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SUMMARY

A very simple method for synthesizing the inverse system of a non-linear non-autonomous circuit containing nullors is
proposed. The main application of the procedure is the synchronization of chaos by the inverse system approach. This is
illustrated with two examples: the synchronization of a Duffing circuit and a communication scheme by direct chaotic
modulation using Chua’s circuit. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since 1990 when Pecora and Carroll' published their results on chaotic synchronization of two systems this
problem has become one of the most popular in the scientific world. There are three basic methods to
synchronize chaotic systems.?

1. by decomposition into subsystems;?
2. by linear feedback;*
3. by the inverse system.”"®

The last method can be used for synchronizing non-autonomous systems. Basically, the inverse system
approach is depicted in Figure 1, where the system 1 is the master producing the output y(f) when
excited with u(¢). The chaotic signal y(t) drives the slave system 2 which is the inverse of system 1 and, thus,
if the initial conditions are identical, its output will follow the input of the master system. In practice, since
we do not have control on initial conditions, the inverse system may or may not synchronize. Syn-
chronization will occur if all conditional Lyapunov exponents (CLE) of the slave system are negative.® The
simplest way to realize the inverse system is that of driving a non-linear one port by a voltage source,
transmitting the current through the one port and driving with this signal and identical circuit.? If the
receiver is open circuit asymptotically stable, after some time the voltage across the slave circuit will follow
the input of the master. In this paper another procedure for realizing the inverse systems for circuits
containing nullors is proposed. In Section 2 the linear case is investigated and a rigorous proof for the
implementation of the inverse transfer function is given. The non-linear systems are treated in Section 3 and
two examples of chaos synchronization in the Duffing and Chua circuits are presented. In Section 4
a procedure to generate nullor-based circuits in order to use the previous obtained results for any chaotic
circuit is proposed.

* Correspondence to: A. Leuciuc, Department of Electronics and Telecommunications, Technical University of Iasi, P.O. Box 877, lasi,
6600, Romania. E-mail: aleuciuc@tuiasi.ro

CCC 0098-9886/98/010001-12$17.50 Received 14 March 1996
© 1998 John Wiley & Sons, Ltd. Revised 29 April 1997



2 A. LEUCIUC

uw System 1|—> ~*—" —>|System 2—>

Figure 1. Chaos synchronization by the inverse system approach

2. INVERSE TRANSFER FUNCTION REALIZATION IN LINEAR CIRCUITS WITH NULLORS

One of the most popular devices used in circuit synthesis is the operational amplifier. At low frequencies this
device can be represented by an ideal op-amp model, which is equivalent with a nullor, the well-known
two-port circuit element. Besides op-amp several other devices can be modelled by nullors: the operational
mirrored amplifier,'® the second-generation current conveyor.'! In the following a theorem giving a method
for generating the inverse transfer function for a linear circuit is introduced.

Theorem 1. Let us consider a linear-time-invariant non-autonomous circuit containing at least one nullor and
excited by a voltage source (Figure 2). Suppose the system has a transfer function F(s) with respect to the output
the voltage across the norator (V3), respectively, G(s) if the output is the current through the norator (I5).
Replacing the input voltage source with the norator and, depending on the output variable, the norator of
Figure 2 with a voltage, respectively a current source, as is shown in Figure 3, the new circuits have transfer
functions equal to F~'(s) and G~ '(s) with respect to the voltage at port 1.

Proof. Considering the admittance matrix description of the linear three port in Figure 2 one has
Li=yuVi+yaVat+yisls
Iy = y2iVi + y22Va + 2303 (1)
I3 = y31Vi + y32Va + yasVs

The nullator forces I, = 0 and V, = 0. Thus, the voltage transfer function F(s) and the transfer admittance
G(s) are

_Va_

F(s)=— = (2)
Vi Va3
G(s) = 1_3 _ V3123 — YV33)21 3)
Vi Va3
For the circuits of Figures 3(a) and 3(b) similar equations (1) hold
L =yuVi+y12Va + y13Vs
L=y Vi + y22Va + ya3Vs “4)
L=y Vi + y32Va + yasls
The nullator sets I, = 0, /, = 0 and a simple analysis yields
- V,
Fo=gt=—22=F (9 )
3 V21
~ V,
G(s) == G (6)

I3 B V31Y23 — V33)21
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Figure 2. Linear master circuit containing at least one nullor and driven by a voltage source
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Figure 3. Realization of inverse transfer function systems for linear circuit containing nullors: (a) inverse system in the case of voltage
output; (b) inverse system in the case of current output

Remark. Theorem 1 provides a method for synthesizing a circuit possessing inverse transfer function of
a given master linear circuit. However, it does not follow that the configurations of Figure 3 are the inverse
of the one depicted in Figure 2 in the sense that if V5 = V5 or I3 = I5 then all the voltages and currents
of these circuits will follow after some time the variables from the master. The necessary and sufficient
condition for this to occur is that the slave be stable, that is the transfer function of the master circuit
be minimum phase. The linearity of the transmitter and receiver ensures in this case the synchronization of
the slave system for any initial state. In the case of current-driven circuit similar results can be derived by
duality.

