is shown in Fig. 1 [McClintock &
Moss, 1989; Luchinsky et al., 1998]. The external
white noise has been generated by using a function
generator (Hewlett-Packard 33120A). Their char-
acteristics, Gaussian distribution and zero mean
in the absence of an offset, have been adequately
checked.1

1As the bandwith (≈ 10 MHz) of the white noise from the HP generator is much higher than the characteristic frequencies of
the Chua’s circuit, then for our purposes, we can consider this ideal “white” noise.
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Fig. 3. Log-linear plot of K as a function of the time correlation τ for three different values of the coupling resistance Rc.
Since the length of the time series is determined by the record length of the oscilloscope and the time scale of the Chua’s
circuits, in order to improve the statistic, 50 realizations of the noise were carried out for each value of τ . In doing so, we
substitute the limiting value of T →∞, in Eq. (5), for T � τ , in such a way that the most probable value of K becomes
identical to the ensemble average of K when the number of experiments (realizations of noise) is large. The experimental data
are shown as symbols, while lines represent an interpolation to the previous ones: crosses (×) and a dashed-line for Rc = 6.8 Ω,
rhombi (3) and a dot–dashed line for Rc = 14 Ω, and circles (◦) and a solid-line for Rc = 27 Ω. The obtained values of K
were scaled between 0 and 1 for a better representation of the phenomenon. The minimum and maximum values of K for each
coupling resistance are: 0.11 and 0.13 for Rc = 6.8 Ω, 0.34 and 0.37 for Rc = 14 Ω, and 1.39 and 1.51 for Rc = 27 Ω. Noise
amplitude (peak-to-peak): 250 mV.
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Fig. 4. Effect of a time-correlated noise on the double-scroll (chaotic) attractor (a) of the Chua’s circuit for intermediate
values of τ . As τ increases, the attractor becomes smeared out as well as it becomes “periodically” asymmetric, finally losing
the double-scroll appearance (b). The image presented in panel (b) was acquired after the oscilloscope was stopped at a given
instant of time. Otherwise, other possible asymmetric shapes of the attractor could have been obtained. Noise amplitude
(peak-to-peak): (a) 10 mV and (b) 400 mV. Correlation time; τ = 50 ms. Rc = 6.8 Ω.

Figures 2(a)–2(d) show the physical properties
of an experimental time-correlated noise before be-
ing added to the voltage V1 in the Chua’s circuit.
The power spectrum of the noise (b) cannot be
considered to be flat within the frequency range of

interest, τ−1 ≈ 200 Hz. For small noise intensi-
ties, the obtained probability distribution does not
fit perfectly to the Gaussian distribution as a con-
sequence of the experimental noise in the sampling
process [Fig. 2(c)]. The correlation function was
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also calculated experimentally (d) and compared
with the theoretical function given in Eq. (1). Our
realization of noise decays exponentially within a
time scale almost equal to the expected theoretical
value.

In order to characterize the degree of synchro-
nization between cells of the array, we introduce the
following time-averaged quantity,

K = lim
T→∞

1

T

T∑
t=1

 1

N − 1

N∑
j=2

[V t
1,j−1 − V t

1,j]
2

 (5)

This function is positive defined and it is equal to
zero when all the cells in the array are globally
synchronized. Since K can serve as a measure of the
array complexity, in this context it can be related
to the Kolmogorov–Sinai entropy [Benettin et al.,
1976; Klimontovich, 1996].

The main effect of a colored Gaussian noise
on an array of diffusively coupled chaotic cells
is to improve the synchronization between units.
Figure 3 shows the evolution of K as a function of
the correlation time τ for different values of the cou-
pling resistance Rc. The mean value of K increases
with Rc as expected, so a scaling factor was intro-
duced in order to compare the different observed
behaviors of K. In general, independently of the
specific value of Rc as τ increases, first K decreases
almost exponentially, reaches a minimum, and then
rises smoothly until a constant saturation value is
attained for τ � 1. The minimum of K(Kmin) cor-
responds to an optimum choice of τ(τmin) to obtain
the best synchronization.

