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Abstract. A fiber-like lattice with resistively coupled electronic elements mimicking a 1-D discrete reaction-
diffusion system is considered. The chosen unit or element in the fiber is the paradigmatic Chua’s circuit,
capable of exhibiting bistable, excitable, oscillatory or chaotic behavior. Then the dynamics of a structure
of two such interacting parallel active fibers is studied. Suitable conditions for the interaction to yield
synchronization and other forms of collective behavior involving both fibers are obtained. They include
wave front propagation, pulse reentry and pulse propagation failure, overcoming of propagation failure,
and the appearance of a source of synchronized pulses. The possibility of designing controlled dynamic
contacts by means of one or a few inter-fiber couplings is also discussed.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Wave propagation in the form of pulses and other nonlin-
ear signals along lattices is of interest to model or mim-
ick natural phenomena [1–7]. For instance, pulse propa-
gation along axons and synaptic transmissions constitute
the dynamical basis of neuron communication, as in the
transmission of an image from the retina to the visual
cortex which occurs by a bundle of axons or nerve fibers
[4,6,7], or in the reentry phenomena in coupled parallel
fibers [8–12], etc. For a bundle of fibers an open question
is the outcome of inter-fiber interaction with eventual ill-
function in one or several of them. Understanding of the
referred dynamics and basic phenomena can be obtained
by using 1-D lattices. Thus, here we consider the dras-
tically simple case of pulse propagation along a chain of
electronic active units, in particular bi-stable elements.
Since a chain represents a spatially extended system and
it is capable to sustain different waves making possible
transfer of an encoded information, it can be considered
as an active “fiber”. We take Chua’s circuit as the cell,
unit or element in the chain. It is a paradigmatic and easy
to construct nonlinear electronic device known to have a
rich variety of dynamical behaviors including bistable, ex-
citable, oscillatory and chaotic regimes [13]. We consider
diffusive coupling between the cells. Thus a fiber is a dis-
crete version of a multi-species reaction-diffusion medium.
Indeed by varying the parameters of the electronic circuit
we easily drive the “reaction kinetics”. In particular, we
can mimick a bistable medium when Chua’s circuit is in
a simple bistable mode or an excitable FitzHugh-Nagumo
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like medium when in its excitable mode and so on. Such a
variety of possibilities makes the electronic fiber an effec-
tive tool to model different phenomena typical for almost
all possible [4,5,10] type of RD media [13]. Accordingly,
electronic experiments with arrays of coupled Chua’s cir-
cuits have been done for various purposes [11,12].

Studying two coupled fibers in this paper we focus the
attention on the processes of wave propagation and reen-
try phenomena in the system with bistable and excitable
properties. Our model-problem exhibits classical wave
reentry processes observed in FitzHugh-Nagumo fibers as
well as some new effects caused by the complexity of the
cell and by the discrete properties of the fibers [8–10].
In Section 2 we define the model problem to be consid-
ered. Then in Section 3 we show how one and two-coupled
fibers behave dynamically, and we delineate the range of
parameter values for fiber-fiber dynamic synchronization.
Section 4 deals with the effects of such synchronization.
In Section 5 the case of one or a few contacts between
two fibers is considered thus illustrating features typical
of synaptic-like contacts in neurons [3,4,7]. In Section 6
we summarize our findings.

2 Model

Let a fiber be a chain or 1-D lattice of N coupled
electronic units as schematically shown in Figure 1.
Let us also assume that the inter-fiber interaction
is provided by nearest-neighbor bonds with lin-
ear resistors between the corresponding elements
hence sites of the two chains. Further, let us con-
sider two such axon-like structures coupled together.
The collective dynamics of such system is described
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Fig. 1. Schematic diagram of the discrete two-fiber system
and the active electronic unit.

