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ABSTRACT : Simple electronic oscillators were at the origin of many studies related to the qualitative 
theory of dynamical systems. Chua's circuit is now playing an equivalent role for the 9eneration 
and understanding of complex dynamics. © 1997 The Franklin Institute. Published by Elsevier 
Science Ltd 

1. Oscillating Circuits and the Origin o f  the Qualitative Theory 

In the nineteenth century, Joseph Fourier wrote: "The study of Nature is the most 
productive source of mathematical discoveries. By offering a specific objective, it pro- 
vides the advantage of excluding vague problems and unwieldy calculations. It is also 
a means to form the Mathematical Analysis, and isolate the most important aspects to 
know and to conserve. These fundamental elements are those which appear in all 
natural effects." 

The important development of the theory of dynamic systems, during this century, 
has essentially its origins in the study of the 'natural effects' encountered in systems of 
mechanical, electrical, or electronic engineering, and the rejection of non-essential 
generalizations. Most of the results obtained in the abstract dynamic systems field have 
been possible on the foundations of results from the concrete dynamic systems field. It 
is also worth noting that the majority of scientists (including mathematicians) were not 
led to their discoveries by a process of deduction from general postulates or general 
principles, but rather by a thorough examination of properly chosen particular cases, 
and observation of concrete processes. The generalizations have come later, because it 
is far easier to generalize an established result than to discover a new line of argument. 

Since Andronov (1932), traditionally three different approaches have been used for 
the study of dynamical systems (26): qualitative methods, analytical methods and 
numerical methods. To define the 'strategy' of qualitative methods, one has to note 
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that the solutions of equations of non-linear dynamic systems are in general non- 
classical transcendental functions of the mathematical analysis, which are very complex. 
This 'strategy' is of the same type as that used for the characterization of a function of 
a complex variable by its singularities: zeros, poles, essential singularities. Here, the 
complex transcendental functions are defined by the singularities of continuous (or 
discrete) dynamic systems such as: stationary states which are equilibrium points (fixed 
points) or periodical solutions (cycles), which can be stable or unstable; trajectories 
(invariant curves) passing through saddle singularities of two-dimensional systems; the 
stable and unstable manifold for a dimension greater than two; the boundary, or 
separatrix, of the influence domain (domain of attraction, or basin) of a stable (attract- 
ive) stationary state; homoclinic and heteroclinic singularities; more complex singu- 
larities of fractal or nonfractal type. 

The qualitative methods consider the nature of these singularities in the phase (or 
state) space, and their evolutions when parameters of the system vary, or in the presence 
of a continuous structure modification of the system (study of the bifurcation sets in 
the parameter space, or in a function space) (4-6). 

In fact, initially, qualitative methods developed from the fundamental studies of 
circuits in radio engineering. Indeed, in 1927, Andronov, the most famous of Man- 
delstham's students, defended his thesis with the topic formulated by Mandelstham, 
The PoincarO's limit cycles and the theoo' of oscillations. This thesis is a first-rank 
contribution to the evolution of the theory of non-linear oscillations, because it opens 
a new method of applications for Poincar6's qualitative theory of differential equations, 
with many practical consequences. With this work, Andronov was the first to see that 
the phenomena of free (or self) oscillations, for example, that generated by the Van der 
Pol oscillator, correspond to limit cycles. It is from the study of oscillators that 
Andronov (4) later amplified his activity with a precise purpose: the development of a 
theory of non-linear oscillations, to make use of mathematical tools common to differ- 
ent scientific disciplines. 

Andronov and Pontrjagin formulated in 1937 the necessary and sufficient conditions 
of structural stability for autonomous two-dimensional systems. These conditions are: 
the system has only a finite number of equilibrium points and limit cycles, which are 
not in a critical case in the Lyapunov sense; no separatrix joins the same or two distinct 
saddle points. In this case, it is possible to define, in the parameter space of the system, 
a set of cells inside which the same qualitative behaviour is preserved (4). 

The knowledge of such cells is of major importance for the analysis and synthesis of 
dynamic systems in physics or engineering. On the boundary of a cell, the dynamic 
system is structurally unstable, and for autonomous two-dimensional systems (two- 
dimensional vector fields), structurally stable systems are dense in the function space. 
Until 1966, the conjecture of the extension of this result to higher-dimensional systems 
was generally supposed to be true. 

