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Rings of chaotic oscillators coupled unidirectionally through driving are studied. While synchro-
nization is observed for small sizes of the ring, beyond a certain critical size a desynchronizing
transition occurs. In the two examples studied here the system exhibits a transition to periodic
rotating waves for rings of Lorenz systems, while one finds a sort of chaotic rotating waves
when Chua’s circuit is used.

1. Introduction

Synchronization phenomena are pervasive in na-
ture [Winfree, 1980; Strogatz & Stewart, 1993] and,
thus, many studies have been carried out, focusing
particularly on limit-cycle oscillators. Less intuitive
is probably the finding that chaotic systems may
be made to get in synchrony [Fujisaka & Yamada,
1983; Pecora & Carroll, 1990], as chaos has been
described as a situation in which a system gets out
of synchronization with itself [Tang et al., 1982]. In
the present work we shall use the synchronization
method introduced in [Güémez & Mat́ıas, 1995],
that amounts to a generalization of the method in-
troduced by Pecora and Carroll (PC). The idea is
to avoid partitioning the response system in sub-
systems, introducing, instead, the driving signal at
a particular place of the response system, i.e. with-
out reducing the size of the latter. This property
is particularly useful in the case that we are inter-
ested here: the design of arrays of coupled chaotic
oscillators, as all the units in the array will be of the
same type (will have the same dimension), without

reducing the richness in possible dynamical behav-
iors of the system. This method has been used
before and synchronization waves in linear arrays
of chaotic oscillators have been obtained [Sánchez
et al., 1997].

In the present work, we shall consider rings of
coupled chaotic oscillators. These geometries may
be relevant in a biological context, like in morpho-
genesis [Turing, 1952] or in the context of neural
systems. Thus, for example, Central Pattern Gen-
erators (CPGs), i.e. assemblies of small number of
neurons, capable of providing the necessary rhythm
of muscular activity even in the absence of ex-
ternal stimuli. These CPGs are believed to play
an important role in animal locomotion. In these
CPGs the relevant points to be considered are the
dynamics of the isolated neurons, e.g. periodic or
chaotic, the interaction between the oscillators, and
the way in which information is processed. An
important aspect is that the resulting spatiotem-
poral patterns can be analyzed through symmetry
arguments [Collins & Stewart, 1994], and this
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allows one to study the different possible behav-
iors, stemming from symmetry-breaking bifurca-
tions, and, thus, the transition between different
animal gaits has been explained in this way by con-
sidering a model composed out of a ring of coupled
oscillators [Collins & Stewart, 1994]. Regarding the
possibility that single neurons are chaotic, some ev-
idences point in this direction [Hayashi & Ishizuka,
1992].

In the present work we shall explore further the
richness of dynamical behaviors that are possible in
rings of unidirectionally coupled chaotic oscillators,
considering as case examples the Lorenz and Chua
systems. We shall perform our study by considering
a reference state in which the behavior of the cou-
pled systems is chaotic and uniform (synchronized),
studying then the onset of instability, characterized
in a Fourier representation by the instability in the
k = 1 mode. This will yield rotating waves that in
one case are periodic while in the other chaotic.

2. Rings of Lorenz Oscillators

In this case we shall consider rings coupled in such
a way that the dynamical behavior is defined by,

ẋj = σ(yj − xj)
ẏj = Rxj − yj − xj zj
żj = xj yj − b zj

 j = 1, . . . ,N , (1)

where the coupling enters through xj , that is de-
fined as xj = xj−1, with x1 = xN .

In this situation it was observed [Mat́ıas et al.,
1997a] that the synchronized chaotic state is stable
if the size of the ring is small enough, e.g. N = 2
(see Fig. 1), while for a certain critical number,
Nc = 3 in the case of Lorenz model, an instability
that destroys the uniform chaotic state occurs, lead-
ing to a rotating chaotic wave (see Fig. 2). We have
performed studies in which the parameters of the
system have been varied, with the result that the
critical size, Nc = 3 in all cases. Anyway, so far
we have explored only the region in which all the
oscillators are identical.

A noteworthy aspect of this desynchronization
transition is that the time scale of the emerging
rotating wave is, roughly, one order of magnitude
faster than that of the uncoupled oscillators. This
instability can be characterized by performing a
linear stability of the small deviations around the
synchronized state (see e.g. [Turing, 1952; Heagy

Fig. 1. Temporal evolution of the variable x of the two os-
cillators in a ring of N = 2 Lorenz oscillators. The values of
the parameters are (σ, R, b) = (10, 28, 8/3).