by the following dimensionless coupled equations [13,14]
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(1)

j = 1, 2, . . . , N,

where superscripts, i = 1, 2, denote the variables of the
first and the second fiber, respectively. The “species” x, y
and z account for the voltages V1, V2 and the current iL
of the electronic circuit (Fig. 1 and [14]); ∆xj = xj−1 −
2xj+xj+1 is the discrete Laplace operator; D1, D2 are co-
efficients accounting for the strengths of the corresponding
intra-fiber diffusions; hj characterizes inter-fiber coupling
(which is also of diffusive type); f(x) = x(x − a)(x + b)
with a, b > 0. Finally, Neumann or zero–flux boundary
conditions are imposed on the system (1). All dimension-
less parameters in (1) are expressed by the parameters of
the elements of the electronic circuit [13,14]. Note that
equations (1) extend the dynamic possibilities offered by
the standard FitzHugh-Nagumo model [4,5].

3 Motions along a fiber and
their synchronization in two coupled fibers

Let us introduce the new (difference) variables

uj = x1
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j , vj = y1
j − y2

j , wj = z1
j − z2

j ;
sj = x1

j + x2
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j , qj = z1

j + z2
j .

Then, the two-fiber system (1) becomes
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2
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2
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ẇj = −βvj − γwj ;
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j = 1, 2, . . . , N,

with

H(u, s) ≡ u2 + 3s2

4
+ (a− b)s− ab,
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4
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2
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3.1 Synchronization of two identical fibers
with inter-fiber interaction

Let us first consider the case D1 = D2 = D. Then the
system (2) has the trivial solution uj = vj = wj = 0.
In the phase space of (2) it defines the manifold of the
synchronization of motions

M : {uj = 0, vj = 0, wj = 0}, j = 1, 2, . . . , N

which for suitable parameter values is globally asymptot-
ically stable. Indeed, the quantity
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]

is a Lyapunov function. Its derivative with respect to (2)
is

V̇ = −
N∑
j=1

[Pj +Qj +Rj ]

with

Pj ≡ −Duj−1uj + (2D + 2hj − α(a2 + ab+ b2)/3)u2
j

−Duj+1uj

Qj ≡
αu2

j

2
[u2
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Rj ≡ α(u2
j − 2ujvj + v2

j + γw2
j/β).

Then, all Qj , Rj are positive definite. The function Pj is
a quadratic form. It is also positive definite if

hj > h∗ ≡ α(a2 + ab+ b2)
6

, ∀j = 1, . . . , N. (3)
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It follows that outside the manifold M the inequality
V̇ < 0 is satisfied and V̇ = 0 on the manifold. Thus,
the synchronization manifold M is globally asymptotically
stable. Therefore, any initial conditions in the identical
coupled fibers tend to the manifold M where the already
synchronized motions are governed by the system describ-
ing the dynamics of a single fiber (hj = 0).

3.2 Synchronization of fibers with different diffusion
coefficients and homogeneous strong inter-fiber
interaction

Let us now take D1 6= D2 with very strong inter-fiber
interaction coefficients hj = h� 1, ∀j = 1, . . . , N . Then,
the system (2) has a small parameter, µ = 1/h � 1,
which affects the derivative u̇j . In this case the motions of
(2) have both fast and slow features. In the phase space
there exists a stable surface of slow motions defined by
{uj = 0, j = 1, . . . , N} and all trajectories of (2) after
some time become restricted within thin layers (whose
thickness is of order of µ) near this surface. When µ = 0
the slow motions are located exactly at the surface and
given by the system

v̇j = −vj + wj ;
ẇj = −βvj − γwj ; (4)

ṡj = α[pj − sj − Φ(0, sj)] +
D1 +D2

2
∇2sj ;

ṗj = sj − pj + qj ;
q̇j = −βpj − γqj;

(5)

where (4) and (5) describe independent systems. The sys-
tem (4) is linear and all trajectories asymptotically tend
to the surface {vj = wj = 0, j = 1, ..., N}. Thus, the slow
motions occur on the surface that coincides with the syn-
chronization manifold M . The dynamics on this surface
is given by the system (5) describing a single chain with
diffusion coefficient Ds = (D1 +D2)/2. Hence, for h� 1
evolution proceeds in two stages. Any initial condition in
the first (fast) stage quickly comes to the thin layer which
is very close to the stable surface of slow motions (synchro-
nization manifold M). In the second (slow) stage, motions
are governed approximately by the system (5) defining the
dynamics of the single chain with D = Ds and tend to an
attractor of this system (for example, a steady state or a
wave pattern).