Andronov also extended the notion of structural stability for dynamic systems 
described by 

dx/dt = f(x,y),  #dy/dt = g(x,y), # > 0  (1) 

where x and v are vectors, /~ is a 'small' parameter vector representing the parasitic 
elements of t]ae system, and f(x,y), and g(x,y) are bounded and continuous in the 
domain of interest of the phase space (4). 
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If/ t  = 0, Eq (1) reduces to a system of lower dimension: 

dx /d t  = f (x ,y ) ,  9(x,y)  = O (2) 

For theoretical, as well as practical purposes, a fundamental problem consists in 
determining when the 'small' terms #dy/dt ,  representing the effects of the parasitic 
elements (small capacitances and inductances in an electrical system, small damping 
and inertia in a mechanical one) are negligible. In other words, when is the motion 
described by Eq (1) sufficiently close to that described by Eq (2) so that it can be 
represented by the solution of Eq (2) defined for a lower dimension? 

It is interesting to note that the formulation of this important problem has its origin 
in a discussion (1929) between Andronov and Mandelstham, related to the one time- 
constant electronic multivibrator. Without considering the parasitic elements, such as 
parasitic capacitances and inductances, the multivibrator is nominally described by a 
first-order (one-dimensional) autonomous differential equation, such as Eq (2), where 
x is now a scalar (voltage). If it is required that y(t) be a continuous function of time, 
then it was shown by Andronov that Eq (2) does not admit any non-constant periodic 
solution. Such a mathematical result is contrary to physical evidence, because the one 
time-constant multivibrator is known to oscillate with a periodic waveform. In the 
Mandelstham-Andronov discussion of this paradox, the following alternative was 
formulated: (a) either the nominal model Eq (2) is not appropriate to describe the 
practical multivibrator, or (b) it is not being interpreted in a physically significant way. 

Andronov has shown that either term of the alternative may be used to resolve the 
paradox, provided the space of the admissible solutions is properly defined. In fact, 
specifying that the solutions must be continuous and continuously differentiable leads 
to the conclusion that Eq (2) is inappropriate on physical grounds, because the real 
multivibrator possesses several small parasitic elements. This then leads to a model in 
the form of Eq (1), the vector kt being related to the parasitic elements. However, Eq 
(1) appears unsatisfactory from a practical point of view. Indeed, the existence and the 
stability of the required periodic solution depends not only on the presence of parasitic 
parameters, which are difficult to measure in practice, but also on their relative mag- 
nitudes. Andronov has shown that the strong dependence on parasitic elements can be 
alleviated by means of the second term of the alternative. This is done by generalizing 
the set of admissible solutions, defined now as consisting of piecewise continuous and 
piecewise differentiable functions. Then the first-order differential Eq (2) is sup- 
plemented by some 'jump' conditions (called Mandelshtam conditions) permitting the 
joining of the various pieces of the solution, which now can be periodic. The theory of 
models having the form of Eq (1) associated with the problem of dimension reduction, 
and that of relaxation oscillators (4), began with this study. 

2. Chua's Circuit and the Contemporary Qualitative Theory 

One of the reasons for the popularity of Chua's circuit is that it can generate a large 
variety of complex dynamics, and convoluted bifurcations, from a simple model in the 
form of a three-dimensional autonomous piecewise linear ordinary differential equation 
(flow). It concerns a concrete realization (with discrete electronic components, or 
implemented in a single monolithic chip), whereas the very well-known Lorenz equa- 
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tion, which is also a three-dimensional flow, is related to a very rough low-dimensional 
model of atmospheric phenomena, far from the real complexity of 'nature'. 

As mentioned above, until 1966, an extension of two-dimensional structural stability 
conditions, for dimensions higher than two, was conjectured. However, Smale (24, 25) 
showed that this conjecture is false in general. So, it appears that, with an increase of 
the system dimension, one has an increase of complexity of the parameter (or function) 
space. The boundaries of the cells defined in the phase space, as well as in the parameter 
space, have in general a complex structure, which may be a fractal (self-similarity 
properties) for n-dimensional vector fields, n > 2. 

