Comment

Comment on "A new feedback control of a modified Chua's circuit system"

Anshan Huang *, Tao Yang ${ }^{1}$
Electronics Research Laboratory, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, USA

Received 5 July 1996; accepted 11 September 1996

Abstract

Errors in Hwang et al. (1996) are pointed out. The correct results are presented. To demonstrate the errors, computer simulation results are provided.

Keywords: Nonlinear control; Chaos; Chua's circuit

In [1], the authors presented a new feedback control scheme on Chua's circuit with cubic nonlinearity. While the computer simulation results seem to be promising, there exist some errors in [1]. We rewrite Eqs. (2) and (3) of [1] as follows:

$$
\begin{equation*}
\dot{x}=p\left(y+\frac{1}{7}\left(x-2 x^{3}\right)\right), \quad \dot{y}=x-y+z, \quad \dot{z}=-\frac{100}{7} y+u, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
u=k(x-y+z)+q y+k_{p}\left(x_{\mathrm{ref}}-x\right) . \tag{2}
\end{equation*}
$$

Then the Jacobian and characteristic equation of the equilibrium manifold given by Eq. (5) in [1] is wrong, the correct one should be:

$$
J=\left[\begin{array}{ccc}
p\left(-\left(6 x_{\mathrm{ref}}^{2}-1\right) / 7\right) & p & 0 \tag{3}\\
1 & -1 & 1 \\
k-k_{p} & -k & k
\end{array}\right]
$$

and

$$
\begin{equation*}
|\lambda I-J|=\lambda^{3}+\left(1-k+p \frac{6 x_{\mathrm{ref}}^{2}-1}{7}\right) \lambda^{2}+p\left(\frac{6 x_{\mathrm{ref}}^{2}-1}{7}(1-k)-1\right) \lambda+p k_{p} \tag{4}
\end{equation*}
$$

[^0]

Fig. 1. The stability diagram in the $x_{\mathrm{ref}}-k$ plane with different k_{p} : (a) $k_{p}=1$, (b) $k_{p}=10$.
Let

$$
\begin{equation*}
F=\frac{1}{7}\left(6 x_{\mathrm{ref}}^{2}-1\right) \tag{5}
\end{equation*}
$$

Applying the Routh-Hurwitz criterion to Eq. (4) we find that the boundaries between stable and unstable regions are given by

$$
\begin{equation*}
k=\frac{\left(p F^{2}+2 F-1\right) \pm \sqrt{\left(p F^{2}+2 F-1\right)^{2}-4 F\left(p F^{2}+F-1-p F-k_{p}\right)}}{2 F} \tag{6}
\end{equation*}
$$

For comparison, the corresponding result of Eq. (5) in [1] is as follows:
Case 1. $k_{p} \neq p$:

$$
\begin{equation*}
k^{\prime}=\frac{\left(p F^{2}+2 F-1+k_{p} / p\right) \pm \sqrt{\left(p F^{2}+2 F-1+k_{p} / p\right)^{2}-4 F\left(p F^{2}+F-1-p F+k_{p} / p\right)}}{2 F} . \tag{7}
\end{equation*}
$$

Case 2. $k_{p}=p$:

$$
\begin{equation*}
k^{\prime}=\frac{1}{2}\left(p F+2 \pm \sqrt{p^{2} F^{2}+4 p}\right), \quad F=0 \tag{8}
\end{equation*}
$$

Comparing Eq. (6) with Eqs. (7) and (8), one can see that there exist significant differences. In Fig. 1, the old and new boundaries are plotted in the $x_{\text {ref }}-k$ plane under different k_{p} values. Based on Eqs. (7) and (8) the authors of [1] chaimed that "It is found that by increasing k_{p} the stability region has been enlarged". But based on Eq. (6) we find that by increasing k_{p} the stability region is shrunk. One can verify this by comparing the curves in Fig. 1.

To demonstrate this, in Fig. 1(b) we choose the point $A=\left(x_{\mathrm{ref}}, k\right)=(-0.5,-2.5)$, which is in the stable region given in [1], the simulation result is shown in Fig. 2(a). One can see that this point is really not stable. Also the point $B=\left(x_{\text {ref }}, k\right)=(-1.0,-2.5)$, which is in the stable region given by Eq. (4) in this paper, gives the stable result as shown in Fig. 2(b). In our simulations, the fourth-order Runge-Kutta with step size 0.01 is used. The initial condition of Chua's circuit is $(x(0), y(0), z(0))=(0.65,0,0)$ and the parameter $k_{p}=10$.

(a) The periodic output of the controller given by point A in Fig.1(b).

(b) The stable output of the controller given by point B in Fig.1(b).

Fig. 2. (a) The periodic output of the controller given by point A in Fig. l(b). (b) The stable output of the controller given by point B in Fig. 1(b). The solid line shows $x(t)$ with control and the dashed line shows $x(t)$ without control.

Reference

[1] C.C. Hwang, H.Y. Chow and Y.K. Wang, Physica D 92 (1996) 95-100.

[^0]: ${ }^{*}$ Corresponding author. Visiting scholar on leave from the Shanghai Aircraft Research Institute, No. 2 Long Hua Xi Road, Shanghai 200232, P.R. China.
 ${ }^{1}$ Visiting scholar on leave from the Department of Automatic Control Engineering, Shanghai University of Technology, 149 Yan Chang Road, Shanghai 200072, P.R. China.

