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In the present work explicit formulas for analyzing the birth of limit cycles arising in the
Chua’s circuit through a Hopf bifurcation is provided. A local amplitude equation is derived
using a frequency domain approach and harmonic balance approximations. Furthermore, the
first Lyapunov index used to detect degenerate Hopf bifurcations is derived in terms of the
parameters of the nonlinear circuit. A perspective for analyzing other bifurcations using this

frequency domain approach is discussed.

1. Introduction

Chua’s circuit has become a paradigm for com-
plex oscillatory dynamics and chaos arising in
simple electronic nonlinear circuits [Madan, 1993;
Chua, 1994; Shil’'nikov, 1994]. The bulk of pa-
pers regarding the complex dynamics in this cir-
cuit has focused on chaotic attractors, period-
doubling bifurcations, period-adding bifurcations,
and so on. In this paper, on the contrary, a
study of Hopf bifurcation is performed using a
frequency domain approach in a way reminiscent
of the classical describing function method. The
procedure consists of applying the harmonic bal-
ance method to provide the (local) amplitude solu-
tion for the emerging limit cycles. Moreover, the
first Lyapunov index or curvature coefficient is ob-
tained in terms of the relevant parameters of the
circuit. The vanishing of the curvature coeffi-
cients allows us to study the birth of multiple
periodic solutions in the unfoldings of the so-

called degenerate Hopf bifurcation [Golubitsky &
Langford, 1981].

This work follows the lines initiated in [Alt-
man, 1993] regarding the dynamics of Hopf bifur-
cation in Chua’s circuit. However, the procedure
used here for approximating the amplitude of limit
cycles does not use the center manifold theory or
coordinate transformations. A frequency domain
approach, closely related to control theory and the
harmonic balance method are used to obtain the
main results [Mees & Chua, 1979].

The motivation of this study comes from re-
cent results obtained in [Khibnik et al., 1993b]
concerning the existence of multiple limit cycles
around the symmetrical equilibria of Chua’s circuit,
as well as large amplitude cycles surrounding the
three singular points. As we have used a smooth
(third-order polynomial) nonlinearity to approxi-
mate the piecewise linear characteristics, this work
shares similarities with continuous efforts made by
other researchers in finding the maximum number
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of limit cycles in planar cubic systems [Lloyd et al.,
1988; Lloyd & Pearson, 1990; Zoladek, 1995]. Since
Chua’s equations consists of three first-order ODEs,
its dynamics are more complicated than those aris-
ing from two first-order ODEs (also called planar
systems). In particular, it is a challenge to plot
the successive curvature coefficients to determine
regions of multiple periodic solutions in the pa-
rameter space. This letter is the first attempt in
this direction. Moreover, a discussion is presented
concerning the extension of this method to detect
other bifurcations using a higher-order harmonic
balance.

2. Main Results

The smooth model of Chua’s circuit [Altman, 1993;
Khibnik et al., 1993b] is given by

& =aly — p(z)],
y=r—-y+z, (1)
z=—Py,

where ¢(z) = c12+c3z, is a cubic polynomial non-
linearity, «, B, ci1, and c3 are system parameters.
The parameters o and 3 will be used as the main
bifurcation parameters in the following, for the sake
of clarity. After making the following change of
coordinates to simplify the structure of the linear
part
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system (1) can be recast as follow:
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Choosing the following equivalent representation of
Eq. (2) (see [Moiola & Chen, 1996] for more details
about the methodology):
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we end up with a simple form for the linear transfer
function G(s; a, ) = C[sI — A]71B, where “s” is
the variable of the Laplace transform,
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The Jacobian matrix to be used in the frequency
domain formulation is

1
J = 5@03 + 3aclé% ,

where 21 = —eq, g(x1) := f(e1) and é; is the equi-
librium point obtained from
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Notice that our selection of a unique representative
variable e; simplifies the computation of the Hopf
bifurcation formulas given in [Moiola & Chen, 1996]
since the eigenvectors v and w’ are both equal to 1.
However, explicit expressions for the original three
variables can also be obtained, and in this case
the expressions of the eigenvectors are slightly more
complicated.

The following eigenlocus G(s)J is then cal-
culated about the symmetrical equilibrium points
égi) = 4/—c3/c1 (called P* in the literature on
Chua’s circuit!) which give birth to a Hopf bi-
furcation under appropriate values of the system
parameters:

- §czc?,N(s)

A=G(s)J = QDT . (3)



The Hopf bifurcation condition is obtained from
Eq. (3) when A = —1 and s = iwg, wo # 0 giv-
ing the following pair of equations
—2ac3f
1—2acs

wi=p0—-2ac3 —a=

(4)
Thus, a simple expression of the starting frequency
of oscillations through the Hopf bifurcation mecha-
nism at the symmetrical equilibrium points can be
easily obtained from Eq. (4) as follows

wi = —2a”c3(1 + 2c3) . (5)

Notice that to change (control) the frequency of
emerging limit cycles the relevant parameters are
« and cs.