Sufficient conditions for structural stability were formulated by Smale (23). A system 
is structurally stable when the fixed (equilibrium) points and periodic solutions (orbits) 
are structurally stable and of finite number, when the set of non-wandering points 
consists of these stationary states only, and when all the stable and unstable manifolds 
intersect transversally. Such systems are now known as Morse-Smale systems. 

The analysis of bifurcations, which transform a Morse-Smale system into a system 
having an enumerable set of periodic orbits, has been a favourite topic for research 
since 1965. There certainly exist many such bifurcations of different types. Gavrilov, 
Afraimovitch and Shilnikov (1-3, 10-14, 20-22) have studied some of them, related to 
the presence of structurally unstable homoclinic or heteroclinic curves associated with 
an equilibrium point, or a periodic orbit for a dimension m > 3. Their results have 
contributed to the study of the popular Lorenz differential equation (m = 3) by Afrai- 
movitch et al. (1). Chua's circuit belongs to the class of three-dimensional 'continuous' 
dynamical systems (flows with m = 3). With respect to other studies, it (1) has the 
advantage of exhibiting 'physical' bifurcations which transform a Morse-Smale system 
into a system having an enumerable set of periodic orbits. 

Let us limit our discussion to this class of three-dimensional 'continuous' dynamical 
systems (flows), and two-dimensional diffeomorphisms associated with them from a 
Poincar6 section. Newhouse (19) formulated a very important theorem stating that in 
any neighbourhood of a Cr-smooth (r > 2) dynamical system, in the space of discrete 
dynamical systems (diffeomorphisms), there exist regions for which systems with homo- 
clinic tangencies (then with structurally unstable or nonrough homoclinic orbits) are 
dense. Domains having this property are called Newhouse regions. This result is 
completed in (12), which asserts that systems with infinitely many homoclinic orbits of 
any order of tangency, and with infinitely many arbitrarily degenerate periodic orbits, 
are dense in the Newhouse regions of the space of dynamical systems. This has an 
important consequence: systems belonging to a Newhouse region are such that a 
complete study of their dynamics and bifurcations is impossible. In this case, only 
particular characteristics of such systems can be studied, such as the presence of 
nontrivial hyperbolic subsets (infinite number of saddle cycles). Let us restrict our 
discussion to a one-parameter family of three-dimensional dynamical systems leading 
to Newhouse intervals, and the associated family of two-dimensional diffeomorphisms 
(differentiable invertible maps). In such intervals there are dense systems with an 
infinite number of stable cycles (periodic orbits) if the modulus of the product of their 
multipliers (eigenvalues) is less than one, and with infinitely many totally unstable 
cycles if this modulus is higher than one (22). This last result furnishes a theoretical 
foundation for the fact that many of the attractors studied contain a 'large' hyperbolic 
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subset in the presence of  a finite or infinite number of  stable cycles (18). Generally, 
such stable cycles have large periods, and narrow 'oscillating' tangled basins, which are 
difficult to determine numerically. 

Systems having infinitely many unstable periodic orbits (they are not of  Morse-  
Smale type) give rise either to strange attractors or to strange repellors. Strange repellors 
are at the origin of  two phenomena: either that of  a chaotic transient toward only one 
attractor for small changes of  initial conditions, or that of  fuzzy (or fractal) boundaries 
(15) separating the basins of  several attractors. In fact, a fractal basin boundary also 
gives rise to chaotic transients, but toward at least two attractors in the presence of  
very small variations of  initial conditions. The structure identification of  strange attrac- 
tors and repellors, and the bifurcations giving rise to such a complex dynamics, con- 
stitute one of the most important current problems. 

Strange attractors are at present divided into three principal classes: hyperbolic, 
Lorenz-type and quasi-attractors (22). 

Hyperbolic attractors are the limit sets for which Smale's Axiom A is satisfied, and 
are structurally stable. Periodic orbits and homoclinic orbits are dense and are of  the 
same saddle type, that is, the stable (or unstable) manifolds of  all the trajectories have 
the same dimension. In particular, this is the case for Anosov systems and the Smale- 
Williams solenoid. Until now, it seems that such attractors have not been found in 
concrete applications. 

Lorenz attractors are not structurally stable, though their homoclinic and heteroclinic 
orbits are structurally stable (hyperbolic). They are everywhere dense, and no stable 
orbit appears under small parameter variations (1) (for more references, see also 
Shilnikov (22)). Both hyperbolic and Lorenz attractors are stochastic, and thus can be 
characterized from the ergodic theory. 