4 Effects of inter-fiber interaction for varying
“reaction kinetics”

In the preceding section we have analytically found a suffi-
cient condition for the synchronization of all possible mo-
tions in the two coupled fibers. Let us now see concrete
effects of the inter-fiber interaction. To do this we numer-
ically integrate the equations (1) for different modes (i.e.
various possible “reaction kinetics”) of the unit and for
varying intra-fiber diffusion. We restrict consideration to
the homogeneous case, hj ≡ h.

4.1 Wave fronts in coupled interacting fibers

Let us choose the parameters of the electronic circuit such
that it possesses two stable steady states. Let us take γ�1.
In this case each fiber can be approximately described by
a gradient system [14]. In particular, the dynamics of each
unit is given by 

ẋ = −α∂U(x, y)
∂x

ẏ = −∂U(x, y)
∂y

(6)

with the potential

U(x, y) =
x4

4
− (a− b)x3

3
− (ab− 1)x2

2
+
y2

2
− xy. (7)

The two stable steady states of the unit correspond to
the two minima of the potential. Then, a single fiber
represents a discrete bistable, reaction-diffusion system of
FitzHugh-Nagumo type. Increasing the diffusion coeffi-
cient D > Dfr above some critical value Dfr such a fiber
exhibits wave front propagation. A front is formed as a
consequence of the transition of the units to the state
with lower value of the potential function U . Thus, for
fixed D the direction of front propagation and its veloc-
ity are uniquely defined by the difference in the potential
levels between the two minima of U . Let us show that
when the fibers are coupled, h 6= 0, there is the possibil-
ity of dramatically changing the properties of propagating
fronts.

In the numerical calculations we fix the parameters
of the cell to a = 1.4, b = 1.8, β = 0.5, α = 1 and γ =
10, hence for all practical purposes γ � 1. This set of
parameter values provides the required properties for the
cell to be a bistable unit.

4.1.1 Synchronization of traveling wave fronts

Let us consider D1 = D2 > Dfr and let the initial condi-
tions be two fronts propagating in the same direction along
parallel fibers with a finite time delay (Fig. 2, t < t0). The
level of grey color corresponds to the value of x in the
junctions of the chains according to the map given in
the figure. Sudden switching of the inter-fiber interaction
at t = t0 makes the delay negligible after a transient pro-
cess (Fig. 2, t0 < t < t1). Then the fronts become syn-
chronized and propagate together (Fig. 2, t > t1). When
the fronts hit the boundary a steady homogeneous distri-
bution appears in the fibers, hence each unit comes to the
lower minimum of the potential U , marked by white color.
The transient process in Figure 2 occurs in the following
way. The front in the first fiber, arriving with delay, signif-
icantly increases its velocity while the first arriving front
in the second fiber reverses motion and travels backward.

To describe these effects (front acceleration and front
reversal) let us consider the gradient model (6). Let us
take the front in the first fiber propagating relative to one
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Fig. 2. Wave fronts in two identical bistable fibers with D = 2. (a) Synchronization of two wave fronts traveling with finite
time delay. For t < t0 = 120 the chains are independent, h = 0. At t = t0, the interaction is switched-on, t > t0, h = 0.5. The
time interval t0 < t < t1 ≈ 140 corresponds to a transient process. Vertical axes account for time in arbitrary units (a.u.).

of the two accessible homogeneous states in the second
fiber. The inter-fiber interaction just slightly affects the
homogeneous state of the second fiber. Hence, approxi-
mately, the influence of the second fiber can be estimated
as a constant in the difference term of equations (1), i.e.

h(x2
j − x1

j) ≈ h(x0 − x1
j)

where x0 is an x–coordinate of the steady homogeneous
state. It takes the values x0 = a and x0 = −b for the two
states. Then, the units of the first fiber are described by
the model (6) with the effective potential function

Uh(x, y) = U(x, y) +
h

2α
(x0 − x)2.

