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Synchronization of a One-Dimensional
Array of Chua’s Circuits by
Feedback Control and Noise

Gang Hu, Ladislav Pivka, and A. L. Zheleznyak

Abstract—A one-dimensional array of coupled Chua’s circuits
is investigated. Without control, the synchronization between sites
is poor, and the total output is very weak due to the spatial
disorder. By feedback injections at certain fraction of sites (i.e.,
pinnings), sychronization can be established between the sites. If
the pinning density is low, some sites may be left unsynchronized.
In this case, by properly applying noise for certain time interval,
spatial disorder can be perfectly excluded. The optimal noise
intensity for synchronization (or say, stochastic resonance for
synchronization) is briefly discussed.

I. INTRODUCTION

ECENTLY, synchronization of motions (both regular

and chaotic) of two identical systems has attracted much
attention [7], [10]-[13]. The key point for this interest is
its great potential of practical applications. The application
of synchronization of chaos for secure communication has
been emphasized [4], [6]. However, the following application,
very important as well, has not been given enough consid-
eration. In practice, one often needs a collective operation
of a set of large number of subsystems. For instance, each
semiconductor laser device can emit a weak laser beam. A
great number of semiconductor units may be used to produce
a strong beam with the required frequency. In this case,
synchronization of these units is absolutely necessary to yield
in-phase output and produce a strong total collective light
beam. The similar situations, when synchronization of a great
number of subunits is required for the coherent output of
large global systems, can be found in many practical cases
in physics, chemistry, biology, and so on. In this paper, we
focus on the problem of synchronization of coupled ordinary
differential equations.

In the next section, we specify our model, a one-dimensional
array of Chua’s circuits. In Sections III and IV, we present
numerical results to show synchronizations of cells by us-
ing deterministic feedback and stochastic force, respectively.
Some conclusions and a discussion are given in Section V.
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Fig. 1. A stable limit cycle of a single Chua’s circuit (i.e., the system (1)
with D, = Dy = D. = 0). The other stable limit cycle can be obtained by
the inversions z,y,z — —z,—y, —z.

II. ARRAY OF CHUA’S CIRCUITS

We use the following one-dimensional array of coupled
Chua’s circuits as our model [3]:

i(t) = aly; — z; — 9(x:)] + Do(Tiv1 + Tio1 — 234)
Ui(t) =2 — yi + 20 + Dy(Yir1 + yiz1 — 2y:)
2(t) = —Byi + D(2i41 + 2i-1 — 22z;)
1=1,2,---,L; Dg,D,,D,2>0 (D
9(zi) = S13; + $(So — S1)(|zi + 1| — |zs — 1)) )

where g(z) is a 3-segment piecewise-linear function and Sy
and S; are the slopes of the middle and the two side seg-
ments, respectively. A periodic boundary condition z; () =
xi(t),wa(t) = yi(t)az'H-L(t) = Zl(t)az = 0, 1, is used.
Throughout the paper, we use L = 200 for our lattice length.
Without diffusive coupling (D, = D, = D, = 0), (1)
are reduced to L independent Chua’s circuits. Each single
Chua’s circuit can exhibit extremely rich behavior, via various
bifurcations, as the parameters o and 3 vary. The simple
nonlinear term g(z) plays a key role in all these complicated
dynamic variations.

In this paper, we focus on the combination of parameters
a=9 =19, and Sy = —1.143, §; = 0.714. For these
parameters, the single Chua’s circuit has three asymptotic
solutions, one is the unstable fixed point at the origin z; =
y; = z; = 0, and the other two are the stable limit cycle
solutions given in Fig. 1 (another limit cycle can be ob-
tained from Fig. 1 by the symmetrical inversions z;,y;, z; —
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—Z;, —Y;, —2;). It should be noticed that though, without
coupling, all sites approach one of the two limit cycles (Fig. 1),
the phases of different Chua’s circuits may be completely
different if the initial states are given randomly. Then the
total output, (z)(t) = X ,z;(t)/L, may be very weak for
very large L. (Throughout the paper, we will take z;(t) as
our measurable variable.) Moreover, with coupling (i.e., with
nonzero D, + Dy + D.), the attractors in Fig. 1 may not be
asymptotically approached, and various complicated spatially
disordered configurations, depending on initial conditions of
the system, can be observed, and the total output is weak
and unpredictable due to the phase mismatch and the spatial
disorder. In the following two sections, we will apply feedback
control and noise to drive the individual units to the same
attractor with an identical phase.

