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Abstract-A continuous feedback controller is designed to suppress and eliminate the chaotic 
behavior of Chua’s circuit. This controller is constructed by the following two phases. First, the set of 
equilibrium points is extended by virtue of embedding suitable feedback terms in the control channel. 
Second, a state error term is then added to steer the dynamics of the control system to a fixed point or 
a limit cycle. The stability region of Chua’s circuit with control is determined via the Routh-Hurwitz 
criterion. Some numerical simulations are given to demonstrate the effect of the control design. 
0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

The detail dynamics in a chaotic system cannot be grasped accurately from instance to 
instance due to not only its complication but also its uncertainty. If chaos cannot be 
controlled, it might on many occasions result in disaster and collapse a dynamical system. In 
recent years, after the pioneering work of Ott, Grebogi and Yorke (OGY) [I], controlling 
chaos has become more and more interesting in academic research and practical 
applications. 

Generally speaking, there are two ways to control chaos: feedback control [l-3] and 
nonfeedback control [4,5]. The nonfeedback control is mainly suitable for occasions that 
require high-speed control such as fast electro-optical systems. On the other hand, however, 
due to the weak robustness and the computational arduousness that a nonfeedback control 
may encounter, the feedback control is therefore preferred in other applications. As to the 
feedback control, the OGY method is famous and is widely used by many other researchers. 
Dressler and Nitsche [3] introduced the so-called time-delay coordinates method by 
modifying the OGY method so that it can be applied in an experiment system. The OGY 
method was further modified or corrected in order to be suitable for other systems, giving, 
for example, the OPF method [6] and the RPF method [7] applied in high dissipative 
systems, the PPF method [8] applied in systems without adjustable parameters, and the 
MED method [9] applied in systems with complicated eigenvalues. In these methods, the 
technique of intermittent perturbations commonly used is quite inconvenient and it is 
sometimes very difficult to find the adjustable parameter for perturbation. To overcome 
these problems, the theory of continuous feedback control now has been researched and 
developed. 
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Chua’s circuit has been studied extensively as a prototypical electronic system [lo]. Chen 
and Dong [ll, 121 controlled the chaotic trajectory of the circuit to reach the limit cycle by 
using a linear feedback control. By applying the input-output and state-space techniques. 
Hartley and Mossayebi [IS] showed the control of modified Chua’s circuit systems and 
demonstrated how to design a controller for tracking the capacitor voltage of the system. 
Saito and Mitsubori [14] proposed a simple control method to stabilize chaotic attractor to 
desired periodic orbit. Ramirez [15] presented a nonlinear feedback control to a chaotic 
system. [Jnfortunately, their nonlinear feedback occasionally becomes singular, i.e. it is not 
controllable for singular points. By applying a similar method to that presented by Ramirez. 
Hwang et nl. [16] proposed a feedback control on a modified Chua’s circuit with cubic 
nonlinearity and have successfully controlled the chaotic dynamics to fixed points. 

In this paper, we will follow Hwang et rzl. (161 but will focus on the Chua’s circuit in which 
the nonlinearity will be closer to the real performance of the electronic components. Besides 
controlling the chaos to fixed points, in this paper we will further show the control of chaos 
IO desired limit cycles. 

2. FORMULATION 

Chua’s circuit consists of one inductor. two capacitors, one linear resistor. and one 
piecewise-linear nonlinear resistor. The mathematical model equations [17] for this circuit 
are 
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In the model equations, variables .V and y represent the voltages across the two capacitors. 
and variable : in the current through the inductor. Typical values of the system parameters 
(aJ3,a.h) are chosen to be (9.100/7.-H/ 7. -5/7) so that chaotic behaviors can be found in 
the dynamical system (1). Through this choice. the corresponding equilibrium points of 
system (1) clearly are (15.0, - 1.5), (0.0.0). and ( - 1.5,0,1.5). which happen to be located in 
the regions x Ax = l,l.uj < = I, and .Y c: :- -I. respectively. For the chaotic behavior of 
Chua’s circuit to be controlled or suppressed, Hwang et al. [16] have suggested a method of 
feedback control by adding in series with the inductor a voltage source ~1. which is then the 
cantrotter of the system. With this design. the whole system becomes 

The controller u has two feedbacks. The first one is designed so as to mimic the dynamics 
of the second equation of system (2), and consequently the equilibrium points of system (1) 
will be extended to an equilibrium manifold (x, .r i- .f(.r), .f(~)). If given a desired state, say 
t-4 ret, -rrcl + .f’(~&, f(x&) to be tracked, then a proportional feedback k&,,, -- X) is added to 
be the second feedback of controller II. If the input state is .r, then the controller II is 
expressed h! 

11 =: II, L I,., =: k( 4. I’ *- .: ! + pt. + X,,( t Ij, t ). (.J! 
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Fig. I. The block diagram of a controlled system. The vector X is the set of all state variables. 

If instead the input state is variable y then the second feedback of the controller 14 should be 
replaced by u2 = kp( yrrf - y). The block diagram of the control system is shown in Fig. 1. The 
main advantages of such a design proved by Hwang et al. are that the present controller may 
provide a shorter settling time with lower overshoot than other controllers, and it can 
eliminate the tracking error without using another integral controller. 

