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Abstract 

A feedback controller is designed to suppress chaotic states of a modified Chua's circuit system. This controller is 
composed by the following two portions. One is the feedback part which constructs an equilibrium manifold by modifying 
the dynamics of the system. The other is the proportional feedback part which will control the system to desired states on 
the equilibrium manifold. The advantage of this method is that with this closed-loop controller the system attains faster 
settling time than the systems using previous controllers. Also, it will eliminate the tracking error without using other 
integral controllers. 

PACS: 05.45,+b 
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1. Introduction 

Chaos appears frequently in nature and in man- 

made devices. To some extent, chaos is beneficial 

because it enhances reaction kinetics mechanism in 

transporting heat/mass transfer. On the other hand, 

chaos is undesirable because it causes irregular be- 

haviour in nonlinear dynamical systems. Furthermore, 

chaotic behaviour is usually unpredictable in detail 

and may cause detrimental effects on some occasions. 

Therefore, the ability to control chaos (either promote 

or eliminate it) is practically important. 

After the pioneering work on controlling chaos in- 

troduced by Ott, Grebogi and Yorke (OGY) [ 1 ], con- 

trolling chaos has become a fascinating topic in non- 

linear dynamics. Generally speaking, there are two 

1 Professor. 
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ways to control chaos: feedback control [1 -3]  and 

non-feedback control [4,5]. In this study, we focus 

on feedback control. Chua's circuit, suggested by L.O. 

Chua, has been studied extensively as a prototypical 

electronic system [11].  Chen and Dong [6,7] con- 

trol the chaotic trajectory of  the circuit to reach the 

limit cycle by using only linear feedback control. Us- 

ing standard control methods, Hartley and Mossayebi 

[ 8,12] demonstrated the control of  Chua's circuit sys- 

tems. Hartley and Mossayebi also demonstrated how 
to design a controller for tracking the variable x of  

the system based on input-output and state-space tech- 

niques. The purpose of  this paper is to present a new 

feedback control for Chua's circuit system in order to 

have a better performance than previous controllers. 
A polynomial variant of  the original Chua's circuit 

was presented by Hartley [9].  It was shown that the 

piecewise nonlinearity of  Chua's circuit [ 10] could be 
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replaced by a cubic nonlinearity with little change in 
the system dynamics or bifurcation structure. With this 
in mind, a control signal will be applied to the third 
state which would represent the addition of a voltage 
source in Chua's circuit. The modified Chua's circuit 
system is given by 

Xret + ~ ~  Chua's 
Circuit - +. 
Linear 

Controller 

J; = p ( y  - f ( x ) )  = p ( y  - 1(2x3 - x))  

x - y - t - z  , (1) 
_ q y  = _ ! ~ y  

where p > 0 and q > 0 are system parameters; x and y 
are the voltages across two capacitors; and z is the cur- 
rent through the inductor. From the analysis of equi- 
librium point in system (1), the equilibrium points 
are (0x/-O~.5,0,-0V"0~.5), (0 ,0 ,0) ,  ( -  0x/-~'~.5,0, 0x/-O.5.5). 
When a voltage source u is added in series with the 
inductor, the dynamics of the controlled system is de- 
scribed by 

{ x 
± = p (Y + 

7 / (2) 

4 =  + u  

In order to control the chaotic behaviour of Chua's 
circuit effectively, we propose a novel control concept. 

The feedback controller u is expressed as follows: 

u = u* + kp (xref - x) 

= k ( x  - y + z )  + qy  + kp(xref - x ) ,  (3) 

where u* = k ( x -  y + z )  + qy  and kp(xref - x )  is 
the proportional feedback part. The feedback part u* 
is designed to modify the dynamics of the third equa- 
tion of system (1),  and leaves the second and third 
equations of system (2) unchanged. By adding u*, the 
three equilibrium fixed points of system (1) will be 
extended as an equilibrium manifold, y = f ( x )  and 
z = y - x = f ( x )  - x. T h e  corresponding Jacobian 
matrix J and characteristic equation about this equi- 
librium manifold are, respectively, 

J =  
6x 2 - 1 lk 1 

,( 
1 - 1  , 

k - k  

Fig. 1. Block diagram representation of the controlled system. 

and 

[AI JI =A(,~2 + (1 / 6 x 2 -  1 \  k)A - - 

/ 6 x  2 -  1\ 
+p 

The equilibrium manifold is linearly stable on two 
directions of eigenvectors when ( 1 - "6x2 - l .  - f p t - - - T - ) - k )  > 