Fig. 2. Temporal evolution of the variable x of two contigu-
ous oscillators in a ring of N = 3 Lorenz oscillators. Notice
the time scale of this figure compared to that of Fig. 1. The
values of the parameters are the same as in Fig. 1.

et al., 1994]). The time evolution of small differ-
ences around the synchronized state is governed by
the equation,

˙δx = H δx (2)

where the H matrix is organized in a series of blocks
corresponding to the uncoupled oscillators plus a
number of off-diagonal terms arising from coupling.

However, the structure of this matrix is circu-
lant, and for this reason one can put these equa-
tions in a more convenient form through the use of
Discrete Fourier Transform (DFT) [Turing, 1952;
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Heagy et al., 1994]. As a result, the following equa-
tions are obtained,

η̇(k) = C(k) η(k) (3)

where in the case of the Lorenz model the structure
of each block can be cast in the form,

C(k) =


−σ σ 0

(Rek − z) −1 −x
y x −b

 , (4)

with ek = exp(i 2π k/N) and being k = 0, . . . ,
(N − 1) the Fourier modes of the system.

The C(k) matrices have time-dependent (chaot-
ically varying) coefficients, and, thus, we have cho-
sen to characterize its stability by determining the
corresponding Lyapunov spectrum considering the
infinite-time limit of the real part of the eigenvalues
of this matrix. This has been done by generaliz-
ing Wolf’s algorithm [Wolf et al., 1985] to the case
of complex vector spaces, while the different pos-
sible values of k and N have been joined through
the definition of the reduced wavenumber q = k/N ,
and this yields the function λ(q), that represents
the highest Lyapunov exponent as a function of
this variable. According to linear stability theory
[Heagy et al., 1994] the stability of the synchronized
state will occur whenever the transverse Lyapunov
exponent is negative. However, if one assumes that
the dependence of λ on q is smooth, the fact that
the uniform dynamics is chaotic, i.e. that λ(0) > 0,
implies that the uniform chaotic state must be un-
stable for perturbations of some characteristic wave-
length (see also [Bohr et al., 1987] for an analogous
argument).

In a more quantitative fashion, it can be shown
that for the parameters used in this work, and re-
ported in Fig. 3, this crossing occurs for qc ∼ 0.37,
what implies that it occurs already for N = 3. This
can be confirmed through numerical simulation of
Eq. (1), as can be seen in Fig. 2. An easily ac-
knowledged point from these results is that when
the instability occurs the behavior of each oscilla-
tor becomes periodic, and neighboring oscillators
exhibit a phase difference of 2π/N . The first aspect,
i.e. the transition from chaotic to periodic cannot be
explained in the framework of a linear stability the-
ory, and the observed behavior implies, probably, a
global bifurcation.

However, the other aspect can be understood
by noticing that the instability occurs through a

Fig. 3. Representation of the highest Lyapunov exponent
λ(q) as a function of q = k/N , i.e. λ(q) versus q. The circles
indicate the highest transverse Lyapunov exponent for a ring
of N = 2 Lorenz oscillators, whereas the squares indicate the
same for N = 3. The values of the parameters are the same
as in Fig. 1.

symmetric Hopf bifurcation [Collins & Stewart,
1994]. This bifurcation is allowed because the pres-
ence of the ek terms in Eq. (4) implies that half of
the Fourier modes are complex conjugate to other
half. In particular this implies that when a given
mode crosses the instability threshold there will be
another mode that also exhibits the same type of
crossing. Whether these two complex conjugate un-
stable modes are real or complex will depend on
the structure of the matrix, although in the present
case, and by resorting to an approximate proce-
dure [Güémez et al., 1997], we have shown that the
modes are indeed complex. The result is immediate:
A Hopf bifurcation occurs, implying the appearance
of a discrete rotating wave, in which neighboring os-
cillators exhibit the reported phase difference.

Symmetry is here a very helpful tool as it de-
termines the properties of the different bifurcation
branches. In the case of unidirectional coupling that
we are considering here, and that it is the most rel-
evant one in the case of CPGs, symmetry indicates
that a single branch of rotating waves is obtained
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[Collins & Stewart, 1994], where a single rotation
direction is allowed.

3. Rings of Chua’s Oscillators

An analogous study to that of the previous section
has been carried out with rings of Chua’s oscilla-
tors, a well-known paradigm of chaos in electronic
circuits. In this case the oscillators have been cou-
pled according to the following scheme, where the
evolution equations for each coupled oscillator are
reported,

ẋj = α[yj − xj − f(xj)]

ẏ = xj − yj + zj

żj = −β yj − γ zj

 j = 1, . . . ,N . (5)

A theoretical study of this situation has been car-
ried out in [Mat́ıas et al., 1997b], while the pre-
dictions have been confirmed experimentally in
[Sánchez et al., 1997]. The nonlinear resistor f(x)
in (5) is given by,

f(x) =

{
bx+

1

2
(a− b)[|x+ 1| − |x− 1|]

}
. (6)

Driving is introduced through the nonlinear term
f(x) in (5), such that xk = xk−1 for k 6= 1, whereas
for k = 1, x1 = xN .