3. THE NON-LINEAR CASE

Based on the results obtained in the case of linear circuits, the same procedure described previously can be
used to generate the inverse system for non-linear circuits. The corresponding structures of the transmitter
and receiver in the case of voltage-driven master circuit and voltage output variable are depicted in Figures
4 and 5, respectively. Similar configurations can be easily obtained in the cases of exciting the master with
a current source and/or considering current type output.

Theorem 2. If for any inputs u and y the non-linear dynamical systems of Figures 4 and 5, respectively, have
unique bounded solutions, then they are inverse to each other, that is for every input signal u and every initial
state x(0) of the master there is an initial state X(0) of the slave such that #(X(0), y(x(0),u)) = u.

© 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 26, 1-12 (1998)
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Figure 4. Non-linear non-autonomous system containing at Figure 5. The inverse system of the circuit of Fig. 4
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Figure 6. Two inputs non-autonomous circuit used in the proof of Theorem 2

Proof. Let us consider the non-autonomous non-linear circuit driven by two independent voltage sources
u and u, of Figure 6. Considering as output the voltage v, the following state and output equations can be
written:

x = f(x, u, uy) o

where f:R"xD x D; > R", g:R"x D x D; > R, D and D, being the sets of admissible input signals u and u;.

If the circuit of Figure 6 is augmented with a nullator at the top port, a supplementary constraint v = 0 is
imposed and this leads to a non-physical situation. To eliminate this problem, one of the two independent
sources must be replaced by a norator which behaves like a voltage source whose value is set by the
constraints imposed by the nullator. Thus, the two configurations of Figures 4 and 5 are obtained. Since the
topology of the circuits remains unchanged they will be described by the following equations.

for the circuit of Figure 4:

x =f(x,u,y)
®)
0=yg(x uy)
for the circuit of Figure 5:
x =1 1,y)
i )
0=yg&X uy)

If the two circuits have unique behaviour then the equation g(x, u, y) = 0 has unique solution y = h(x, u) and
the equation ¢(X, i, y) = 0 has also unique solution @ = h~ (X, y) for every x, X € R". Thus, the state and
output equations describing the dynamics of the circuits of Figures 4 and 5 are

x = f(x, u, h(x, u))

(10)
y = h(x, u)

Int. J. Circ. Theor. Appl., 26, 1-12 (1998) © 1998 John Wiley & Sons, Ltd.
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respectively,

(11)
i=h"'&)

It is obvious that if y is a bounded solution of (10) and the slave has also bounded solutions, then for
x(0) = x(0), & = u is a solution for (11). O

One has to remark that the equation g(x, u, y) = 0 has always unique solution y = h(x, u) for every x € R"
since the master circuit of Figure 4 is chaotic with well-defined behaviour. The inverse system exists if the
function h(x, u) is invertible with respect to u on the entire state space. The resulting circuit has equal order
with the master.

If the relative degree” of the master r # 0, then g(x, u, y) = g(x, y) and the output depends only on the state
variables y = h(x). In this case the inverse system, if exists, is of lower order than the original one. A necessary
condition for the existence of the inverse system is the invertibility of the function h(x) with respect to one of
the state variables x; for every (X, ...,Xx_1,Xk11,--->X,) € R""1. The proof can be derived in a similar
manner as in Theorem 2.

The inverse system synchronizes with the master, i - u as t - co for any initial states x(0) and X(0), if all
its conditional Lyapunov exponents are negative, i.e. it has unique asymptotic behaviour. If the state
equation of the inverse system is linear, the conditional Lyapunov exponents are equal to its eigenvalues.
This feature will be used in the following examples to prove the synchronization. In the case r # 0 the
recovered signal & depends on the derivatives of the transmitted signal y up to n — r order. The synchroniza-
tion is in this case very sensitive to noise and variation of parameters.

In a practical realization it is rather possible that the voltage across the norator or the current through it
not to fulfill the conditions ensuring the existence of inverse system and its synchronization. However, if any
other variable, voltage or current, from the master circuit satisfies these requirements, it is always possible to
build the inverse system using an extra nullor as it will be pointed out in Section 4.

