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Abstract-We show experimentally that two coupled chaotic systems initially operating on two 
different simultaneously co-existing attractors can be synchronized. Synchronization is achieved as one 
of the systems switches its evolution to the attractor of the other one. The final attractor of the 
synchronized state strongly depends on the actual position of trajectories on their attractors at the 
moment when coupling is introduced. Coupling introduced in such systems can lead to the locally 
intermingled basins of attraction of coexisting attractors. Even if the initial location of trajectories on 
attractors A, and A, is known with infinite precision, we are unable to determine, on the basis of any 
finite calculation, in which basin this location lies and finally we cannot be sure on which attractor the 
evolution will synchronize. We investigate this uncertainty in chaos synchronization in numerical and 
experimental studies of two coupled Chua’s circuits. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

Chaos synchronization procedures [l-8] require the introduction of some kind of coupling 
between two chaotic systems. One of the synchronization procedures is based on the mutual 
coupling of two chaotic systems ir =f(x) and jr =f(y), where x,y E R”, with II I 3. by 
one-to-one negative feedback mechanism 

(a) k = f(x) + d(y - xh (b) jr = f(y) + d(x - y), (1) 

where d = [d,d,...# E R” is a coupling vector. System (1) can be rewritten as 

i = g(z), (2) 

where z = [x,ylT E R*“. The manifold defined by the synchronized state x = y is an invariant 
n-dimensional manifold of the system (2); i.e. any trajectory initiated in this manifold 
remains there for all the time. This manifold is called the synchronization manifold. In this 
paper, we consider for simplicity II = 3 although the phenomena described are characteristic 
for any n 5 3. 

The problem of synchronization of chaotic 3-dimensional systems can be understood as a 
problem of stability of 3-dimensional chaotic attractor of system (l)(a) or (b) in 
6-dimensional phase space of coupled system (2). Let A be a chaotic attractor. The basin of 
attraction /3(A) is the set of points whose w-limit set is contained in A. In Milnor’s definition 
[9] of an attractor, the basin of attraction need not include the neighborhood of the 
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attractor. Attractor A is an asymptotically stable attractor if it is Lyapunov stable (i.e. P(A) 
has positive Lebesque measure) and P(A) contains a neighborhood of A. Recently, it has 
been shown that for certain types of system the basin of attraction of attractor A can be 
riddled [6,10-141. A riddle basin has positive Lebesgue measure but does not contain any 
neighborhood of the attractor: i.e. for any point x0 in the riddIed basin of an attractor, a ball 
in the phase space of arbitrarily small radius r has a nonzero fraction of its volume in some 
other attractor’s basin. The basin of the other attractor may or may not be riddled by the 
first basin. If the second basin is also riddled by the first one, we call such basins 
intermingled. Riddled basins have been observed numerically and experimentally in a few 
physical systems [6, 1 l- 141. 

Most of the work on the chaos synchronization problem has been associated with identical 
systems operating on some chaotic attractor. If the trajectory of one system is on the 
attractor A, and the trajectory of the other one is on the co-existing attractor A2 to achieve 
synchronization, one of the trajectories, say one on the attractor A,, has to be perturbed in 
such a way that it goes to the basin of attraction /3(A,) of the other attractor AZ. Recently a 
new class of basins of attraction, namely locally intermingled basins. was shown [17, 181 to 
occur in the system like (2). Locafly intermingled basins of attraction of the attractors A, and 
,4, are not intermingled in whole 6-dimensional phase space of the system (2) (in the 
6-dimensional phase space the basins P(A,) and P(AL) have only fractal boundary), but are 
intermingled in the lower 3-dimensional manifolds on which attractors A, and A2 are 
located. As coupling in system (3) is introduced when both subsystems (l)(a) and (2)(b) are 
either on A, or Aa, all initial conditions for &dimensional system (2) are located on the 
3-dimensional manifold where basins P(A ,) and P(A,) are inEermingled. Such basins of 
attraction which are intermingled on some lower-dimensional submanifold of the phase 
space but which are not intermingled in the whole phase space we call locally intermingled. 

In what follows. we investigate the hyperchaotic attractors in a chain of coupled identical 
Chua’s circuits. as shown in Fig. 1. The state quations for the circuit of Fig. 1 are 
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’ dt 
-- G(u gj - I$;‘) - f(uF;) + dH(t - t&t@- u?;), 

dug; _ 
G- dt 

- G(u’,Z’ - I$‘) + i 
’ ’ 

I”’ + dH(t - to)(t#j - I$;), 

d&2’ 
L -2 = +;. 

dt 

Each Chua’s circuit [15,16] contains three linear energy-storage elements (an inductor and 
two capacitors), a linear resistor, and a single nonlinear resistor iVR, namely Chua’s diode 
[15], with a three-segment linear characteristic defined by 

1 
f(Q?) = mur7 + ,j (m 1 - %)[lUR + B,I - IT? - Bpll, (4) 

where the slopes in the inner and outer regions are m. and ml, respectively, and rtB, 
denotes the breakpoints. Each Chua’s circuit is coupled to the next one in such a way that 
the difference between the signals ug;f’ and ug;,:‘, that is, 

dH(r - t,)(z$;;’ - up;:‘), 

is introduced into each first circuit as a negative feedback. We consider the stiffness d > 0 of 
the perturbation as a control parameter. H(t - to) is a Heaviside function: H(t - to) = 1 for 
t > = to and H(t - to) = 0 for t < rO. In our experiments, we took C, = 10 nF, B, = 1 V, 
C2 = 99.34 nF, m, = -0.76 mS, trio = -0.41 mS. L = 18.46 mH, R = 1.80 KR. 

