Exploring Chaos in Chua’s Circuit via Unstable Periodic Orbits
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Abstract — Unstable periodic orbits inherently embed-
ded in strange attractors provide a useful characterisa-
tion of chaotic behavior. In this paper we analyse unsta-
ble periodic orbits existing in chaotic orbits existing in
Chua’s circuit. Uncovering of such orbits is feasible and
numerically tractable - specific algorithms and programs
have been developed for this purpose. Unstable periodic
orbits provide not only information about the attractor
geometry and can be further used for calculation of met-
ric descriptors such as dimension or Lyapunov exponents
but can be treated as a basis for controlling chaos.

I. INTRODUCTION

Efforts of many research groups have been concentrated during
the last decade on describing and understanding chaotic phenom-
ena in deterministic systems. Existence of countable infinity of
unstable periodic orbits as in the case of a Smale’s horseshoe is
considered as one of the main attributes of chaotic systems (e.g.
chaos in the Shi’lnikov sense).

Two main appraoaches towards description of chaotic phenom-
ena can be distinguished.

The first approach, often referred to in the literature as the
metric approach, uses time-series data measured from the consid-
ered system to compute metric invariants such as fractal dimen-
sion, entropy, Lyapunov exponents or spectrum of singularities.
All of these quantities represent averages over the attractor and
thus require very large data sets (long time series), are difficult to
compute, and the results are not always reliable.

The second approach, referred to as topological, describes spa-
tial layout of system trajectories and provides information about
geometry of the strange attractor. An interesting method be-
longing to this category, based on extraction of unstable periodic
orbits embedded in the chaotic attractor has been elaborated in a
series of papers [1], 2], (7], [8]. The basic idea of this approach is
to find an approximation to the curvatures of any nonlinear mul-
tidimensional Poincaré map using a continuous polygonal surface
made of hyperplanes in such a way that these hyperplanes are tan-
gent to the graph of the map at the unstable periodic points and
their slopes are determined by eigenvalues of the Jacobian matri-
ces calculated at these points. One can obtain any needed accu-
racy of approximation as there exists a countable infinite number
of unstable periodic orbits with growing periods and these orbits
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are dense on the asymptotic strange set — recovering more and
more unstable cycles we obtain better approximations. The un-
stable periodic orbits existing within a particular type of chaotic
atractor can be used also for calculating its metric characteristics
e.g. the topological entropy and fractal dimension, universal con-
stants such as the Feigenbaum constant and Lyapunov exponents
(1], 21, (8], [10].

The main features of the characterisation in terms of unstable
periodic orbits can be summarised as follows:

e Periodic orbits and their eigenvalues are topologically in-
variant — different representations of the same system (up
to a smooth transformation of coordinates) must preserve
their topological properties (a fixed point must remain a
fixed point in any representation and the same applies to
periodic orbits),

Periodic orbits constitute a “skeleton” for the attractor —
they determine its spatial layout,

The eigenvalues of closed orbits are metric invariants — they
describe the scaling between different pieces of the attractor.

There exists a hierarchical ordering of unstable periodic or-
bits — short cycles give good approximations of the strange
set.

Periodic orbits are robust — they vary slowly with smooth
parameter variations. The same applies to their eigenvalues.

Unstable periodic orbits can be successfully extracted from
experimental data - specific computational methods have
been developed for this purpose and implemented in com-
puter prrograms.

In this paper we analyse unstable periodic orbits embedded within
different chaotic attractors existing in the canonical Chua’s cir-
cuit.

