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Exploiting Chaos to Suppress Spurious Tones
in General Double-Loop >A Modulators

Sgren Hein, Member, IEEE

Abstract— Conventional ¥ A modulators are operated exclu-
sively in the nonchaotic regime in which the internal integrators
are stable. Theoretical interest in chaotic ¥’A modulators recently
arose, mainly because the circuits are simple and strongly nonlin-
ear systems with rich behavior, not unlike Chua’s circuit [1], [2].
It has since been recognized that the application of conventional
XA modulators to A/D and D/A conversion may be haunted
by spurious “tones” in the output, and it has been proposed to
use chaotic modulators to overcome that problem. This paper
employs a semi-analytical technique to solve the design problem
for general chaotic double-loop modulators with constant inputs.
Using the results, optimized scaling factors are easily found
for given integrator pole locations, such that an approximate
performance measure is maximized subject to bounds on internal
state variables. The clarification of this explicit tradeoff between
tone rejection through chaos, system stability, and practical per-
formance may help to overcome some understandable skepticism
in the community of XA designers.

I. INTRODUCTION

A MODULATION is by now established as an impor-
tant technique for analog-to-digital (A/D) and digital-
to-analog (D/A) conversion for relatively low-bandwidth ap-
plications such as speech and audio [3]. As XA modulators
for A/D conversion require few, simple and relatively low-
precision analog components, they are well suited to on-chip
VLSI implementation. Their advantages come at the expense
of sampling rates much higher than the Nyquist rate.
The original and simplest A modulator for A/D conversion
is the single-loop modulator [4] shown in Fig. 1. It consists
of a 1-b quantizer () specified by

_J+1 for U >0
QU) = { -1 for U <0,

and embedded in a negative feedback loop which also con-
tains a discrete-time integrator. The analog input sequence
is oversampled and converted to a binary output sequence,
which upon low-pass filtering and decimation approximates
the analog input. When the input equals a constant X and the
integrator is ideal, the circuit is essentially an implementation
of the well-known circle map [5]. In practice, the integrator is
often leaky due to finite operational amplifier (op-amp) gain,
that is, the state equation is of the form

Un = aUn—l +X - Q(Unfl)-,
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Discrete-time model of the single-loop ©A modulator. D represents

a delay element.

Fig. 1.

where the constant « is less than 1, as a« & 1 — 1/A for an
op-amp gain of A > 1. The case of leaky integration was
studied from a dynamical-systems point of view by Feely and
Chua [6]. The integrator constant « can however also be made
greater than one at the expense of some additional circuitry;
this case was investigated by the same authors in [7]. It was
shown that for a > 1, the single-loop modulator can behave
chaotically, and a number of interesting characteristics were
uncovered.

In parallel with the cited work, the circuit design community
arrived at the conclusion that ¥A modulators are prone to
exhibit spurious “tones” in the filtered modulator output,
that is, sinusoidal oscillations which are introduced by the
circuit nonlinearity and which would be audible in an audio
application—hence, the name “tones.” The tones are related to
limit cycle behavior in the modulators. Although the problem
had been known for some time [8] and had been analyzed
thoroughly in the case of the single-loop modulator [9],
the message was brought home particularly clearly at the
ISCAS’92 conference in [10]. As a consequence, it was
proposed to move the integrator poles outside of the unit
circle and deliberately make the modulators chaotic in order
to “randomize” the internal state variables, reduce long-term
predictability and break up simple oscillations. Such proposals
can be found in [11]-[14]. Introducing chaos is an attractive
alternative to dithering [12], whose properties are somewhat
incompletely understood [10], and which may require more
circuitry.

The present work is concerned with the general double-loop
YA modulator shown in Fig. 2, which contains as parameters
the scaling factors (g, G, b, B) as well as the integrator poles
(ct, 8) and which has constant input X. This modulator is a
generalization of the original double-loop modulator proposed
by Candy [15] to provide a better trade-off than the single-
loop modulator between the oversampling ratio (OSR) of the
input relative to the Nyquist rate on one side, and the signal-
to-noise ratio (SNR) in approximating the input on the other
side. The double-loop modulator has shown to be a good all-
round circuit on its own or as a building block in cascaded
configurations. The general modulator was first analyzed in
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Fig. 2. Discrete-time model of the double-loop ©A encoder.

