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A two-dimensional array of diffusively-coupled nonlinear electronic circuits, Chua’s cells, oper-
ating in a bistable regime, is used to find the shortest path connecting two points of a given
image. Images are previously stored in the system by modulating the diffusion coefficients.
Different types of images were considered, from black and white pictures (where 0 means no
propagation and 1 propagation), to analog figures (with many intermediate states) and, in all
cases, the algorithm used for such calculations succeeded to find the shortest path. The full
description of the algorithm is here described and applied to nontrivial cases where the shortest
path strongly differs from the straight line.

1. Introduction

Autowaves represent a particular class of non-
linear waves that propagate through active me-
dia at the expense of the energy stored in the
medium and are manifestations of a strongly non-
linear active media [Murray, 1989]. Typical exam-
ples of autowaves include the combustion waves,
waves of phase transitions, concentrational waves
in chemical reactions [Zaikin & Zhabotinsky, 1970;
Zhabotinsky & Zaikin, 1973; Zhabotinsky, 1964;
Pérez-Muñuzuri et al., 1991; Müller et al., 1987;
Jakubith et al., 1990], and many biological au-
towave processes: Propagation of nerve pulses
[Scott, 1975], excitation waves in the cardiac mus-
cle [Allesie et al., 1973, 1977], cultures of the slime
mold Dyctiostelium discoideum [Cohen & Robert-
son, 1971], epidemic waves in ecological communi-
ties [Capasso & Paveri-Fontana, 1979; Anderson &
May, 1986; Kermack & McKendrick, 1933], retina

[Bures et al., 1984], spreading waves in the cerebral
cortex [Ermentrout & Cowan, 1979], etc.

On the basis of the fundamental properties of
autowaves, it has been possible to use them for
some image processing operations [Krinsky et al.,
1991; Kuhnert et al., 1989; Mikhailov, 1989; Pérez-
Muñuzuri et al., 1993, Steinbock et al., 1995]. In
[Pérez-Muñuzuri et al., 1993], the authors demon-
strate the possibility of finding the shortest path
connecting two points by means of autowaves pro-
cesses. Until now, all the experiments were per-
formed for almost trivial cases where the shortest
path corresponds with a slight deviation from the
straight line. In this paper, we demonstrate the ro-
bustness of autowaves by generalizing these meth-
ods to nontrivial cases where the shortest path is a
curve completely different from the straight line.

For the purposes of this study, we consid-
ered a two-dimensional array of diffusively coupled
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nonlinear electronic circuits. The basic cell at the
nodes of the array was considered to be a Chua cir-
cuit [Chua et al., 1986; Chua, 1992; Madan, 1993].
This circuit has been proven to recover most of the
properties of the autowaves [Muñuzuri et al., 1993,
1995; Pérez-Muñuzuri et al., 1995] as well as used
to understand the dynamics underlying biological
processes (propagation of cardiac pulse [Muñuzuri
et al., 1996a, 1996b]) or for image processing in gen-
eral. It also offers the possibility of direct imple-
mentation of these methods via VLSI technology.

In Sec. 2, we present a brief description of
the Chua’s cell used along this paper as well as the
full description of the algorithm used to find the
shortest path joining two points. In Secs. 3 and
4, the algorithm will be applied to two nontrivial
cases; namely, to a so called binary labyrinth (also
called flat labyrinth in literature [Pérez-Muñuzuri
et al., 1993]) that either allows the propagation
of autowaves or inhibits it completely and to an
analog labyrinth (also called wrinkled labyrinth in
literature [Pérez-Muñuzuri et al., 1993]) that intro-
duces a scaled difficulty to the propagation of au-
towaves proportional to some parameter character-
istic of the labyrinth (as, for instance, the distance
to a ground level). In both cases, the algorithm suc-
ceeded to find the shortest path. In Sec. 5, a brief
discussion is presented.

2. Methods

2.1. Chua’s circuit

The basic unit of our two-dimensional CNN array is
a Chua’s circuit [Madan, 1993]. The circuit contains
three linear energy-storage elements (an inductor
and two capacitors), a linear conductance and a sin-
gle nonlinear active resistor (Chua’s diode). Each
cell is coupled to its four adjacent neighbors through
linear resistors, thereby simulating a diffusion pro-
cess. The dynamics of each cell can be described
by a third-order autonomous nonlinear differential
equation. In particular, we consider the dimension-
less form of these equations [Muñuzuri et al., 1995;
Pérez-Muñuzuri et al., 1995],

dui,j
dt

= α[vi,j − h(ui,j)] +Di,j(ui+1,j + ui−1,j

+ ui,j+1 + ui,j−1 − 4ui,j)

dvi,j
dt

= ui,j − vi,j + wi,j

dwi,j
dt

= −βvi,j − γwi,j

(1)

with i = 1, . . . , N , j = 1, . . . , M and N × M is
the size of the medium. The function h(ui,j) de-
scribes the three-segment piecewise-linear curve of
the nonlinear resistor given by,

h(ui,j)=


ε+m1ui,j−(m0−m1) ui,j≤x1

ε+m0ui,j x1 < ui,j≤x2

ε+m2ui,j+(m0−m2) ui,j>x2

(2)

where α, β and γ are the parameters of the system
related with the characteristic physical quantities
of the circuit by: α = C2/C1, β = C2/(LG

2) and
γ = (C2ro)/(LG). m0, m1 and m2 are parameters
responsible for the nonlinear resistor and ε is a small
constant called “dc offset”. Di,j plays the role of a
diffusion coefficient and takes into account the influ-
ence of the neighboring cells through the coupling
resistors (Di,j = α/(GR)) and for the purposes
of this paper we considered it to be dependent on
the cell.