The following closed-loop transfer function is
useful in the computation of the Hopf bifurcation
formulas:

G(s; a, B)
[1+G(s; o, B)J]
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The Hopf bifurcation formulas needed for the com-
putation of the amplitude equation and the first
Lyapunov index are as follows:
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where Dy and D3 are the second and third order
partial derivatives of f(e;) evaluated at the equilib-

()

rium point é; ', ® is the tensorial product (in this
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case, the scalar product), and the bar denotes the
complex conjugate operation. The amplitude equa-
tion is obtained from the following approximation

A= —1+06% = -1-0*Gliw)p1(w), (9)

where 6 is a measure of the amplitude of the first
harmonic and &; is a complex number. Then, from
Eq. (9) a measure of the amplitudes of the emerging
limit cycles from Hopf bifurcations can be written
as follows:

o= |- 2F1 (10)

G(iw)p1(w)

The computation of the first Lyapunov index re-
quires the evaluation of Egs. (6)—(8) at criticality
[s = iwp, wo # 0 given by Eq. (4)]. Several simplifi-
cations yield the following expressions:
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Finally, the curvature coefficient (or the first Lya-
punov index) can be expressed by
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wT G' Jv

[a(1 + 2acz) +iwo|p1 (wo)
5 ) 9 ’
—2w(2)—§a03+22w0 <1—§a03)
(14)

=R

where R{.} denotes the real part of a complex num-
ber. Equating expression (14) to zero gives the de-
generate Hopf bifurcations points whose unfoldings
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contain multiple limit cycles. This degenerate Hopf
bifurcation curve can be continued in the parameter
space a — (3 — cg to search for other more compli-
cated singularities as organizing centers of the dy-
namics. For this parameter set: a = 1.106691504,
8 = 1.09950956, ¢c; = 1 and c3 = —0.06934372403
there is a Hopf bifurcation in the symmetrical equi-
libria P* with a frequency wo = 0.3824948062 hav-
ing the first and second Lyapunov indexes equal to
zero. According to the theory of degenerate Hopf
bifurcations a structure of three nested limit cycles
can be encountered for a suitable perturbation in
the parameters a — 8 — cs.

Some simulations using LOCBIF [Khibnik
et al., 1993a] are presented below for illustration of
the main results near the above mentioned singular-
ity by fixing ¢; = 1 in all the cases considered. In
Fig. 1, a stable limit cycle encircling P~ is shown for
a = 1.106691, 6 = 1.0991, and c3 = —0.06934372.
The limit cycle is separated from the origin in the
phase-plane (the left-top corner in Fig. 1).

Varying appropriately the parameters o and (8
the stable limit cycle is deformed such that one of
its extremes is near the origin (close to a saddle-
loop separatrix bifurcation). This situation is de-

picted in Fig. 2 for o = 1.22043, § = 1.22, and
c3 = —0.06934372.

Figures 3-5 show one large amplitude stable
limit cycle surrounding the three equilibria and
two unstable limit cycles surrounding Pt and P~.
The simulations were obtained using different ini-
tial conditions in order to give an idea of the basins
of attractions of the stable solutions.

In Fig. 6, a degenerate Hopf bifurcation curve
(Hopf curve plus first Lyapunov index equal to zero,
i.e. codimension 1 bifurcation) is depicted. Notice
that the degenerate Hopf bifurcation of codimen-
sion 2 (regular Hopf plus the first and second Lya-
punov indexes set equal to zero) is very close to the
parameter setting depicted here. Also, it is very in-
teresting to note that the Hopf degeneracy curve of
codimension 1 has a turning point close to the lim-
iting point in which ¢35 — 0. This type of bending
of this Hopf degeneracy has been observed before
in other systems (see [Planeaux, 1993; Moiola &
Chen, 1996] for more details) in connection with
the appearance of degenerate Hopf bifurcations of
codimension 2 regarding multiple cycles.

In Figs. 7 and 8 similar structures of sta-
ble and unstable limit cycles are depicted. After

Fig. 1.

Stable limit cycle (in red for color picture) surrounding the equilibrium point P~ for « = 1.106691, 8 = 1.0991, and

c3 = —0.06934372. (The limits of the axes are: Tmin = 0, Zmax = 0.35; Zmin = —0.35, Zmax = 0.)
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Fig. 2. Stable limit cycle (in red for color picture) surrounding the equilibrium point P~ for o = 1.22043, § = 1.22, and
cs = —0.06934372. (The limits of the axes are: Zmin = 0, Zmax = 0.60; zmin = —0.60, Zmax = 0.)