Quasi-attractors (an abbreviation of  'quasistochastic attractors'(2); for more refer- 
ences, see also (22)) are not stochastic, and are more complex than the two above 
attractors. A quasi-attractor is a limit set enclosing periodic orbits of  different topo- 
logical types (e.g. stable and saddle periodic orbits), which are structurally unstable 
orbits. Such a limit set may not be transitive. Attractors generated by Chua's circuits 
(7, 8) associated with saddle-focus homoclinic loops are quasi-attractors. For three- 
dimensional systems, mathematically, such attractors should contain infinitely stable 
periodic orbits (18), a finite number of which can only appear numerically owing to 
the finite precision of computer experiments. They coexist with nontrivial hyperbolic 
sets. Such attractors are encountered in many models, such as the Lorenz attractor, 
the spiral-type and the double-scroll attractor generated by Chua's circuit, or the 
H6non map, for certain domains of the parameter space. 

The complexity of  a quasi-attractor is essentially due to the existence of  structurally 
unstable homoclinic orbits (homoclinic tangencies) not only in the system itself, but 
also in any system close to it. This results in a sensitivity of  the attractor structure to 
small variations of  the parameters of the generating dynamical equation, i.e. quasi- 
attractors are structurally unstable. Such systems belong to Newhouse regions, with 
the consequences given above. 

In the n-dimensional case, n > 3, the situation becomes more complex, and first results 
(in particular, a theorem showing that a system can be studied in a manifold of lower 
dimension) have been given by Gonchenko et al. (12, 14). 
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In addition to its interest in engineering applications, Chua's circuit generates a large 
number of complex fundamental dynamical phenomena. Indeed, it is the source of 
different bifurcations giving rise to chaotic behaviours (period doubling cascade, break- 
down of an invariant torus, etc.). The corresponding attractors are related to complex 
homoclinic or heteroclinic structures. One of these attractors, the double scroll, char- 
acterized by the presence of three equilibrium points of saddle-focus type, arises from 
two nonsymmetric spiral attractors. It is different from other known attractors of 
autonomous three-dimensional systems in the sense that it is multistructural. 

3. Conclusion 

An important book (17) collects many contributions devoted to applied and theor- 
etical questions related to this circuit, which since that publication has given rise to 
many new developments. The synchronization of chaotic signals generated by Chua's 
circuit has led to an increasing number of publications, with applications for secure 
communications (16). Moreover, a wide field of research has been initiated by using a 
two- and three-dimensional grid of resistively coupled Chua's circuits. From such 
networks, waves and spatio-temporal chaos can be considered with travelling, spiral, 
target or scroll waves (9). Here, Chua's circuit is used as the basic cell in a discrete 
cellular neural network (CNN). 

The study of quasi-attractors (which are generated in particular by Chua's circuit) is 
only beginning, and so there is a wide field for research. Such attractors cannot be 
made structurally stable via any finite parameter unfolding of the corresponding system. 
Arbitrarily small variation of parameters can lead to significant change of the attractor 
structure. This results in the impossibility of attaining a complete description of their 
dynamics and their bifurcation space. Even for three-dimensional flows the results are 
not complete. A fortiori the extension to higher-dimensional cases is a source of 
problems that remain for the future, because it is not trivial and provides the occasion 
to consider new dynamical phenomena (22). Chains of Chua's circuits may be of value 
in such research. Nevertheless, a complete study of such processes being impossible, 
future research will only be concerned with some specific and typical properties of 
systems generating quasi-attractors. Related to the above question is the problem of 
formulation of a good model (10), which has a sufficient number of parameters to 
analyse all possible bifurcations of the steady states, homoclinic and heteroclinic struc- 
tures, etc. Applied aspects of quasi-attractors have been mentioned by Shilnikov (22). 
These relate to the development of associative memories, and an approach for under- 
standing the memory mechanisms. As indicated in Section 1, simple electronic oscil- 
lators were at the origin of many studies related to the qualitative theory of dynamical 
systems. It appears that Chua's circuit is now playing an equivalent role for the 
generation and understanding of complex dynamics, in relation to many applications. 
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