IT. CANONICAL CHUA’S CIRCUIT

Canonical Chua’s circuit proposed in (6] unifies all chaotic phe-
nomena encountered so far in third order autonomous circuit in
a single circuit consisting of two linear capacitors (C1, C2), one
lineaar inductor (L), two linear resistors (R and G) and a single
nonlinear (piecewise-linear) resistor called Chua’s diode (Fig. 1).
The dynamics of this circuit are described by:
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Fig. 1. The canonical Chua’s circuit.
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where the nonlinear resistor function is:
in = f(vr) = Govr + 3(Gs — Go)(lor — 1] + |vr + 1]),
G, and G} are the inner and outer slopes respectively of the non-
linear resistor

We use the following sets of circuit parameters (comp. Table
3 in [6]):
1. C1=1, C2=-0.6 , G=0.01", GA=-0.445, GB=0.851 , L=-1.10
, R=-0.409 for which Réssler-type chaotic attractor has been ob-
served.
2. Cl1=1, C2=-0.632, G=-0.0033, GA=-0.419, GB=0.839 , L=-
1.02 , R=-0.330 for which the double scroll attractor exists.

In each case we analysed a computer generated data set of
500000 steady-state points (first 10000 points rejected to avoid
transients) equally spaced in time (time step 0.1). Each trajec-
tory was started with the initial condition (0.1, 0, 0).

A modification of the Lathrop and Kostelich [10] technique
has been used for recovering the unstable periodic orbits from
an experimental time series. In this paper we adopt the follow-
ing coding of unstable periodic orbits: all orbits are denoted by
I1. The subscript 0 denotes orbits which do not wind around the
origin. The superscript denotes the number of windings around
the outer equilibria P* or P~. Symmetric orbits winding around
both of the equilibria P* and P~ have no subscripts. In the case
of asymmetric orbits winding around P* and P~ the subscript
denotes the number of windings around one of these points and
the superscript denotes the number of windings around the other.

II1. PERIODIC ORBITS IN THE ROSSLER-TYPE
ATTRACTOR

Réssler-type chaotic orbits are the simplest of all chaotic tra-
jectories found in the canonical Chua’s circuit. It turns out that
the unstable periodic orbits orbits embedded in this kind of attrac-
tor are also very simple and their complexity changes following
a simple period-adding rule. For the particular choice of param-
eters the simplest orbit IIZ winds twice around the equilibrium
point P~ existing in the system. We found a single orbit with
two windings, a single orbit with four windings II§, two distinct

orbits with six windings II§, five orbits with ten windings IT2° etc.
No orbits with eight windings were found. The number of orbits
of a particular period length is specific to the analysed attrac-
tor and the particular set of parameter values. This is confirmed
by experiments with Rossler-type attractors existing in Chua’s
circuit for different parameter settings — in all tested cases we
found different structures of embedded unstable periodic orbits.
One of the explanations of such a phenomenon could be the fact
that regions of existence of chaos are separated by periodic win-
dows and some of the bifurcating (destabilised) orbits from the
windows are later found within the chaotic attractor (and thus
the structure of characteristic unstable periodic orbits changes).
It is also possible to explain the absence of any period-1 orbits -
an orbit of this kind exists in the state space but lies far from the
observed attractor.

IV. UNSTABLE PERIODIC ORBITS IN THE
DOUBLE SCROLL

The double scroll chaotic attractor is probably the most in-
teresting of all the attractors encountered in Chua’s circuit and
persists for a wide range of parameter values. Typical attractor
of this kind encountered for the parameter choice as given above
is shown in Fig. 2a. During the bifurcation analysis it has been
confirmed that the double scroll is born via the merging of two
coexisting Rossler-type attractors when varying the bifurcation
parameter value. Three types of unstable periodic orbits could be
distinguished among the orbits detected within the double scroll
atractor:

1. Pairs of simple (similar to the ones detected in the Réssler-
type attractor which appear before the birth of the dou-
ble scroll) asymmetric periodic orbits in two linear domains
symmetrically placed about the origin (II3, 13, II3, TI4 -
Fig. 2b-f respectively ; Fig. 2d-e show two distinct kinds of
period-3 I3 orbits).