Figures 3a, 3b illustrate cross-sections of the surface
Uh(x, y) by the plane y = x for the values of x0 corre-
sponding to the steady states with lower (at x0 = −b)
and higher (at x0 = a) potential levels, respectively. The
potential function U(x, y) for the units of the single fiber
is shown by the dashed curve. In Figure 3a the differ-
ence in the potential levels between the two minima in-
creases (the right minimum practically disappears), hence
the front should increase its velocity. It is what we have
seen in Figure 2 in the first fiber. Figure 3b shows that
when x0 is associated with the state of higher potential

(x0 = a), the left minimum of the Uh goes up. Then, the
backward transition of the cell from the left minimum to
the right becomes energetically preferable. Hence, there
is the reversal of wave fronts in the coupled fibers (the
second fiber in Fig. 2).

4.1.2 Overcoming propagation failure in coupled fibers

Another example of the effect of inter-fiber action allowing
to change qualitatively the behavior of the coupled fibers
as a whole is the possibility to overcome front propagation
failure.

The existence of a huge number of stable steady pat-
terns in discrete chains with bistable kinetics, when D
is small enough, leads to wave front propagation failure
[14–19]. The perturbation of a front is always “pulled” by
one of the stable steady patterns, hence fails to propagate.
This leads to the failure in the functioning behavior of the
fiber as a transfer system.

Let us take one chain withD1 > Dfr such that it allows
front propagation and the other chain with D2 < D∗ is
the ill-functioning fiber where waves fail to propagate. D∗
is some given value not needed explicitly here. As shown
in Section 3.2, with strong enough inter-fiber interaction,
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Fig. 3. Effective potential functions, Uh, for the coupled fibers
describing (a) front acceleration and (b) front reversal propa-
gation. Units are arbitrary (a.u.).

h� 1, all motions in the fibers come very close to be syn-
chronized. They are restricted within a thin layer near the
synchronization manifold M where both fibers behave, ap-
proximately, as a single one with the mean diffusion coef-
ficient Ds = D1+D2

2 . Hence, if we choose D1 large enough,
Ds > Dfr, the propagation failure in the ill-functioning
fiber is overcomed. This effect is illustrated in Figure 4.
When the fibers are independent (t < t0) there is a wave
front in the first one (well-functioning fiber) and a stable
steady pattern in the second one (ill-functioning fiber).
The strong interaction between the fibers is switched-on
instantly at t0. After a very short transient process (fast
motion stage) the steady pattern disappears in the ill-
functioning fiber and there arises a wave front almost iden-
tical to the front propagating in the first fiber (t > t0).
Note that the velocity of the synchronized fronts is lower
than the velocity of the original front. This is due to the
inequality Ds < D1 and to the fact that the typical depen-
dence of front velocity on diffusion strength in a reaction-
diffusion system is generally an increasing function [14].

4.2 Synchronization in coupled excitable fibers

Another possible “reaction-kinetics” of the unit allows a
fiber mode with excitable properties [11,20]. Such is the

case for a chain ((1), hj = 0), when a = b = 1.4, γ =
0.01, β = 0.5. We take α as a control parameter. Then, the
chain sustains the propagation of stable solitary pulses or
complex pulse trains.

The dynamics of excitations in systems of fibered or
layered spatial architecture is of great importance in bi-
ology. In particular, excitation reentry in cardiac tissue is
known to be responsible for several types of arrhythmia in
heart. In a number of recent papers [8–10] a model of two
coupled fibers of FitzHugh-Nagumo type has been consid-
ered. Phenomena of different types of reentry of propagat-
ing, action potential-like pulses have been studied. Refer-
ences [11,12] devoted to experiments with coupled linear
arrays composed of cells like those considered here show
the potential of studying the reentry in discrete electronic
fibers.