III. SYNCHRONIZATION OF CHUA’S CIRCUIT RING TO A LIMIT
CYCLE WITH AN IDENTICAL PHASE BY FEEDBACK CONTROL

Introducing diffusive couplings in (1) essentially changes
the dynamics and the asymptotic state of the system. In Fig. 2,
we fix D, = 0.5, D, = 6.5, and D, = 0, and let each site take
random initial value uniformly distributed in the range [—-0.5,
0.5]. The dynamics and the results are rather interesting. In
Fig. 2(a), we plot a snapshot of the system state at ¢ = 40, from
which two features can be clearly seen: First, some sites take,
approximately, one limit cycle motion, some others the other
limit cycle, between these two types of motions there remain a
small number of sites showing sharp transitions from one type
to the other. Second, the cluster lengths of different types of
sites vary randomly in space, and spatial disorder is apparent
in the configuration. Different random initial conditions may
produce alternative realizations of configurations. However,
the above general features are kept, independent of the initial
condition if the randomness of initial site values is guaranteed.
In Fig. 2(b), we plot the total = output

1 L
(2)(t) = 7 D_i(t) 3)
=1

against ¢; the amplitude of the output oscillation is small
due to the spatial disorder. Now we try to synchronize the
system sites and make the motions as spatially homogeneous
as possible. In [5], Hu et al. suggested a pinning scheme to
control spatiotemporal chaos by applying feedback to certain
local variables. In [7], Kocarev et al. suggested a unified
approach to control and synchronize chaos. These methods
are used here to synchronize our spatiotemporal system. To
do this, we modify (1) to

L/I
Z 6i,n1
n=1

L/T

E 51',71[
n=1

%) = fyi + Ay

L/I

\
Z OinI
n=1

Zi(t) = fai + A [2(t) — zi(t)] )

(2)
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Fig. 2. (a) A snapshot of the state of (1) at t = 30, D, = 0.5, D, =
6.5, and D, = 0. The cells take random values from —0.5 to 0.5 initially.
Spatial disorder is apparent. (The same D, Dy, D are taken in the following
figures.) (b) The time evolution of {(z)(¢). The total output is rather weak due
to the spatial disorder.

where f.., fyi, and f; are given in the right sides of (1). Az, -
are the control coefficients with respect to z, y, z, respectively,
Ai,nr is the Kronecker delta notation, I is an integer, and 1 /1
is the pinning density. We hope to use as few injections as
possible and to synchronize as many cells as possible. The
reference trajectory [£(t),§(¢), 2(t)] is the asymptotic limit
cycle trajectory of the single Chua’s circuit with a fixed
phase shown in Fig. 1. Our task is to force all the sites to
make homogeneous collective motions by feeding back the
nlth sites, n = 1,2,---,L/I, with respect to the aim orbit
[6(8), 9(8), 2()]-

Apparently, the number of synchronized cells is consider-
ably influenced by the feedback strength A and the pinning
density 1/1. A site is regarded to be synchronized to the aim
trajectory if

A; = [zi(t) — 2]+ lya(t) — 9()| + |z:(t) — 2(1)[ < 0.1 (5)

for every t € [T's,Tr] where Tr is the total time length of
simulation, T's < Tr. In our case, we chose Ts = Tr—20. In
order to measure the portion of synchronized cells, we define

Q=M/L ©6)

where M is the number of synchronized cells according to
(5), and L is the chain length. In Fig. 3, we plot a diagram
of the level of synchronization () as a function of the pinning
density and the feedback intensity (A, = A, = A, = A). The
functions Q(A,I) with I fixed are monotonously increasing
with respect to A, while a saturation is reached for a large A
for each I. Defining S(I) as the saturated Q(), I), we can see
in general S(/) increases as the pinning density 1/ increases,
however, a certain fluctuation can be observed. The reason for
the fluctuation is not quite clear. For very high pinning density
(I <5 in our case) we get complete synchronization as A is
sufficiently large.
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Fig. 3. Q(A,I) versus A and I. The simulation runs were started from the
same random initial conditions for each pair [, I].
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Fig. 4. The snapshots of the state variable x; of (4) at different times during
the system evolution. Ay = Ay = A, = A = 20. Control is applied for
t> 30,1 = 4. (a) t = 0, random initial conditions. (b) t = 20, state without
control. (c) ¢ = 60, complete synchronization is established by feedback
control.