Remark: The V — 1 — V method for realizing system inversion using an op-amp "% is a particular case of
the proposed procedure.

3.1. Example 1: Duffing circuit

The Duffing equation is one of the most studied non-linear non-autonomous system exhibiting various
dynamics, including chaos and bifurcations:

Xy + axy + f(xy) =qcoswt
1 1 1 (12)

f(x1) = pxy +xi

One of the possible active configurations described by (12) and obtained on the basis of Antoniou’s
General Impedance Converter'?'? is presented in Figure 7. Since this structure contains two op-amps
operating in the linear region, one can use the procedure described above to build a slave system which
synchronizes with the master when the voltage from the output of one op-amp is transmitted. Denoting by x;
the voltage across the capacitor C, and by x, the voltage across the capacitor C, and considering ideal
op-amps the following state equation is obtained for the circuit of Figure 7:

Xy = —axq; + x,
(13)
Xy = —f(xy) + u()

© 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 26, 1-12 (1998)
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6
equivalent with (12) for u(t) = gcoswt. The voltages y; and y, at the outputs of the two op-amps are,
respectively,
yi=—f(x1)+x4+u
1 1 2 (14)

Vo=—x1—f(x1)+u
The slave configurations corresponding to the two transmitted signals are depicted in Figure 8 and are
described by the following sets of equations.

for the circuit of Figure 8(a):

3<1
|
|
<
3<1
+
=
N

(15)

(b)

Figure 8. Two possible inverse systems for the master circuit of Figure 7: (a) the case corresponding to the transmitted variable y,;
(b) the case corresponding to the transmitted variable y,

© 1998 John Wiley & Sons, Ltd.
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for the circuit of Figure §(b)
X1 = — a)?l + )zz
X=X+ )2 (16)
=3 +f(X1)+ y2

The synchronization of the receivers results from the analysis of the non-autonomous dynamical systems
described by the first two equations of (15) and (16). These equations are linear. While the first configuration is
stable (possessing two negative eigenvalues equal to — 1 and — a), the second one is unstable, being
characterized by a positive eigenvalue. The simulated phase portrait x; — x, and the waveforms of the master
driving signal, u(t) = g cos wt, and the output of the slave of Figure §(a), ii(t), are depicted in Figure 9. There
have been used the following normalized parameters: a = 04, p = — 11, ¢ = 1-8, w = 1-8 that ensures the chaotic

behaviour of Duffing equation.!* In simulations these parameters have been denormalized using a normalizing
resistance of 1 kQ and a normalizing frequency of 10 kHz and there have been used 741-type op-amps.

3.2. Example 2: Chua’s circuit

In the following a communication scheme using Chua’s circuit!® will be implemented using the proposed
method. Chua’s circuit has been realized in a variety of ways, both in discrete and integrated implementa-
tions, using different electronic devices and components. One of these implementations, reported as a very
robust one, has been proposed in Reference 16. In this realization the well-known Chua diode has been
obtained using a parallel connection of two negative resistance convertor (NRC) configurations. The
current—voltage characteristic of the resulting non-linear resistor is depicted in Figure 10. However, the
region of interest for the chaotic behaviour of Chua’s circuit is between — B; and By, that is one of the two
op-amps does not saturate and it functions always in the linear region. This op-amp can be modelled by
a nullor. Its output voltage can be used as the transmitted variable towards a slave circuit which can be built
using the above-described procedure. If the information signal m(t) is introduced in the chaotic emitter circuit
in the same manner as it is proposed in Reference 17 the structure of Figure 11 results. This circuit is
described by the state equation

dv
C, d—;l = G(vc, — ve,) — f(vc, + m(t))
d
€8 = Glue, — ve)) + i, (17)
dt
di
Ld—; = UCZ

and the transmitted signal y(t) (the output voltage of A;) is given by

0= (1452 e 0+ i (18)

31

Representing A as a nullator-norator pair (since A is functioning only in the linear region) and using the
proposed method for realizing the inverse system, the structure of Figure 12 is obtained:

dé . N .
1 dfl = G(Uc, — U¢,) — i
déd . . -
2 dlfz = G(bc, — Uc,) + 11, (19)
di, N
Lg =

© 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 26, 1-12 (1998)
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Figure 9. Simulation results for the chaos synchronization of Duffing equation: (a) master’s phase portrait; (b) master driving signal
u (dotted lines) and recovered signal @ (continuous lines)

where

e R o Rai
0= mg 0 fz<R21+ R31y(t)> (20)

f>(+) describing the driving point i — v characteristic of the non-linear resistor NR, realized with the op-amp
A,. The recovered signal is given by