0 and p(6x7------!) ( ,  - k) - p)  > 0. For tracking a de- 
sired state Xref, we add the proportional feedback part 
kp(xref - x) to the controller u. The block diagram 
of the controlled system is shown in Fig. 1. The equi- 
librium manifold now becomes a new form, x = xref, 
y = f (x~e f ) ,  and z = y - x = f ( X r e f )  - Xref .  And the 
Jacobian and characteristic equation about this general 
equilibrium manifold will be respectively rederived as 
follows: 

J =  

6X2f__ i lk ] ,( 7 ) , 0 
1 - 1  ' 

k - k  - kp 

and 

,6x f 1 )  
- - k+p , =I ) a2 

-t-pk -~ (1 - k )  - p / , ~  

+ P \  7 

Applying the Routh-Hurwitz criterion to Eq. (5), 
one can easily justify the stability criteria of the equi- 
librium manifold. In Fig. 2, we have plotted the stabil- 
ity results in the x - k plane under different kp values. 
It is found that by increasing kp the stability region 
has been enlarged. 
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Fig. 2. The stability d iagram in the x - k plane. ( a )  kp = 1. (b)  

kp = 10. 

In the following section, we will make a series of  

numerical experiments to verify the performance of  

our new nonlinear feedback controller. (The fourth- 

order Runge-Kutta was used with step size 0,02). In 

the numerical experiments, the parameters are set at 

p = 10, q = 100/7, and the initial condition is (0.65, 
0, 0).  Fig. 3 shows that under this set of  conditions, 

the system will exhibit chaotic behaviour if no control 

is applied. The purpose of  applying control to this 
system is to suppress its undesired chaotic states. 

1.25 

1.00 

0.50 / ~  
0.25 

X 0.00 

- 0 . 2 5  

- 0 . 5 0  

- 0 . 7 5  

-I.00 

- 1 . 2 5  
0.0 20.0 40.0 80.0 flO.O I00. 

t 

Fig. 3. The chaotic behaviour of the uncontrolled Chua's circuit 
system with the parameters p = 10, q = 100/7 and initial condition 
is (0.65, 0, 0). 

2. Numerical experiments 

2.1. Control the state to the original equilibrium 

point 

Firstly, we let the reference input Xref = x/~.5 as the 

fixed point of  original system ( 1 ), The control is acti-" 

vated at time t = 40. Fig. 4 shows that in such condi- 

tion, if only using the P controller (u = kp (xref - x) ), 

the system will oscillate around the desired fixed point 

and finally lead to period errors. For solving the prob- 

lem of tracking errors, Hartley and Mossayebi [8] 

adopted the state-space technique. Their controller is 

defined as u = - K x  = - [ k x  ky kz kw] ix y z w] r, 
where w = f(Xref - x)d t  and the optimal state feed- 

back gain K is given by [1.61 0.92 1.68 - 5.0] r. 

It is a useful method for eliminating steady state er- 

ror. However, the system using state-space technique 

controller [8] will exhibit a larger overshoot value 

and a longer settling time than that using the present 

controller. Fig. 4 shows that our controller can suc- 

cessfully control the chaotic states and have a better 

performance. 

2.2. Control the state to the new fixed point on the 

equilibrium manifold 

Second, we let the reference input Xre f = 0.5 as 

the new fixed point. The control is also activated at 

time t = 40. Because the P controller will always 

lead to periodic errors, we do not display its result 
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Fig. 4. Time responses of  (a) the x-output for three different 
controllers and (b) the control input, u is activated at time t = 40, 
for the case of  control the state to the original equilibrium point. 

in the following. Fig. 5 shows that in this situation 
the qualitative results are similar to that of controlling 
the state to original equilibrium point. But here the 
system with both kind of controllers will exhibit a 
longer settling time than the previous case. 

From the above numerical experiment, it is found 
that the system with the present nonlinear controller 
achieves faster settling time than that with the other 
two types of controllers. Now we want to study more 
general control process, it will steer the desired state 
from the fixed point ~ to another one. The con- 
trol is activated at time t = 10.0 first and then Xref is 
shifted from ~ to 1 at time t = 50.0. Fig. 6 displays 
the results of using state-space technique [ 8] and the 
present nonlinear controller. At t = 10, the system us- 
ing the state-space technique [8] has a longer settling 
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Fig. 5. Time responses of  (a) the x-output for two different 
controllers and (b) the control input, u is activated at time t = 40, 
for the case of control the state to the new fixed point on the 
equilibrium manifold. 

time than that using the present nonlinear controller. 
When we extend our desired state to xref = 1, the nu- 
merical result shows the system using the present con- 
troller also achieves faster settling time than that using 
state-space technique [ 8 ]. Therefore, this system us- 
ing the present controller will give good performance 
in tracking the states along the general equilibrium 
manifold. 