Let us study now the dynamics of pulse-like excita-
tions. We focus attention on the reentry phenomena as a
result of the inter-fiber synchronization. It appears that
pulse-like excitations as well as the reentry typical for the
classical FitzHugh-Nagumo type models and quite differ-
ent effects of initiations of pulse bound states or traveling
“bursts” are possible.

4.2.1 Simple pulse reentry and pulse failure

Let a single pulse be propagating in one fiber as an ex-
citation of the rest state, while the second fiber is in the
rest state. When the inter-fiber interaction occurs instan-
taneously at a given instant of time, the fibers tend to
be synchronized. Indeed, a pulse completely identical to
the initial one can be excited in the second fiber and the
two pulses synchronously travel down to the bottom of
the fibers. We have the simple “entry” of the excitation
fiber into the fiber originally in its rest state. The situation
is similar to that observed in fibers of FitzHugh-Nagumo
type [8] when the excitation threshold in the second fiber
is low enough. The pulses may also fail to propagate in
the coupled fibers as a result of the inter-fiber synchroniza-
tion. In this case the pulse in the first fiber disappears and
both chains come to the rest state. Apparently, the pulse
is “pulled” by the second fiber at rest which demands a
higher threshold to be excited. At variance with the failure
in chains, with simple bistable “kinetics”, where failure is
caused by ill-functioning behavior, here pulse propagation
failure in the coupled fibers comes from the destruction
of a given original excitation, while both fibers stay well-
functioning.

4.2.2 Initiation of trains of pulses

A single fiber allows a variety of complex wave solutions
steadily translating along it [20]. In particular, one can
easily excite pulse trains or bound states composed of an
arbitrary number of humps or “spikes”. Here we show how
such bound states appears as a result of pulse reentry in
coupled fibers.
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The appearance of synchronized trains of pulses
(bound states) traveling in opposite directions can be
observed as follows. After the interaction is switched-on
there appears a “long lasting transient source of pulses”
which may generate two- or more pulses (multi-hump
pulse) identical for both fibers (Fig. 5). Note, that in this

case the coupling coefficient h should be taken smaller
than the predicted synchronization threshold (3). Thus
the inter-fiber interaction looks more “elastic” but still
enough to synchronize the chains. Further decreasing
the coefficient h leads to the appearance of a long last-
ing pulse source.

To illustrate how the two-fiber system exhibits such
pulse trains we introduce the quantity characterizing how
the system reaches the synchronization manifold

dist(t) =

√√√√ N∑
j=1

(u2
j(t) + v2

j (t) + w2
j (t))

3N
(8)

which is a distance between the vectors of the two chains
in a 3N -dimensional state space. Its vanishing value cor-
responds to the complete synchronization of the fibers.
Figure 6 shows the time evolution of the function for three
different values of h. When (3) is fulfilled (e.g. h = 5)
the distance monotonically vanishes. This is the case
of a “rigid” interaction when the system takes either the
pulse or the rest state in the second fiber. For lower val-
ues of h we have more “elasticity” in the interaction and
dist(t) has rather long lasting oscillations associated with
the appearance of the source of pulses. After some time
the source dies out and the distance between the dynamic
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Fig. 7. Schematic diagram of two parallel fibers coupled by
(a) a single-pin contact and (b) a double-pin contact.

states in the two fibers tends to zero (Fig. 6). In this case
mutually synchronized bound states appear. By varying h
we have the possibility to control the number of humps or
spikes in the pulse train. This number is also sensitive to
the values of the other parameters of the system and to
changes in the initial conditions.

At variance with the cycle mechanism of pulse reen-
try in coupled excitable fibers resulting in the appearance
of a sequence of pulses [8–10] the initiation of pulse trains
or bound states can not be explained in simple terms of se-
quential excitation entry from fiber to fiber. Rather, it has
to do with the possibility of stable propagation of trains
(bound states) with variable number of spikes and with
the oscillatory properties of a single fiber. In particular,
a pulse initiating the reentry has a remarkable oscillatory
tail whose “oscillations” tend to grow when the inter-fiber
interaction occurs and hence to form a number (controlled
by h) of spikes of the outcoming pulse trains.