For intermediate values of τ , the time-
correlated Gaussian noise periodically modulates V1

when driving the nonlinear element. A resonance
effect between the Chua’s time scale and the noise
correlation time, τ , should be expected, since the
power spectrum of the noise cannot be considered
to be flat within the frequency range of interest,
τ−1. This resonance effect could explain the im-
provement of chaotic synchronization observed in
Fig. 3 for K = Kmin [Lorenzo & Pérez-Muñuzuri,
1999]. Here, the double-scroll attractor becomes
periodically asymmetric with increasing noise am-
plitude, as well as blurred [Figs. 4(a) and 4(b)], due
to the slow dynamics of the noise.

The value of τ corresponding to Kmin was found
to increase with the coupling resistance as it is
shown in Fig. 5. As τ → τmin, a stronger inter-
action between the two characteristic time scales
of both cell and noise should be expected, then

improving the synchronization between circuits.
For τ = τmin, in terms of frequency locking, the
dynamics of the cell could be simplified to that of
an oscillator forced periodically with a frequency
equal to τ−1

min. Then, for a chain of linearly-coupled
oscillators, its dynamics can be described in terms
of a plane-wave solution with a wave velocity pro-
portional to

√
D. The wave dispersion relation is

given by ω ∝
√
D/λ, with ω the wave frequency

and λ the wavelength. For small-size arrays, it can
be considered that λ is fixed by the boundary con-
ditions. In this case, the wave frequency increases
with the coupling strength. Thus, in order to obtain
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Fig. 5. Dependence of the time correlation value, corre-
sponding to the minimum of K, with the coupling resistance,
Rc. Noise amplitude (peak-to-peak): 250 mV.
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Fig. 6. Dependence of K with the noise amplitude (peak-to-
peak) of a time-correlated noise. Note the linear dependence
observed for the range of used noise amplitudes. Rc = 10 Ω,
τ = 0.01 s.
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locking between the internal oscillation frequency
and the external periodic forcing, as the coupling
resistance increases, the external forcing period (in
our case this is related to the value of τmin) should
also increase. Obviously, the explanation above is a
simplification of the problem, since the chaotic dy-
namics cannot be mapped in a simple way to that of
an oscillator. Nevertheless, our aim is to stress the
similarity between the classical frequency locking
problem that occurs in a chain of oscillators forced
periodically and the behavior of K for τ ≈ τmin.
Here, the locking does not occur for a single value
of the frequency, but for a range of frequencies that
gives rise to a wide behavior of K as a function of
τ near the onset of resonance.

On the other hand, the two limits, τ → 0 and
τ →∞, in Fig. 3 deserve further comments. When
τ → 0, the white Gaussian noise limit is recovered
and circuits in the array do not become synchro-
nized to each other independently of the variance
of the noise [Sánchez et al., 1997, 1999]. In this
case, the structure of the unperturbed double-scroll
attractor gets smeared out with the increasing noise
amplitude, corresponding to a decreasing signal-to-
noise ratio, while no evidence of synchronization be-
havior is observed. Similarly, when τ →∞ the term
ξ(t) in Eq. (4) behaves as a constant value added
to the voltage V1. Noise affects the double-scroll
dynamics that becomes asymmetric, while no syn-
chronization is observed between cells within the
array. In fact, for high enough noise amplitude,
the main effect will be a biased signal that will in-
duce a regularization in the system. This effect is
analogous to that of some chaos suppression meth-
ods that achieve this result through perturbations
in the system variables [Mat́ıas & Güémez, 1994,
1996].

Figure 6 shows the dependence of K with the
noise amplitude for a small value of τ near the
white limit case. As expected, increasing the noise
strength leads to a worse synchronization between
circuits (K increases).

The influence of the number of circuits in
the array, N , on chaotic synchronization by time-
correlated noise is also being studied [Lorenzo &
Pérez-Muñuzuri, 1999]. Preliminar results show
that the larger the array, the larger the needed fluc-
tuations to improve chaotic synchronization; i.e. the
variance of the noise must increase as N increases.

We have observed a nonmonotonic dependence
of the degree of synchronization measured in terms
of K as a function of the noise correlation time τ

and the coupling between cells in a one-dimensional
array. In fact, for values of τ of the order of the
time scale of the chaotic attractor a stochastic reso-
nance effect is found that could explain the observed
minimum value of K. In other words, the effect of
color noise to improve the chaotic synchronization
between cells is more robust than that of white noise
for a constant noise amplitude.
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