In Fig. 4, we take I = 4 with random initial conditions.
After certain transient time, all cells are driven to the same
limit cycle, and their phases are perfectly locked to the phase
of the aim state. While the pinning density is lower, synchro-
nization may not be complete. Nevertheless, the improvement
in synchronization due to the controlling can be still clearly
seen. In Fig. 5, we take the same A as in Fig. 4 and increase
I to 6. We find that some cells are left unsynchronized after
a very long time (much longer than the relaxation time in
Fig. 4). However, after initiating the control, some changes in
comparison with Fig. 2(a) appear. First, in Fig. 5, the balance
of the numbers of the sites making the two limit cycle motions
breaks (this balance holds in Fig. 2(a)), and more sites take
the limit cycle motion of Fig. 1 (i.e, the reference trajectory
of the feedback control). Second, sites in the same limit
cycle attractor fall into a better in-phase status, and spatial
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Fig. 5. The same as Fig. 4 with I = 4 replaced by I = 6,t = 200. Some
defects remain after control has been applied for a long time.

homogeneity is established between these sites. The quantity
@ measured in Fig. 5 can be up to 50%, while without control
the same quantity is down to zero.

IV. SYNCHRONIZATION OF CELLS BY CONTROL
AND NOISE; STOCHASTIC RESONANCE (SR)

In Fig. 5, a number of sites are still not synchronized. On
one hand, these desynchronized sites may considerably reduce
the intensity of the total output, on the other hand, these defects
may be fatally harmful for certain practical purposes (e.g.,
for the quality of products, or for the security of biological
bodies, and so on). It has been found that these defects cannot
be eliminated by increasing A. Reducing I (i.e., increasing
the pinning density) may effectively wipe out the defects.
Nevertheless, in experiments, feedbacks require instant mea-
surements of the system variables and quick responses to the
system evolution, and then it is not convenient to make too
many feedback injections. It would be of great convenience
to make better synchronization without increasing pinning
density. Fortunately, these remained defects can be much more
conveniently eliminated by properly applying noise. Let us
further modify (4) to

Ti(t) = pui + 0(t) e Ni ()
Yi(t) = pyi + 0(t)py Nyi(t)
#(t) = @21 + 0()pNi(t)
1 te[,Ty]
o(t) = { 0 te(T) T ™

where ¢, .; are the functions given in the right hand sides of
(4). Ny y,.;i(t) are random numbers uniformly distributed in
the interval [—1, 1], which are kept constant in each simulation
time step while totally uncorrelated for different time steps,
different sites, and different variables. pg, . = p are the
noise intensities, and [T, 7?] is the time interval when noise
functions. Here, we take noise correlation time equal to the
time step of numerical simulations only for computational
simplicity. Larger or smaller correlation times of noise do not
change the main features of all results of the following parts
if the noise correlation time is much smaller than the system
relaxation time. The step function #(t¢) indicates that noise
will be used only as a tool to eliminate the spatial disorder.
After the synchronization is realized, the noise is excluded.
Therefore, the array system will not be subject to these random
attacks in the final synchronized coherent state.

In Fig. 6(a), the snapshot is taken at ¢ = 180, ie., well
after the noise is cleared away. Most of the defects in Fig. 5
are wiped out by the noise, and a perfect synchronization
is realized. In Fig. 6(b), we plot the total output (x)(t)
against time; a periodic oscillation is observed for large ¢,
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Fig. 6. Synchronization by using both control and noise. Noise coefficients
are piz = pty = p> = p = 5. The other parameters are the same as in Fig 5.
Noise is applied in the time interval ¢ € [100, 150]. (a) Snapshot at ¢ = 180.
Perfect synchronization is reached after applying noise. (b) The evolution of
{z}(t). The amplitude of the total output is much larger than that of Fig. 2(b)
due to the collective effect.
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the amplitude of which is considerably larger than that in
Fig. 2(b). In Fig. 6(b), one can interestingly find four time
stages. From ¢t = 0 to ¢ = 10, without control and noise, the
total output is rather weak. From ¢ = 10 to ¢ = 100, control
is applied, a rather regular oscillation is induced by forcing
though spatial homogeneity is not established (see Fig. 5).
However, the oscillation of (z(t)) is smaller than that of the
aim limit cycle (and located higher than the aim orbit) due to
the fact that some cells are still trapped in the basin of the other
limit cycle. From ¢ = 100 to ¢ = 150, one can clearly see that
noise migrates the system state towards the aim limit cycle.
After t > 150, noise is cleared and complete synchronization
to the aim trajectory is established.