In what follows, we assume that for d = 0 both chaotic systems evolve on different 
co-existing spiral type chaotic attractors. The first system (the first three of equation (3)) is 
assumed to evolve on the attractor A,, shown in Fig. 2(a) and the second one (the last three 
of equation (3)) to evolve on the attractor A2 shown in Fig. 2(b). 

Both chaotic systems evolve on different attractors when coupling is introduced for t = to. 
(In our experiments, we took d = 1, i.e. Rc = 20 kQ.) For t > to, after a transition period the 
evolution of both systems is either synchronized on one of the co-existing attractors A, or 

Fig. 2. Two co-existing attractors of uncoupled eqn (3): C, = 10 nF. BP = 1 V. C, = 99.34 nF. m, = -0.76 mS, 
WZ,,= -0.41 mS, L = 18.46mH, R = 1.80 kR. R, =O. (a) A,. (b) Al, 

axis: “CL 1 v/div. 
with horizontal axis: uc-? 200 mv/div, vertical 



A-. Such evolutions shown in different projections arc presented in Fig. 3(a) and (b). During 
the transitional ptxiod. the evolution of the first system was switched from attractor A, to AT 
tht~n synchronixcd \\ith th c c\olution oi thti xcond sstem on the attractor ,4: as shown in 
I-.1?. ;(a j. 21 symmetrical situation Lvith the ~vnchrr,ni7;ltic,n Ron the attractor /I, is shown in 
Fiy. 3fbl. 

T’hc switch hetwecn attractor /I, and .3: (or ‘4: and ,.Tt,) of the evolution of one of thcb 
\ysrems is possible as the ptx-turbaticm rlfX, X,) (or t/(X, - X2)). where X, = [x~.,;]’ and 
X7 =- [I{.I~.H~]~ mcn~s trajector!, X,(r) (or X-(r)) out of the basin of attraction P(A,) ()I 
attractor .I. (or fi(A,) of artractor .,I?) to the basin i,f attraction /3(A,) (or P(A,)). 
Simultancr~usly. the perturbation t/(X, ~- X,) (or t/(X; X,)) cannot move the trajector! 
X2(f) (or X,(r)) out of ,!3(L,tII) (or b(A,)). Perturbed trajectory X,(r) (or X,(t)) leave> 
attractor ‘-4, (or !I, ) but e~~olver; within its basin of attraction. 

tl’i- obsrrvccl that the tinal attractor of the synchronired states or unsynchronized stak 
strongly depends on tht: value of I,,. the time when coupling is introduced. i.e. on the initial 
locations X,,,(f,,) ot tra,jectories on attractor\ .‘I, and /I?. At the time I = t(,. chaotic 
tn~,jectorics X,.,:(l) are at the points X,fr,,j c .-I, and X,(r,,) t ./I _I which strongly depend on 
Initial conditrons X,(O) and X,(i)). characterking traJtxtor.i~s 01. both systems. Introducing 
coupling at I = I,, we are unable to predict on which attractor the synchronization occur>. 
w = Kvww~1’ can be considered as the initial conditions for the augmented 
7n-dimensional system (2). We performed our computations for 10“ randomly chosen initial 
conditions X,(O) = [l.O* 0.1,2.0~0.1,0rt O.l]’ and X2(O) = I-2. ~O.l,O~O.l,OstO.l]T and 
introduced coupling at r. = lo4 when both systems are on their attractors.. Our results shoti 
that both chaotic attractors A, and A2 are equally probable as a place of an asymptotic 
regime. The basins of attractors A, and A: of the coupled system (3) (considered as H 
6dimensional system of the type (2)) on the chaotic attractors A, and A2 of the two 
uncoupled systems, obtained from the first three and the last three equations of (3), are 
intermingled as has been shown in Fig. 3. The basins of attraction of attractors A, and A2 are 
indicated in black and white, respectively. In the computations shown in Fig. 4, initial 
location of the trajectory X,(t) tin attractor A2 has been fixed in the point X,(t,) = 
[-1.0705,0.S684,1.529JT and the Iocation of the trajectory X,(r) on attractor A, has been 
varied. To get the experimental evidencr that the basins of il, and A1 are locall!: 
intermingled, we performed our experiments 1001) times for randomly chosen values of t,,. 
We observed 6.31 events of thr synchronization on the attractor .-I, and 469 on the attractor 
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Fig. 4. Locally intermingled basins of attraction. The basins of attraction of attractors A,. A, are indicated in black 
and white, respectively. In the computations shown here, initial location of the trajectory X,(r) on attractor AZ has 
been fixed at the point X,(r,,) = [-1.0705.0.5684.1.529]T and the location of the trajectory X,(r) on attractor A, has 

been varied. 

A,. This test can be considered as a statistical evidence of locally intermingled basins of 
attraction. 

Basins of attraction of the attractors A, and AI are not intermingled in whole 
6-dimensional phase space of the system (3), but are intermingled in the lower 3-dimensional 
manifolds on which attractors A, and Az are located. All our numerical computations have 
been carried out using the software INSITE [19]. 

2. CONCLUSIONS 

Coupling introduced in chaos synchronization schemes of quasi-hyperbolic systems which 
initially evolve on different co-existing attractors can lead to the locally intermingled basins 
of attraction of co-existing attractors. Even if the initial location of trajectories on the two 
attractors is known with infinite precision, we are unable to determine, on the basis of any 
finite calculation, in which basin this location lies and finally we cannot be sure on which 
attractor the evolution will synchronize. This type of uncertainty seems to be common for 
this class of dynamical system with invariant lower-dimensional manifold (synchronization 
manifold) and may have some practical implications. In the experimental systems. it is 
characterized by the lack of repetition of results as it is uncertain at which of co-existing 
attractors we shall obtain a synchronized regime. 
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