Fig. 3. Discrete-time model of the interpolative A modulator.

[14], [16], and [17] for the special case of perfect integrators
(e = f = 1) and constant inputs. Independent work using
essentially the same approach was presented by Wang in
[18].! More recently, Pinault and Lopresti [19] used related
techniques specifically for the standard Candy modulator with
a finite sum of sinusoids as its input. Motamed et al. [13]
considered the Candy modulator with arbitrary integrator poles
and constant inputs, mostly in qualitative or approximate
terms. The present work uses a semi-analytical version of
the analytical technique proposed in [14], [16], and [17] to
quantify the tradeoff between system stability, performance,
and tone persistence. The main contributions are the extension
to the chaotic regime and the resulting explicit design tables.
The paper is organized as follows. Section II discusses the
specific aspects of £A modulators that are brought out by the
operation in the chaotic regime. Section III summarizes and
generalizes the idea behind the bounding technique that is also
the basis of previous work [14], [16], [17], whereas Section
IV shows how to employ the bounding technique for chaotic
modulator design. Section V presents the design results in the
form of a table. Finally, Section VI contains conclusions.

II. CHAOTIC REGIME

Chaotic behavior is characterized by state-space trajectories
that locally diverge exponentially from one another, yet glob-
ally remain within a bounded region [20]. ¥ A modulators with
open-loop poles outside of the unit circle have the potential
to exhibit chaotic behavior, because differences in initial
integrator states are magnified exponentially. For the single-
loop and double-loop modulators, the open-loop poles are
identical to the integrator poles. For more general modulators
like the interpolative modulator in Fig. 3, the open-loop poles
are the poles of the discrete-time filter H(z). For convenience,
we will also refer to the poles of H(z) as integrator poles
regardless of the implementation of H(z).

When the integrator poles are outside of the unit circle,
the state-space trajectories are unstable. However, it is sadly
easy to construct ©A modulators which are unstable systems,
that is, modulators whose state variable values tend towards
infinity. To obtain chaotic behavior, the 1-b quantizer must
act to fold the diverging trajectories back into a bounded

'Note that due to an error in the detailed proof, the numerical results
presented in [18] are incorrect.

region of state space. Following these two considerations,
a YA modulator is chaotic if at least one integrator pole
is outside of the unit circle,? and the system has bounded
state variables for a given class of inputs and initial states.
On the other hand, any A modulator with all its poles
inside of the unit circle is non-chaotic. Modulators with poles
on the unit circle are structurally unstable [21] in the sense
that arbitrarily small pole perturbations change the type of
dynamics associated with the poles in question. In the case of
chaotic behavior, the dimension of the system is simply the
order of the modulator filter, and the discrete-time Lyapunov
exponents are determined by the integrator poles [12]-[14].

It is easily shown that for any modulator with at least one
integrator pole outside of the unit circle, there exist initial
state values which lead to unbounded state variable values.
Assuming simple poles, we need only consider the integrator
I with the largest pole modulus, and make the initial state
of I so large that the contributions from other circuit sources
can never increase enough to change the sign of the output
of I. The output of I will then eventually be dominated by
the exponential growth associated with its own pole. This
prescription can be generalized to multiple poles. It follows
that no modulator is chaotic for all possible initial integrator
states.

This negative result suggests that the design of chaotic
modulators must concentrate on state-space properties, and
must aim to guarantee that state variable values giving rise to
system instability cannot occur. In general, such a task appears
extremely difficult, although the simple single-loop modulator
can be thoroughly analyzed [21]. This paper uses semi-
analytical bounding techniques to attack the design problem
for the general double-loop modulator.

By way of motivation, let us demonstrate the effect of mov-
ing into the chaotic regime. Fig. 4(a) shows 1500 samples of
filtered output from the standard Candy double-loop modulator
defined by a =3 =1,9g =G = b= B =1 with a constant
input of X = 0.1. Fig. 4(b) uses the same set-up, except
that the integrator poles have been moved to = 8 = 1.01.
In both cases, the binary modulator output has been filtered
with a sixth order Butterworth lowpass filter whose baseband
corresponds to an oversampling ratio of OSR = 32. An
infinite impulse response (IIR) filter was preferred over a finite
impulse response (FIR) one for simplicity and reaction time.
Note that the fast Fourier transform (FFT) is an impractical
tool for tone analysis for two reasons: First, tones may
be difficult or impossible to notice in the output spectrum
[10], and second, the interplay between tone persistence and
FFT length would complicate the interpretation of results for
chaotic modulators.