In Table 1, we summarize the quantitative results of 
three types controllers. For controlling the state to the 
original equilibrium point or a new fixed point on the 
equilibrium manifold, the present nonlinear controller 
has a faster settling time than that using state-space 
technique [ 8]. But if only using P controller the sys- 
tem always exhibits periodic errors. 
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(b) 
Fig. 6. Time responses of (a) the x-output for two different 
controllers and (b) the control input, u is activated at time t = 10, 
for the case of control input is changed form ~ to 1 at time 
t=50. 

Table 1 
Comparison of the settling times for different control schemes 

Controller schemes Settling time 

Xref = ~ xref = 1.0 

controller proposed 3.97 1.24 
in this paper 

controller proposed by 11.23 3.14 
Hartley and Mossayebi [8] 

P controller periodic error periodic error 

For solving the problem of  tracking error, Hartley 
and Mossayebi [ 8] design a controller by using the 
state-space technique. For the state-space controller, 
they used optimal control theory to attain a set of  
optimal state feedback gains K. For comparison, we 

have displayed tp/ts vs. kp in Fig. 7 (where tp is the 
settling time of  present nonlinear controller and t~ is 

the minimum settling time of state-space technique 
[8] with the optimal state feedback gain K).  From 

Fig. 7, when kp value of  proportional feedback part 
increases, the settling time of  control system will be 
shorter. Furthermore when kp > 1.5 (kp > 2.3) in the 

case of  controlling the state to the original equilibrium 
point (a new fixed point on the equilibrium manifold) ,  
the present system will exhibit a faster settling time 

(i.e. tp/ts < 1) than that using state-space technique. 

For efficiency and reality, we can choose the value 
of kp in a wider region. In the previous numerical 

experiments, we have used kp = 5. 

2.3. y-variable is used as a reference state for 
proportional feedback 

As to Chua's  circuit system, we also consider the 

case of  using the y variable as a reference state for 

proportional feedback. In this case for the results of  
the Jacobian matrix, characteristic equation and the 
Routh-Hurwitz stability criterion we refer the reader 
to former work and we do not show it here. Fig. 8a 
shows that the control system with the y-variable as 
proportional feedback has a faster settling time than 
that with x-variable as a reference state in the case of  
controlling the state to the original equilibrium point 

(Yref = 0).  While Fig. 8b shows the case of  controlling 
the state to the general fixed point on the equilibrium 
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found that: 
(i) The present nonlinear controller may have a 

shorter settling time and lower overshoot than 
using previous controllers. 

(ii) The present nonlinear controller can eliminate 
the tracking errors without using another integral 
controller. 

(iii) When the gain of proportional feedback part in- 

creases, the settling time on the response of con- 
trol system will be shorter. 

(iv) When kp is bigger than some value, the present 
system has a faster settling time (i.e. tp/ts < 1 ) 
than that using state-space technique. 

(v) The control system with y-variable as a refer- 
ence state for proportional feedback has a faster 
settling time than that with x-variable as a ref- 
erence state in the case of controlling the state 
to the original equilibrium point. In the case of 
controlling the state to the general fixed point 
on the equilibrium manifold, both systems will 

have almost equivalent settling time. 
The analysis of global and robust behaviour of this 

nonlinear control method remains for further research. 

(b) 

Fig. 8. tp/ts vs. kp for k = - 1 0 ;  tp : the settling time of present 
nonlinear controller, ts : the minimum settling time of state-space 
technique [8] with the optimal state feedback gain K. 

manifold, both systems will have almost equivalent 
settling time. 

3. Conclusion 

We have developed a new strategy to control the 
chaotic states of a modified Chua's circuit system. This 
control method via feedback will eliminate partial dy- 
namics of the system such that the equilibrium states 
will be extended to the equilibrium manifold. This pro- 
cedure is a new concept in control theory. After using 
the Routh-Hurwitz criterion to determine its stability 
region, we investigate the case of controlling the states 
to the original equilibrium point of the system and 
the case of controlling the states to a new fixed point 
on the general equilibrium manifold respectively. It is 
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