5 Pulse driving by pinned inter-fiber contacts

Let us, finally, consider the case when the inter-fiber in-
teraction operates with one or a few contacts between the
two chains, hence the vector {hj} has only a few non-zero
components (Fig. 7). Such contacts can be easily realized
with discrete electronic chains [12].

5.1 Single pin contact

Let two identical fibers be connected at a single point,
hj = h, hk = 0, ∀k 6= j, with h strong enough (Fig. 7a).
It follows from the equations (2) that for strong enough
interaction, h � 1, the difference u̇j ∼ −2huj in this
pair tends to decrease and vanish. Hence the two coupled
units of the different fibers tend to be synchronized (at
least their x variables). Similarly to the case of the homo-
geneous inter-fiber coupling (Sect. 4) such a synchroniza-
tion process takes time, i.e., it is a transient process whose
duration depends on the particular value of the coefficient
h. Hence, we have, in fact, a dynamic contact between the
parallel fibers acting with its own time scale. Two possi-
ble results of such a contact are that the pulse reaching
the contact in Figure 7a dies out for large enough inter-
fiber coupling, hence the contact operates as a barrier for
excitation transmission, or, alternatively, at the contact
point the excitation “enters” the fiber at rest where two
new pulses appear. In the last case, occurring for small
enough inter-fiber coupling, the forward traveling pulse
propagates almost synchronously with the original pulse
which also propagates in the first fiber. Thus, depending
on its strength the dynamic contact acts in two different
ways. It either stops the pulse thus inhibiting transmission
or it allows the pulse to go over which is an excitatory ac-
tion on the next chain element.

The phenomena of pulse driving in the pinned contact
can be interpreted in terms of characteristic time scales
of the contact operating, Tc, and the diffusion action, Tp,
accounting by the pulse velocity. Let us look at the inter-
action process from the spatial site of the chain where the
interaction occurs. Roughly, the pulse propagating in the
first fiber can be splitted into several independent “por-
tions” that sequentially bring excitation to those coupled
units which are in the rest state. When a portion comes to
the site of contact the interaction operates in two steps: (i)
The two coupled units become synchronized very rapidly
(h has a rather large value); (ii) the synchronous evolution
of the coupled pair defined approximately by the dynam-
ics of the single unit brings the coupled pair to the rest
state, hence tends to kill the original excitation. These two
steps account for the characteristic time of the contact ac-
tion, Tc. Thus, if this interval of time is much smaller than
the time, Tp, needed for the excitation to reach the units
nearest to the site of contact in the two fibers, Tc � Tp,
then the “portions” of the pulse sequentially die at the
contact. This inhibits a further pulse propagation. But if
when the contact is operating the excitation has enough
time to be transmitted by diffusion to the nearest units,
Tc � Tp, hence to excite them, the pulse overcomes the
contact site in the first fiber, and two pulses are excited
in the fiber at rest. Note that for fixed parameter values
of the unit, the time scale, Tp, is estimated from the pulse
velocity c, Tp ∼ 1/c. The dependence of c on the diffu-
sion coefficient, D, in discrete reaction-diffusion systems
[14,20] is typically c ∼

√
D, hence Tp ∼ D−

1
2 . The time

scale Tc depends only on the value of h and decreases with
h→ ∞ to some constant value T0 accounting the second
step (ii) of the contact action.
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Fig. 8. Diagram of pulse driving by single-pin contact in (D, h)
parameter plane. The pulse fails to propagate for values chosen
below the curve C1. Above the curve C2 the pulse successfully
overcomes the contact. Units are arbitrary (a.u.).

It is difficult to, quantitatively, estimate these time
scales because of the complex internal dynamics of the
unit. To illustrate the relative action of the two time
scales Figure 8 provides the diagram of pulse driv-
ing in the (D,h) parameter plane obtained numerically.
In the region below the curve C1 the contact yields pulse
failure. Above the curve C2 the pulse overcomes the con-
tact and excites (for a certain value of h) the second fiber.
The region between C1 and C2 corresponds to the com-
plex outcome of the system. Here the time scales Tc and
Tp become comparable and the result of the contact action
crucially depends on the notrivial dynamics of the unit. In
particular, complex wave structures including pulses and
wave fronts may appear.