Noise is usually regarded as a negative factor in practice.
It destroys order and coherence, makes events unpredictable
and uncontroliable. Recently, in the field of nonlinear science,
scientists are more and more aware of the active role played
by noise and become more and more interested in this active
role. Now, we again find that noise plays a rather desirable
role in improving synchronization and coherence. Actually,
what we do in Fig. 6 is to exclude unpredictable defects and
randomness by applying random force!

Whenever noise plays an active role, there must exist an
optimal noise intensity at which the best active role can be
achieved, and too small or too large noises are not good for the
active effect. This phenomenon is analyzed in great detail in
the study of SR [1], [8], [9]. For our synchronization, we find
similar results. In Fig. 7, we plot Q against u = p, = jty = f4,
at I = 6. The Q—L curve has a nice resonance shape peaked at
the optimal noise intensity u = 7.5. Fig. 7 reminds us of the
SR phenomenon. We term the behavior of Fig. 7 stochastic
resonance in the synchronization of our array. In the early
stage, the SR study focused on a model of periodically forced

0'4'0 1lD 20 30 40 50 60 70

noise level

Fig. 7. Q plotted versus p. I = 6. An SR-like response is obvious. Each
plot at given g is obtained by averaging 100 Q-u curves with different noise
signals of the given intensity. The feedback control (A = 20) is applied after
t >10, while noise is used in the time interval ¢t € [30, 60].

0 10 20 30 40 50 60 70
noise level

Fig. 8. Q versus p for various J. All other parameters are the same as in
Fig. 7. From the top curve to the bottom one, we take I =5, 6, 7, 8, 9, 10,
and 11, respectively. For every pair [, ¢], the data is obtained by averaging
results of 20 runs.

bistable system subject to white noise. Recently, the scope of
this study has been very much enlarged [2], [14]. Here, we
find a new application of SR.

For a global view on how the pinning density and noise
play their roles in synchronizing coupled extended systems, we
present Fig. 8 where @ is plotted against y for various I. Ap-
parent stochastic resonance phenomenon for synchronization
is generally observed.

V. CONCLUSION

In conclusion, we would like to make the following remarks.

The synchronization approach can be used to produce a
desirable collective motion of systems of wide usefulness,
especially for systems with a great number of degrees of
freedom.

In our case, we consider a spatiotemporal system consisting
of a large number of identical sites, i.e., Chua’s circuit with
diffusion-like couplings. This system enjoys some symmetry
properties and seems to be simple. However, the dynamics
of the system is actually very complicated. In this paper, we
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focused on the realization of spatially homogeneous state. As
each single site has a certain stable state, the corresponding
spatially homogeneous state is not necessarily stable for the
array system in general because the couplings may induce new
instability. Even if its homogeneous state is stable, it is still
often very difficult to realize this state from practical random
initial conditions since a great number of stable states may
exist for the coupled system, and the probability for the system
to fall into the attracting basin of the synchronized state may
be negligibly small. Our investigation shows that feedback
injections at certain local points in space may very effectively
enlarge the basin attraction of the homogeneous state and drive
sites to the phase-locked status.

The feedback injections with low density may not be enough
to induce full synchronization. Some defects may inevitably
exist. However, the feedbacks still play a role in making the
basin of the synchronized state much larger than the basins
of nonsynchronized states. By applying noise, we can force
the system to jump between various basins. In this case, noise
has more probability to drive the system from small basins to
large basins than that from large ones to small ones. This is
why noise, together with feedback control, can induce perfect
synchronization while many off-synchronization basins exist.
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