In Fig. 4(a), we observe a sinusoidal oscillation or “tone”
around the dc level of 0.1; the tone would be very unwelcome
in an audio application. In Fig. 4(b), the phase of the tone has
been efficiently randomized, such that the frequency content
of the irregular oscillation is shifted and spread over a larger
frequency range. When played back as an audio signal at a
sampling frequency of 8192 Hz, the waveform of Fig. 4(a)

2 Technically, the output of this integrator must also be observable.
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Fig. 4. Moving integrator poles outside of the unit circle suppresses tones:
(a) Modulator pole moduli 1; (b) modulator pole moduli 1.01.

sounds like a tone, whereas the waveform of Fig. 4(b) is harder
to hear and has practically no audible single-tone content.
On the other hand, the average level of the filtered output
differs more from 0.1 for the chaotic modulator than for the
non-chaotic one, suggesting an SNR degradation. This design
tradeoff is exploited in Section IV.

III. BOUNDING TECHNIQUE

The presented work is based on a semi-analytical technique
for bounding the state variables U, and V,, of the double-
loop modulator shown in Fig. 2. The technique works only
for constant inputs. Several arguments can be given in favor
of limiting the focus to constant inputs [14] including the
following: The oversampling of the input implies that the
input is quite slowly varying, and constant inputs constitute
an important special class which is a subset of any reasonable
input class. Our goal is to perform a stability analysis which
is more realistic than the standard bounded input bounded
output (BIBO) one. Obtaining tight numerical bounds on state
variables is important because the state variable voltages are
limited in any practical implementation by factors such as
supply voltage and op-amp output swing. If the mathematical
equations describing the idealized circuit dictate a voltage ex-
ceeding the circuit capability, clipping or saturation will occur,
which entails serious performance degradation. Therefore, a
practical circuit must be designed, that is, scaling factors and
other circuit parameters must be chosen such that clipping does
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Fig. 5.

Discrete-time model of the normalized double-loop ©A encoder.

not occur under normal operation. Our bounding technique
[14], [16], [17] solves this problem.

Our technique operates on the 2-D state space of the double-
loop modulator in Fig. 2 or, equivalently, on the normalized
modulator shown in Fig. 5. The connection between the two
figures is specified by the equations

2b 2b X
Y= =5 O 5 = 75"
GB ¢ B
The original and normalized modulators are specified by the
parameter sets (g, G, b, G; X) and (v, ¢, g, B; £), respec-

tively. In terms of the normalized circuit, the state equations

are>

¢ =GB, (D

U, =aUy_1+gVpn_1— Q';_¢ (Un-1)
Vn = ﬁvn—l + ¢E - ¢Q(Un) (2)

The state space is divided into two half planes called the
positive and negative half planes, depending on the value of
Q(U,). Each half plane is further divided in two by a transition
half-line given by

ge

alUp_1+9Va1 = GT

where @ = +1 and —1 for the positive and negative half
planes, respectively. The transition lines and the axes delimit
two triangular regions shown in Fig. 6, which we call transition
regions, because an initial state (Uy, V,,) in a transition region
is mapped into a state (Upt1, Vos1) in the opposite half
plane by (2). As long as a state trajectory stays outside of
the transition regions, the state equations are linear because
the quantizer output Q(U,) remains at a fixed value. For the
special case of ideal integrators (o« = ( = 1), successive
state variables then fall on a parabola whose symmetry axis
is parallel to the U axis in state space [14], [17]. In general,
however, the state trajectories in each half plane trace out a
curve with no closed analytical form. The family of curves in
a half plane are nested, one inside another, typically parabola-
like in shape, and do not intersect. We refer to each continuous
curve as a potential curve, and we associate to each curve a
potential which is the largest absolute value of U occurring on
the curve. The potentials corresponding to the curves in the
two half planes are called positive and negative potentials; note
that both these potentials only assume nonnegative values.
The discrete-time system (2) is conveniently analyzed by
conferring upon it the freedom to move continuously along
the potential curves, so long as the trajectories remain outside
of the transition regions. A half plane transition occurs when