Such behavior of a dynamic contact is not alien to what
is known about synaptic linkages connecting an axon with
dendrites in another neuron [3,6,7]. Similarly to synapses
our dynamic contact is acting only when an excitation
reaches it. Then, the excitation transfer occurs in the dy-
namic contact with a finite time delay very much like that
needed by neurotransmitters to bring an excitation into
the post-synaptic cell. The synaptic contacts of nerve cells
may be excitatory, hence firing the post-synaptic cell, or
inhibitory, hence propagation failure. Our dynamic con-
tact shows both these synaptic features.

5.2 Double pin contact

Let us now consider the situation when the excitable fibers
have two dynamics contacts (Fig. 7b). In this case the
vector {hj} has two non-zero components. Let us as-
sume them to be “elastic” contacts allowing pulse entry
(Sect. 5.1). Such contacts allow the reentry of pulses from
fiber to fiber. Figure 9 illustrates the space-time diagram
of such system. The initial pulse put between the contacts
is shown by dashed lines. When the pulse passes over the
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Fig. 9. A generator of synchronized pulses when the parallel
excitable fibers have two-pin contacts. Parameter values: α =
4.5, D = 2, h65 = h85 = 5. Vertical axes account for time in
arbitrary units (a.u.).

left contact two new pulses appear in the second fiber.
One of them traveling backward reaches the right contact
and in turn two other new pulses are excited in the first
fiber. Consequently, a sequence of pulse reentries may oc-
cur. Two sequences of almost synchronized pulses occur
at both ends of the fibers as shown in Figure 9. Thus, the
system represents, in fact, a spatially extended generator
of synchronous pulses (Fig. 7b).

Note, that the outcome of the system (Fig. 9) is sim-
ilar to the cycle reentry observed in FitzHugh-Nagumo
fibers [8] where the sequential reentry of excitation from
fiber to fiber is defined only by the characteristic refrac-
tory period. However, in our case the extended generator
acts stationary and the time lapse or period between the
pulses can be controlled at will by suitably placing the
dynamic contacts at different sites of the two chains.

6 Conclusion

We have investigated the phenomena of pattern and wave
or pulse interaction in a system of two coupled fiber-
or axon-like, 1D lattices. In particular, we have consid-
ered fibers composed of electronic units resistively cou-
pled. The choice of the unit has been dictated by the
paradigmatic nature of Chua’s circuit [13]. Indeed by
varying its parameter values it has been shown that this
electronic element may exhibit bistable, multistable, ex-
citable, oscillatory and chaotic behavior. Thus it repre-
sents a significant extension of the dynamic possibilities
offered by the standard FitzHugh-Nagumo model [4,5].
It has been analytically proved, and numerically verified,
that for strong enough inter-fiber coupling the possibility
of mutual synchronization of all motions is actually real-
ized. We have also, numerically, illustrated how the inter-
fiber coupling can lead to nontrivial, synergetic effects in
the spatio-temporal dynamics of the coupled fibers. The
reversal in the propagation of a wave front, growth of
front velocity, pulse reentry and pulse failure, overcom-
ing of propagation failure and the appearance of sources
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of pulses are a few spectacular possibilities of the model-
system here studied.

We have also described the results of interaction
between parallel fibers with one and two inter-fiber
connections. Such architecture represents an effective tool
of pulse driving in parallel fibers. In particular, pinned
coupling between the fibers brings controlled transfer of an
excitation from one fiber to the other. Such a contact mim-
icks synaptic connections between neurons [3,7]. Fibers
with two dynamic contacts can operate as a spatially
extended generator of synchronous sequences of pulses
with controlled time delay between them.

We have shown the really good agreement of the re-
sults obtained with known results for excitable fibers of
FitzHugh-Nagumo type [4,5,10]. Thus the two coupled
electronic fibers studied here provide a reliable model to
simulate different reentry phenomena observed in many
natural systems.
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