The same type of linear stability analysis dis-
cussed in the previous section can be applied here.
In this case the matrix C(k) takes the following
form,

C(k) =


−α[1 + f ′(x)ek] α 0

1 −1 1

0 −β −γ

 , (7)

which leads to the representation of the highest
transverse Lyapunov exponent as a function of the
reduced wave number, plotted in Fig. 4. In the
present case it is found that the onset of instability
occurs at qc = 0.21, which implies that the ring be-
comes unstable when N ≥ 5. This can be seen from
Fig. 5 that presents results for N = 4, while the
behavior past the instability is presented in Fig. 6,
that shows results for N = 5. The interesting
feature is now that the behavior of the oscillators
is not periodic, but chaotic, while neighboring os-
cillators present a phase difference that is approxi-
mately equal to 2π/N . Thus, the ring can be better
characterized as exhibiting a rotating chaotic wave.

Regarding the stability of chaotic synchronization
as a function of the parameters of the model,
by increasing α and γ one sees that the critical
size Nc increases, as shown in Table 1. Thus,

Fig. 4. Representation of the highest Lyapunov exponent
λ(q) as a function of q = k/N , i.e. λ(q) versus q. The cir-
cles indicate the highest transverse Lyapunov exponent for
a ring of N = 4 Chua oscillators, whereas the squares indi-
cate the same for N = 5. The values of the parameters are
(α, β, γ, a, b) = (10, 14.87, 0.06, −1.27, −0.68).

Fig. 5. Temporal evolution of the variable x of two contigu-
ous oscillators in a ring of N = 4 Chua oscillators. The values
of the parameters are the same as in Fig. 4.
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Fig. 6. Temporal evolution of the variable x of two contigu-
ous oscillators in a ring of N = 5 Chua oscillators. The values
of the parameters are the same as in Fig. 4.

Table 1. Critical number of
chaotic Chua’s circuits in a
ring, Nc, that supports chaotic
(uniform) synchronization.

Nc (α; γ)

4 α = 10; γ ≤ 0.15

5 α = 10; 0.15 < γ < 0.2

6 α = 12; γ = 0.2

for the value γ = 10 used in all our calculations for
γ ≤ 0.15 one gets Nc = 4, while when 0.15 < γ <
0.20 this critical value becomes Nc = 5. Consider-
ing higher values of γ is meaningless, as the system
becomes periodic. However, one can stabilize the
N = 6 ring in the chaotic synchronized state by
increasing simultaneously α (e.g. for α = 12 and
γ = 0.2).

4. Conclusions

In the present work we have considered the be-
havior of rings of unidirectionally coupled identical
chaotic oscillators. In particular, we have consid-
ered the cases of Lorenz and Chua systems. In both
cases it is found that the uniform chaotic state of
the ring is unstable to perturbations of some finite
wavelength, or, equivalently, a finite size N . This
leads to an instability in the uniform state, that
is conveniently characterized by performing a Dis-
crete Fourier Transform on the linear stability ma-

trix of the problem. However, the behavior exhib-
ited by these two types of rings is different in that in
one case (Lorenz system) one obtains discrete peri-
odic rotating waves, while in the second case (Chua
system) these waves are chaotic.

These discrete spatiotemporal structures are
interesting in the context of dynamical systems
theory, as they reveal the richness of dynamical
behaviors that one may obtain in coupled arrays
of chaotic oscillators, beyond synchronization. In
addition, they can be potentially useful in connec-
tion to CPGs, i.e. rings of coupled neuron models.
It has been found that these structures can be use-
ful in locomotion, where the different symmetry-
breaking solutions would be responsible for the dif-
ferent gaits that the animal exhibits [Collins &
Stewart, 1994]. In particular, in this context it is
useful to notice that in the case of rings of Lorenz
systems the pattern that emerges is periodic, al-
though the dynamics of the uncoupled oscillators
was chaotic. It is also interesting to notice the time
scale of the emerging rotating wave: It is, at least,
one order of magnitude faster than the uncoupled
oscillators, and this could be relevant in a neuronal
context. As well, one should bear in mind that the
brain is able to perform various tasks in a short
time, although the neurons in which these tasks
base are relatively slow.
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