The set of parameters used along this paper
are: α = 9, β = 30, γ = 0, m0 = −0.14,
m1 = m2 = 0.14, ε = −0.1 and Di,j was different
depending on the case.

2.2. Labyrinth implementation

A labyrinth is implemented in the system by mod-
ulating the diffusion coefficient, Di,j , of each cell.
For the case of a binary labyrinth, as the one con-
sidered in Sec. 3, we take Di,j = DIi,j, where Ii,j
is the image considered. Ii,j is a binary image with
Ii,j = 0 for those points where no wave propaga-
tion is expected and Ii,j = 1 for normal propaga-
tion. The values of Ii,j are kept unchanged along the
experiment.

In Sec. 4 an analog labyrinth is considered.
There, the image Ii,j is composed of real numbers
between 0 and 1. 0 means no propagation, 1 nor-
mal propagation or maximum velocity propagation
and any intermediate value reflects the difficulty to
propagate through the medium.

The image, Ii,j, can be used to introduce in the
system different factors (or a combination of sev-
eral of them) that may change the solution to the
shortest path problem.

2.3. Path-finder algorithm

Several algorithms have been so far developed to
find the shortest path between two points [Dantzig,
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1951; Ford & Fulkerson, 1956; Lee, 1961; Moore,
1959; Prim, 1957; Pérez-Muñuzuri et al., 1993] and
their applicability studied. But, as far as we know,
the experiments have been done only for trivial
cases where the shortest path just differs slightly
from the straight line. The examples considered in
this paper are taken from real problems and the al-
gorithm described bellow resulted successful in all
the cases considered.

For the choice of parameters considered in this
paper, the system is guaranteed to have two stable
equilibrium points, P+ and P− for each cell. Due
to the asymmetry of function h(u), the basin of at-
traction of one of the points, P+, is larger than the
other, P−. This allows, in an extended system as
ours, the propagation of a traveling wave [Muñuzuri
et al., 1995].

Once a traveling wave is created, it propa-
gates in all allowed directions with constant velocity
“exploring” all possible paths. Because of the con-
stant velocity of the waves, the shortest path will
coincide with the path that takes the least time to
be covered.

The numerical algorithm used in the sim-
ulations here presented can be summarized as
follows:

(a) The whole system is set to the equilibrium state
P−. A square of 3×3 cells, centered around the
starting point P1, are triggered out to the more
stable equilibrium point P+, thus, initiating a
traveling wave that will finally cover the whole
medium.

(b) As the different fronts of the wave propagate (in
the case of a complicate maze), the times when
each cell is triggered out from the state P− to
the state P+ are recorded. This process lasts
until the target point, P2, is reached for the first
time (in this way we have measured the mini-
mum time needed to reach the final destination,
ttot).

(c) At this point, the shortest path is rebuilt, start-
ing from the final point (P2), by using the pre-
viously stored data in the following way. The
total time invested to reach P2, ttot, is divided
in a large number of time steps (each one last-
ing tstep). The next point of the shortest path
is chosen as the closest to P2 that was excited
during the time interval [ttot − tstep, ttot]. The
next point of the shortest path is, then, chosen
as the closest to the previous that was excited
during the time interval [ttot−2tstep, ttot−tstep].

This process is repeated for all possible times
(until t = 0) and the desired shortest path is
recovered.

This algorithm can be applied to both types of
labyrinths considered in this paper, binary and ana-
log. The use of autowaves for this image process-
ing operation results in a very high degree of paral-
lelism since all the elements of the medium evolve
simultaneously.

3. Binary Labyrinth

In this section, we stored in the system a binary
image as described in Sec. 2. We considered a maze
taken from a garden in England [Fisher, 1990].

Figure 1(a) shows the binary labyrinth as well
as the state of the system at time t = 60 t.u. af-
ter the beginning of the experiment. Green color
marks the points of no propagation, red denotes the
points in the more stable state, P+, and blue points
in the state P−. The starting point, P1, where the
traveling wave was triggered out is marked with the
number 1 surrounded by a yellow spot. The final
destination, P2, is marked by the number 2 in the
figure. The black line with arrows shows the part
of the shortest path already covered (calculated as
described in Sec. 2).

As time evolves, the traveling wave propagates
through all possible paths with constant velocity
[Figs. 1(b) and 1(c)], thus, checking all possible so-
lutions of the system. The optimal path is obtained
when the traveling wave first reaches the final point,
P2 [Fig. 1(d), t = 3140 t.u.).