If the input state is x, then the corresponding Jacobian and its characteristic equation with 
respect to the general equilibrium manifold are, respectively, 

r -a---b (Y 01 
J= 1 -1 1 , 

k - k, -k k J 

for Ix/> 1, and 

~hZ-JJ=A-3+(1-k+~+~b)h2+~(b-k-bk)A+czkp=0. (3) 

With the characteristic equation (4), one can justify the stability of the equilibrium manifold 
by applying the Routh-Hurwitz criterion. Noting that the solution of eigenvalue A of the 
Jacobian is determined by the values of the gains k and k,, with the other parameters fixed, 
we can thus plot a borderline dividing the regions of stability in the k - k, plane, as shown in 
Fig. 2(a). So, if the chaos is to be controlled to a fixed point, the choice of (k,k,) should be 
taken from the stable region shown in Fig. 2(a). In the following numerical experiments, we 
have done this. Likewise, without showing the detailed derivation, we have also plotted the 
stability borderline in the k - k, plane in Fig. 2(b) where the y-variable is chosen to be the 
input state. 

3. NUMERICAL EXPERIMENTS 

In this section, we will show a series of numerical experiments by using the fourth-order 
Runge-Kutta method with step size 0.01. The initial condition x = 0.15264, y = -0.0228 1. 
z = 0.54467, is chosen in all the simulations so that Chua’s circuit will exhibit chaotic 
behaviors if no control is applied [17]. The performance of the present control will not be 
emphasized here because its excellence has been shown by being compared with those of 
other control in the previous paper of Hwang er al. [16]. 

3.1. Controlling the chaos to fixed points 

In the first numerical experiment, we intend to control the chaos to the equilibrium point 
(l&O, -1.5) of system (l), i.e. by setting xref = 1.5. The control is activated at time t = 40. 
Figure 3(a) shows the successful suppression to the chaotic behavior. Other than the 
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Fig. 2. (a) The 5tahilitv diagram in thr h-k,, plane using s as the control input. th) The stability diagram in the 

k--h,, plane uxinr v as the control input. 

equilibrium point of the uncontrolled svstrm ( 1 ), the chaos can also be suppressed to any 
desired fixed point on the equilibrium manifold. For example, we have set x,,, = -4 in the 
second simulation. The dynamical evolution of variable \- is shown in Fig. 3(b). In this case. 
the control is also activated at the time t = 40. 

We can also choose the y-variable as the input state. If we do so, then the associated 
Jacobian and its characteristic equation will be different from experiments (4) and (5). but 
we are not intending to show them. Similarly. in the following numerical experiments, the 
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Fig. 3. (a) The time responses of the controlled system, .rlrf = 1.5. (b) The time responses of the controlled system, 
Y,,I = - 4. The control u is activated at f = 40. 

valves of k and k, should be taken from the stable region shown in Fig. 2(b). In the third 
case, we set yref = 0, which corresponds to the equilibrium point of the uncontrolled system 
(1). The control is activated at the time r = 40. We shown the dynamical development of 
variable y in Fig. 4(a). For showing the control of chaos to another fixed point on the 
equilibrium manifold, we set yrCf = 4 in the fourth simulation. The activating time is again at 
r = 40. Figure 4(b) shows the successful result under the application of the present control. 
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.;.2. Controlling chaos to limit cyik 
So far we have shown that the chaotic behaviors of Chua’s circuit can be suppressed to a 

desired fixed point on the equilibrium manifold. By applying the control system proposed by 
Hwang et ul., as the composition of (k,k,) is chosen from the stability regions shown in Fig. 
2(a) and (b). Besides Ehis, controlling chaos to a desired limit cycle is also an important task 
for the retevant researchers. In the following, we will show that the present control can also 
control the chaos to a period-l orbit successfullv. 
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Fig. S. (a) The well tracking region for a limit cycle in the k-k, plane. (b) The x-z phase plane with k, = 19.73. 

k = - 18. The control u is activated at r = 17. 

Theoretically, with the present controller, the whole system (2) may have a period-l 
solution of the point (k,k,) and is chosen to be on the stability borderline. Actually, during 
the tracking process, the control parameters (k,k,) should be taken from an area instead of a 
line for allowance of error. For example, Fig. 5(a) shows in the k-k, plane the best control 
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parameter area for the steady-state error within 5%. Figure 5(b) shows in the x-z phase 
plane the corresponding limit cycle, the solid circle, for (k&J = (-X0,19.73) from this 
area, while in the same figure the broken circle represents the theoretical limit cycle. In the 
last numerical experiment of this paper, when the controller is activated at the same time 
t = 17, the x-variable is transformed from chaos to a periodic trajectory and its time-wave 
diagram is plotted in Fig. 6(a). The corresponding dynamical development of the controller u 

30 

t 

Fig. 6. (a) The time responses of the controlled system for tracking a timit cycle with k, = 19.73. k = - 18. (b) The 
conlrol action vs time. The control u is activated at t = 17. 
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is shown in Fig. 6(b). From these figures, we can see that the same advantage of the present 
design for controlling chaos to fixed points can also be found in controlling chaos to limit 
cycles, i.e. the shot settling time and small overshoot. 

4. CONCLUSIONS 

Chaotic behaviors can be found in Chua’s circuit. The chaos, however, can be suppressed 
by adding to the system a feedback controller proposed by Hwang et. al. [16]. In this paper, 
we adapt the piecewise-linear model for the nonlinear resistor in the circuit system, instead 
of the cubic nonlinearity model adapted in the work of Hwang et al. Given the input state, 
the corresponding Jacobian and its characteristic equation of the system can be derived. The 
stability criterion to the characteristic equation can help decide the choice of the control 
parameters for controlling the chaos. The main advantages of the present control, including 
shot settling time and small overshoot, not only can be found in controlling chaos to fixed 
points but also, after the least simulation of this paper, can be found in controlling chaos to 
limit cycles. 
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