2. Symmetric orbits passing through three linear domains, sim-
ilar to the ones found in periodic windows and often similar
in shape to heteroclinic orbits [9], [11]. Typical orbits of
this kind are II? (Fig. 2g), II* (Fig. 2h) and I1® (Fig. 2i).
The orbit II* of Fig. 2h is a “period doubled” version of the
orbit 112 shown in Fig. 2g. Possibly there exist also more
complicated, longer period (4,8 etc.) orbits of this kind
(these orbits were not detected durnig our experiment as in
our search procedure we limited the maximum length of the
searched orbit to 5000 iterates.to reduce the computation
time).

3. Asymmetric periodic orbits in three linear domains. These
orbits are characterised by unequal number of windings
around the equilibria P* and P~ (eg. II§ - Fig. 2j; II3 -
Fig. 2k; I13 - Fig. 21).

Comparing the unstable periodic orbits found in the case of
the Rossler-type attractor with those detected in the double scroll
it is interesting to note that more simple orbits were found in the
double scroll than in the Rossler-type attractor — we have no
explanation why the double scroll contains also “fractional period
orbits” ie. ones with periods smaller than (1/2 etc.) or between
(3/2 etc.) those found in the Réssler-type attractor analysed in
the previous section. This seems to contradict the observation
that the double scroll is born via a merging of coexisting Rossler
spiral attractors. One possible explanation could be given on
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Fig.2. Double scroll chaotic attractor encountered in Chua'’s circuit (a); some of the unstable periodic
orbits embedded within this attractor (b-1) (see text for description and comments).
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the basis of analysis of the bifurcation diagrams. Among the
unstable periodic orbits found within a particular kind of chaotic
attractor there are not only the orbits which lost stability in the
period doubling bifurcations (of period 2" times the basic period
of period-one orbit) but also unstable orbits born via other types
of bifurcations e.g. intermittency or saddle-node bifurcations in
periodic windows.

Our observation supports the claim that the skeleton of peri-
odic orbits is specific to the particular type of attractor observed
and some of the simple (two domain) orbits characterising the
double scroll cannot exist in the Rossler attractor.

V. CONCLUSIONS

Using a simple software package we were able to uncover, from
discrete time series of state variables, the hierarchy of unstable pe-
riodic orbits embedded within typical chaotic attractors encoun-
tered in the canonical Chua’s circuit. This hierarchy (ie. the
lengths and the number of orbits of distinct types) is specific to
the particular sets of circuit parameters and gives a characterisa-
tion of the attractor which exists for this choice of parameters —
it is possible to distinguish between the attractors by looking at
their respective hierarchies of unstable periodic orbits.

There are several numerical problems that should be men-
tioned. Firstly, fixing arbitrarily the accuracy (admissible error
€) at the beginning of the search procedure for periodic orbits we
overlook the possibility that there may exist orbits of high period
which pass many times through the assumed neighborhood. Sec-
ondly, it turns out that it is quite difficult to identify similar but
different orbits reliably. The criterion for distinguishing between
similar orbits fails in many situations. It is very difficult to tell
on the basis of time series analysis alone how many distinct orbits
of a given length are emebedded within the attractor. This is due
to the fact that we always operate on a finite data set and in fact
there is no practical indication how large the threshold (admissi-
ble error) in this case should be chosen. Usually this is achieved
by trial and error and requires some skill. In some cases this
problem could be overcome by additional analysis of the Poincaré
map if its analytic form is accessible. It may also be possible to
develop a description of unstable periodic orbits in the canonical
Chua’s circuit in terms of symbolic dynamics or knot theory.

The uncovered unstable periodic orbits could be used not only
for the characterisation of attractor geometry. One of the main
research problems in the last two years has been the control of
chaotic dynamical systems [12], [13], [14]. One of the approaches
to controlling chaotic sytems is the so-called OGY method (Ott-
Grebogi-Yorke).

The key development in this approach is control in terms of
stabilisation of any arbitrarily chosen unstable periodic regime
existing in the chaotic state. It has been demonstrated that this
type of control can be achieved by an infinitesimal change of the
system parameters. The results presented in this paper can be
considered as part of a larger project the goal of which is to con-
trol chaos in Chua’s circuit.
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