Fig. 3. Stable limit cycle (one trajectory in red for color picture) surrounding the three equilibria for o = 0.9893846,
B = 0.96927, and c3 = —0.06934372. The unstable limit cycles — denoted by white continuous circles — surrounds the
equilibria P, (The limits of the axes are: Zmin = —0.5, Tmax = 0.5; Zmin = —0.5, Zmax = 0.5.)
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Fig. 4. Stable limit cycle (one trajectory in yellow for color picture) surrounding the three equilibria for a = 0.9133561,
B = 0.88920, and c3 = —0.065. The unstable limit cycles are not shown in the figure. (The limits of the axes are: Zmin = —0.5,
Lmax — 057 Zmin = _057 Zmax — 05)

Fig. 5. Stable limit cycle surrounding the three equilibria for o = 0.9133561, 8 = 0.8950, and ¢z = —0.065. The unstable
limit cycles are not shown in the figure but they are closer to the stable limit cycle compared to the situation shown in Fig. 4.
(The limits of the axes are: Tmin = —0.5, Zmax = 0.5; Zmin = —0.5, zZmax = 0.5.) (For color picture: yellow and white dots
indicate contracting trajectories; red dots indicate expanding trajectories.)
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Ly=iER =)

Fig. 6. Degenerate Hopf bifurcation curve (Hopf plus first Lyapunov index equal to zero). On this curve, on its top right
there is a point having an extra condition: The second Lyapunov index is also equal to zero (not shown in the figure). (The
limits of the axes are: amin = 0.98, amax = 1.05; Bmin = 0.98, Bmax = 1.05.)

Fig. 7. Stable limit cycle surrounding the three equilibria for o = 1.006382, 8 = 0.9995, and c3 = —0.04561432 (in black
for color picture). The unstable limit cycles surround the symmetrical equilibria. (The limits of the axes are: zmin = —0.1,
ZTmax = 0.4; Zmin = —0.4, Zmax = 0.1.)
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4 Compute 5

Fig. 8.

Stable limit cycle surrounding the three equilibria for a = 0.99515, 8 = 0.9916, and c3 = —0.02896491 (in black for

color picture). The unstable limit cycles surround the symmetrical equilibria (in red for color picture). (The limits of the axes

are: Tmin = —0.3, Zmax = 0.3; Zmin = —0.3, Zmax = 0.3.)

looking for more complex structures of multiple
limit cycles (excluding period-doubling bifurcations
and chaotic attractors), we observed that the mul-
tiple cycles (more than two nested cycles) belong to
a narrow band in the parameter setting, as it was
observed before in other systems [Planeaux, 1993;
Moiola & Chen, 1996], using AUTO [Doedel, 1986].
Since the accuracy of computer simulations using
LOCBIF is limited, AUTO software should be used
for this task.

3. Discussions and Concluding Remarks

The formulas for the amplitude equations of the
limit cycles arising in Chua’s circuit are obtained
using a frequency domain approach. Moreover, an
expression of the first Lyapunov index, which de-
termines the stability of the emerging periodic so-
lutions, is computed in terms of the system pa-
rameters. This preliminary step is important in
order to study multiple limit cycles arising from
degenerate Hopf bifurcations in this circuit. This
frequency domain approach (also called Graphical
Hopf Theorem, GHT for short) for analyzing pe-
riodic solutions has provided very useful results in

dealing with degenerate Hopf bifurcations [Moiola
& Chen, 1996]. Very recently, this approach has
been adapted to handle approximate detection of
the first period-doubling bifurcation [Berns et al.,
1998] in the time-delayed version of Chua’s circuit,
by considering a higher-order expansion of the peri-
odic solutions. Other related research using a uni-
fied formulation for both Hopf and period-doubling
bifurcations were given by Rand [1989] and
Belhaq and Houssni [1995] for a specific system,
and Tesi et al. [1996] and Basso et al. [1997] for
a broader class of nonlinear systems. Continuous
efforts and progress made by some researchers from
mechanical engineering [Szemplinksa-Stupnicka &
Rudowski, 1993; Donescu & Virgin, 1996; Janicki
& Szemplinksa-Stupnicka, 1997] in characterizing
accurately the birth of period-doubling bifurcations
(subharmonic resonances in forced systems) using
similar methods, had encouraged us to pursue a
simple methodology to handle several types of pe-
riodic solutions and their bifurcations. Since the
GHT provides also a useful graphical interpretation,
it seems natural to continue this effort in order to
give better accurate results using higher-order har-
monic balance approximations and a type of con-
vergence test for the accuracy of the solutions. A



unified approach to treat both Hopf bifurcations
and period-doubling bifurcations as well as indica-
tion of symmetry-breaking would be very useful. In
such studies, Chua’s circuit dynamics offers an ex-
cellent vehicle and paradigm for testing any future
development in this area.