3)

3 As an aside, we note that finite operational amplifier gain in the integrators
can be modeled well as an effective decrease in o and 3.
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Fig. 6. Partitioning of state space into half planes and transition regions.

a potential curve reaches a transition region; we allow the
system to choose any point on the current potential curve
within the transition region as the discrete point from which
the system changes half planes according to (2). The resulting
semi-continuous (SC) system can achieve a larger range of
state variable values than the underlying discrete-time (DT)
system; therefore, bounds on state variables that are valid for
the SC system are also valid for the DT system.

The SC system is analyzed by considering the half plane
transitions. For a given positive potential, a range of negative
potentials are possible as the positive potential curve in general
has several intersection points with the positive transition
region. We can determine upper and lower bounds on the
negative potential P, as a function of the originating positive
potential F,.s. Similarly, when going from the negative to the
positive half plane, we can determine upper and lower bounds
on Fpos as a function of the originating .. In the case of
ideal integrators, these calculations and all the following ones
can be carried out analytically, and although the calculations
are tedious and must take several special cases into account,
closed form solutions exist [14], [17]. In the more general case,
the bounds can be determined by numerical optimization.

The obtained bounds can next be combined to give bounds
on the positive potential P52 as a function of the previous
positive potential P, eliminating the intermediate negative
potential P,.,. Numerically, this is done by considering the
range of possible P, for a given P, and then finding
the smallest lower bound and the greatest upper bound on
Pyos2 over the possible values of Ppeg. Similarly, we can
obtain bounds on the negative potential Peg2 as a function
of the previous negative potential P,g;. This leaves us with
a discrete map from one positive potential to the subsequent
positive potential, and similarly for the negative potential. Our
bounding technique is based on the analysis of these two
maps. As a representative example, Fig. 7 shows the positive
potential map for the standard double loop modulator with
a constant input of 0. For future reference, the figure also
shows the 45° line and the square to which the potential is
eventually restricted.

The goal of the analysis in [14] and [17] was to find a range
of potentials P4, Pg] for each of the positive and negative
potential maps with the following four properties:

1. When P4 < P; < Ppg, the greatest upper bound and

the least lJower bound on the subsequent potential Ps

P2

4 .
45 degree line »*

. bounding square

___________________________ lower bound

T T T — P1
1 2 3 4

Fig. 7. Positive potential map: Upper and lower bounds.

lies between the same bounds. In words, the potential
cannot escape the interval [P4, Pp], and the upper and
lower bounds are contained in the square [P4, Pg]2.

2. When P; > Ppg, the subsequent potential is smaller than
P,. In words, the upper bound is below the 45° line
P, = P, for P, > Pg.

3. When 0 < P; < P4, the subsequent potential is greater
than P;. In words, the lower bound is above the 45°
line for 0 < P; < Pa.

4. When 0 < P; < P4, composing the potential map
with itself cannot give rise to potentials lower than the
starting potential P;. If the upper bound Pp,..(P;) at
the starting potential P; is less than Pp for all P; less
than Py, this property follows automatically. Otherwise,
the property requires that the least lower bound over the
range [Pp, Pnax(P1)] is greater than Py, for all P less
than Py.

If the range of potentials [P4, Pp] exists, it can be shown
that the potential must belong to that range in steady state;
we refer to this fact as the bounding theorem. If the potential
starts outside of the range, the range acts as an attractor, and
once the potential is inside the attracting range, the potential
remains there. The value of the potential is therefore bounded
in steady state. By combining the results for positive and
negative potentials, an overall bound on the absolute value
of the state variable U is established. As the potential curves
are bounded, corresponding bounds on the other state variable
V can be derived.

An alternative, weaker form of the bounding theorem can be
obtained, which is useful for the analysis of the chaotic double-
loop modulator. In the alternative form, our goal is to find a
potential range [P4, Pg] and a potential Pc with properties
1, 3, and 4 as above that satisfy the following as well:

1. When Pp < P; < P, the subsequent potential is below

P,. In words, the upper bound is below the 45° line for
Pg < P, < Pe.