R31 ~
m(t) = ————y(t) = i, (1) 210

Int. J. Circ. Theor. Appl., 26, 1-12 (1998) © 1998 John Wiley & Sons, Ltd.
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Figure 10. Implementation of Chua’s diode by a parallel connection of two NRC circuits

If ¥c, = vc, as t = oo then #(t) - m(t). The SPICE simulated waveforms of the transmitted signal y(t),
information signal m(t) and recovered signal () are given in Figure 13. The following parameters have been
used for the transmitter (from Reference 16): C; = 10nF, C, =100nF, L =18 mH, R = 1800Q,
Ry; =R,{ =220Q, R3; =2200Q, Ry, = Ry, =22kQ, R3, = 3300 Q and 741-type op-amps biased with
+ 9 V supply voltages. The frequency-dependent finite gain of op-amp A, has a parasitic influence over the
synchronization process. The analysis of the master—slave configuration, taken into account the one-pole
model for the op-amps, has shown that the effect of the frequency-dependent gain of A, can be drastically
diminished by increasing at the receiver the value of C; with the quantity

_ (G21 + G31)(G + Gy + Gy3)
Gy

AC, (22)

where ,(= 27 x 10°) is the gain-bandwidth product of op-amp A ;. With the above values of components it
results AC; = 09 nF. In Figure 13 both waveforms of the recovered signal corresponding to C; = 10 nF and
C, = 109 nF are depicted.

© 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 26, 1-12 (1998)
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4. NULLOR-BASED METHOD FOR REALIZING INVERSE SYSTEMS
FOR MASTER CIRCUITS WITHOUT NULLORS

Besides the nullor-based implementations of the chaotic circuits there are numerous realizations that do not
use electronic devices modelled by nullors. In this section a method for building an inverse system that uses
a similar structure with the master one’s and a supplementary nullor is introduced. This method can be used
no matter the nature of the transmitted variable is: current or voltage.

We consider a nonautonomous chaotic circuit and want to use it in a synchronization scheme based on the
inverse system approach. If the transmitted variable is a voltage, one can always augment the master circuit
with a series connection nullator—norator between the two nodes across which the transmitted voltage is
taken (Figure 14(a)). Since the series connection nullator—norator behaves like an open circuit, it does not
affect the functioning of the chaotic circuit, and the voltage across the norator is equal to the output voltage.
The inverse system can be built starting from this modified configuration of the master and using the
procedure described in the previous section. This is illustrated in Figure 14 in the case of a master system
driven by a voltage source, but similar results can be derived in the case of current driving source.

If the transmitted variable is a current, one can modify the master circuit by introducing a parallel
connection nullator—norator in series with the branch through which flows the variable to be transmitted
(Figure 15(a)). The nullator—norator parallel configuration behaves like a short-circuit and the current
through the norator is equal to the output current. The inverse system can be realized by the same procedure
as above (Figure 15(b)).

5. CONCLUSIONS

A straightforward and simple technique to implement the inverse system for a master non-autonomous
circuit is proposed. The method makes use of nullors, known to be the most important active circuit
elements. In the process of implementing the inverse system one could use the nullors already existent in the
master circuit or a supplementary nullor can be added in the slave structure. The main application of the
proposed synthesis method is in chaos synchronization of non-autonomous non-linear circuits and as well as
in communications using chaos. A major condition which has to be fulfilled in order to ensure the
synchronization is the receiver unique asymptotic behaviour. This depends not only on the transmitted
variable (which sets the slave structure), but also on the implementation of nullors. As it is proved in

Int. J. Circ. Theor. Appl., 26, 1-12 (1998) © 1998 John Wiley & Sons, Ltd.
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Figure 14. Nullor-based inverse system realization for nonlin- Figure 15. Nullor-based inverse system realization for non-lin-
ear circuits without nullors in the case of voltage output: (a) the ear circuits without nullors in the case of current output: (a) the
master circuit; (b) inverse system realization master circuit; (b) inverse system realization

Reference 18 a nullor can be viewed as a limit case (infinite gain) of any class of floating controlled sources
(VCVS, VCCS, CCVS, CCCS). Since in practice and simulations one has to use finite gain-controlled
sources, this can lead to important errors in the synchronization process or even to instability of the
receiver.”® The frequency-dependent gain of the controlled sources can produce further errors in the
synchronization process, as shown in Example 2. These errors, caused by non-ideal implementation of
nullors, have to be analysed carefully in order to achieve synchronization.
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