Acknowledgments

J. L. Moiola acknowledges the partial support of
a Fulbright-Antorchas grant as well as CONICET
and UNS. He also acknowledges the hospitalitiy of
the Department of Electrical Engineering and Com-
puter Sciences at UCB. The authors would like to
thank D. W. Berns for the computation of the crit-
ical point having the vanishing of the first and sec-
ond Lyapunov indexes. Additional support is pro-
vided by ONR grant number N00014-97-1-0463.

References

Altman, E. J. [1993] “Normal form analysis of Chua’s
circuit with applications for trajectory recognition,”
IEEE Trans. Circuits Syst.-II: Anal. Dig. Sign. Pro-
cess 40, 675-682.

Basso, M., Genesio, R. & Tesi, A. [1997] “A frequency
method for predicting limit cycle bifurcations,” Non-
lin. Dyn. 13, 339-360.

Belhaqg, M. & Houssni, M. [1995] “Symmetry-breaking
and first-period-doubling following a Hopf bifurcation
in a three dimensional system,” Mech. Res. Commun.
22(3), 221-231.

Berns, D. W., Moiola, J. L. & Chen G. [1998] “Pre-
dicting period-doubling bifurcations in nonlinear time-
delayed feedback systems,” Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS’98) Vol. 111, Monterey
California, USA, pp. 619-622.

Chua, L. O. [1994] “Chua’s circuit. An overview ten years
later,” J. Clircuits Syst. Comput. 4, 117-159.

Doedel, E. J. [1986] AUTO: Software for Continua-
tion and Bifurcation Problems in Ordinary Differen-
tial Equations (CIT Press, Pasadena, CA).

Donescu, P. & Virgin, L. N. [1996] “Efficient determi-
nation of higher-order periodic solution using n-mode
harmonic balance,” IMA J. Appl. Math. 56, 21-32.

Golubitsky, M. & Langford, W. F. [1981] “Classification
and unfoldings of degenerate Hopf bifurcations,” J.
Diff. Eq. 41, 375-415.

Hopf Bifurcations and Degeneracies in Chua’s Circuit 303

Janicki K. L. & Szemplinska-Stupnicka, W. [1997] “Sub-
harmonic resonances in a driven oscillator: Bifurca-
tion structures and transitions to chaos,” Furopean J.
Mech. A/Solids 16, 671-694.

Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V. &
Nikolaev, E. V. [1993a] “Continuation techniques and
interactive software for bifurcation analysis of ODE’s
and iterated maps,” Physica D62, 360-371.

Khibnik, A. I., Roose, D. & Chua, L. O. [1993b] “On
periodic orbits and homoclinic bifurcations in Chua’s
circuit with a smooth nonlinearity,” Int. J. Bifurcation
and Chaos 3, 363-384.

Lloyd, N. G., Blows, T. R. & Kalenge, M. C. [1988]
“Some cubic systems with several limit cycles,” Non-
linearity 1, 653—-669.

Lloyd, N. G. & Pearson, J. M. [1990] “Conditions for
a center and the bifurcation of limit cycles in a
class of cubic systems,” Bifurcations of Planar Vector
Fields, eds. Frangoise, J. P. & Roussarie, R., Lecture
Notes in Mathematics, Vol. 1455 (Springer-Verlag),
pp. 230-242.

Madan, R. N. [1993] Chua’s Circuit: A Paradigm for
Chaos (World Scientific, Singapore).

Mees, A. I. & Chua, L. O. [1979] “The Hopf bifurcation
theorem and its applications to nonlinear oscillations
in circuits and systems,” IEEE Trans. Clircuits Syst.
CAS-26, 235-254.

Moiola, J. L. & Chen, G. [1996] Hopf Bifurcation Analy-
sis — A Frequency Domain Approach, ed. Chua, L. O.,
Series on Nonlinear Science, Series A, Vol. 21 (World
Scientific, Singapore).

Planeaux, J. B. [1993] Bifurcation Phenomena in CSTR
Dynamics, PhD thesis, University of Minnesota.

Rand, R. H. [1989] “Analytical approximation for period-
doubling following a Hopf bifurcation,” Mech. Res.
Commun. 16(2), 117-123.

Shil'nikov, L. P. [1994] “Chua’s circuit: Rigorous results
and further problems,” Int. J. Bifurcation and Chaos
4, 489-519.

Szemplinska-Stupnicka, W. & Rudowski, J. [1993] “Bi-
furcation phenomena in a nonlinear oscillator: Ap-
proximate analytical studies versus computer simula-
tion results,” Physica D66, 368-380.

Tesi, A., Abed, E. H., Genesio, R. & Wang, H. O. [1996]
“Harmonic balance analysis of period-doubling bifur-
cations with implications for control of nonlinear dy-
namics,” Automatica 32, 1255-1271.

Zoladek, H. [1995] “Eleven small limit cycles in a cubic
vector field,” Nonlinearity 8, 843-860.