4. Analog Labyrinth

In this section, an analog labyrinth is considered
to be stored in the system as described in Sec. 2.
In this case, a topographic map from the area of
San Francisco in North California was considered.
This constitutes a much more complicate case than
the previous one as unpenetrable obstacles (such as
coast lines, lakes, etc.) are considered as well as
difficulties to the wave propagation (such as moun-
tains) that actually slow down the velocity of the
traveling wave. Now, the image, Ii,j, is composed
of points with 0 value, representing impenetrable
obstacles, 1 for areas of highest velocity and inter-
mediate values for mountain regions.

Figure 2(a) shows the map considered as well
as the overlapped state of the system at t = 40 t.u.
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(a)

(b)

Fig. 1. Binary labyrinth. The different snapshots show the evolution of the traveling waves through the system: (a) t = 60 t.u.,
(b) t = 940 t.u., (c) t = 2260 t.u. and (d) t = 3140 t.u. The starting point, P1, where the traveling wave was triggered out is
marked with the number 1 surrounded by a yellow spot and the final destination, P2, by the number 2. Green color marks
the points of no propagation, red denotes the points in the more stable state, P+, and blue points in the state P−. The black
line with arrows shows the part of the shortest path already covered. (D = 1, image size 851× 411 cells.)
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(c)

(d)

Fig. 1. (Continued )

after the beginning of the simulation. Blue color
marks areas of impenetrable obstacles (such as sea,
lakes, etc; rivers are considered to be penetrable).
Red is used to mark points in the more stable state,
P+, the rest of the points (in the state P−) are de-
picted with the colors from the original map that
represent different heights from the sea level. The

initial and final points are, like in the previous ex-
ample, marked with the numbers 1 and 2. The black
line with arrows shows the part of the shortest path
already covered.

In Figs. 2(b) and 2(c), the traveling wave prop-
agates through the medium checking all possible
paths. Notice that some parts in the figure are not
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(a) (b)

(c) (d)

Fig. 2. Analog Labyrinth. The different snapshots show the evolution of the traveling waves through the system:
(a) t = 40 t.u., (b) t = 120 t.u., (c) t = 2000 t.u. and (d) t = 280 t.u. The starting point, P1, where the traveling
wave was triggered out is marked with the number 1 surrounded by a yellow spot and the final destination, P2, by the number
2. Blue color marks areas of impenetrable obstacles (such as sea, lakes, etc, rivers are considered to be penetrable). Red is
used to mark points in the more stable state, P+, the rest of the points (in the state P−) are depicted with the colors from
the original map that represent different heights from the sea level. The black line with arrows shows the part of the shortest
path already covered. (D = 2, image size 337× 339 cells.)
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Fig. 3. Map of the area considered for simulations as well as the calculated shortest path. Different colors represent different
heights from the sea level (blue is the sea level and red is the highest point). (Same parameters as in Fig. 2.)

in red after the wave went over, these parts cor-
respond with large heights and equivalently with
small diffusion coefficients, smaller than the min-
imum required to have wave propagation [Pérez-
Muñuzuri et al., 1992].

The final state is shown in Fig. 2(d) at t =
280 t.u. The traveling wave already reached the fi-
nal point, P2, and the shortest path is obtained. In
Fig. 3, the map of the area considered (without the
traveling wave) is depicted as well as the shortest
path (black line with arrows) obtained during the
simulations.

5. Conclusions

In this paper, we demonstrated the robustness of
the autowaves to find the shortest path in a nonho-
mogeneous medium. Even in the most complicated
cases, as those here described, the shortest path was
obtained. Also, the detailed algorithm used for the
simulations is explained along the text.

This system also offers the possibility to in-
clude other factors that can be easily implemented,
i.e. shortcuts or a combination of different factors.
It is also possible to encode information about the

slope of the path, i.e. for positive slopes the velocity
is decreased and vice versa.

The nature of the system considered, a two-
dimensional array of Chua’s cells, allows the ex-
act control of each single parameter in the medium,
thus, more complicate obstacles or topographies can
be implemented by just defining some potential en-
ergy map that can be considered as the image, Ii,j .
The basic discrete nature of the described system
allows to build up three-dimensional systems (or
systems of higher dimensionality where each dimen-
sion does not correspond necessarily with a spatial
axis) where the shortest path is a curve in the three-
dimensional space considered.

Another point checked was the advantage of
working in a bistable regime rather than in a
monostable regime. In the first case, a transition
wave from state P− to P+ propagates through the
medium, finally being the whole medium in P+.
Meanwhile, in the second case, as the wave prop-
agates, points in the medium are temporally trig-
gered out from the equilibrium state. This allows
to re-excite the points of the medium several times,
thus, leading to a more complicate situation where
several frontwaves can propagate in the same di-
rection. Also curvature effects at the edges of the
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obstacles may induce the appearance of spiral waves
in the system [Gómez-Gesteira, 1994] (that will con-
tinuously send waves in all directions). Now, the
final state is not homogeneous but the picture is
rather more complicate with several waves propa-
gating through the medium. Thus, traveling waves
constitute the best choice for this kind of image
processing analysis.
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