2. When P, > Pc, the subsequent potential is above P;.

3. The greatest upper bound over the range 0 < P; < Py
is less than Pc.
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If the constants P4, Pg, and P¢ exist, potentials that start
below P~ will converge such that the potential is eventually
restricted to the range [P4, Ppg]. On the other hand, potentials
above P may lead to unbounded state variables. We can thus
make the limited, but nonetheless useful statement that if the
state variables start out in a region specified by the bounds
derived from Pg, the state variables are bounded. If clipping
sets in between Pp and Pc, the possibility of instability or
detrimental clipping is effectively eliminated, even though the
idealized mathematical system is unstable for certain initial
conditions. In this case, the nonlinear clipping neutralizes the
possibility of system instability introduced by making the
modulator chaotic.

In the special case of perfect integration, it is shown in [14]
and [17] that for 0 < ¢ < 1, the state variables are upper
bounded by

Z1)(1—€)4+22]?
[-D-§)+%] for 1 <~ < 1+ﬁ

8U ) sour70mey for 1 + 37 < v < f(€)
bg S v
% for f(&) <, @)
where
—1+\/1+2€(rf§—1—i€)
76 = ; - ®
and
9 2
i (s ) wicisieg
¢ (y+1E+3 f0r1+ﬁ<7-

A program has been written which implements the described
bounding algorithm. Although the program is conceptually
straightforward, its implementation consists of about 1500
lines of C code. The program reproduces the analytical bounds
in the special case of ideal integrators. The running time is on
the order of minutes on a Sun SPARC-10 station, due to a
number of time-consuming nested optimizations.

To illustrate the tightness of the bounds obtained with the
program, Fig. 8 shows the bounds as well as actual maximum
state variable values observed in 100 simulations over 10000
samples each as a function of the constant input. The results
are obtained for the optimized modulator derived in Section
V with poles at « = § = 1.01, and the initial states are
chosen at random for each run within the region (U, V) €
[—10, +10] x [—2, +2] of state space. The figure shows that
the bounds are 5-15% above the maximum observed values
for £max up to 0.6, which is the range that is mostly used in
the design process. The figure thus indicates that the bounds
are tight enough to be used for design.

IV. DESIGN TRADEOFFS

In Section 4.1, we derive an approximate performance
measure describing the general double-loop modulator as
an A/D converter. In Section 4.2, we quantify the effect
of integrator poles on tone suppression. In Section 4.3, we
combine our results in a design procedure that takes both SNR
performance and tone suppression into account, and which
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Fig. 8. Simulated maximum state variable values for the optimized modu-

lator with poles at 1.01.

optimizes system stability subject to these two competing
constraints.

4.1. Approximate SNR Measure

We will show that for fixed pole locations, the product gG
of the integrator gains is an approximate measure of the SNR
performance of the double-loop modulator. The approximation
lies in assuming that the 1-b quantizer () can be viewed as an
independent (not necessarily white) noise source. Although
this assumption is not valid and can well be misleading [9],
we use it as a guiding line here. It is readily shown that the
linearized transfer function between the modulator input and
output, assuming no quantization noise, is given by

Y(z) gGz~!
X(z) " (a-bg)fz 2 +(GBg+bg—a— Pzl +1
)
whereas the transfer function between the quantization noise
source E and the modulator output, assuming no modulator
input, is given by

v(z) _

(1-azh(1-p27")
(a —bg)B2z=2+ (GBg+bg—a—-P)z"t +1 '(8)
The noise suppression relative to the signal filtering is thus
given by

9Gz~1
(1—az"1)(1 - 8271

which for fixed integrator poles is determined by the product
9G.

)

4.2 Tone Suppression

The choice of integrator poles is dictated by the rapidity
with which unwanted tones are required to be suppressed. The
temporal magnification of initial differences is exponential,
and intuitively, moving the poles further outside of the unit
circle leads to faster tone suppression. It is reasonable, but
by no means required, to take the two integrator poles equal,
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a = f3; this choice treats perturbations of the two integrators
states equally.

To get an idea of the persistence time of tones, let us
compare two modulators with their poles on and outside of the
unit circle, respectively. Let us assume that for a certain initial
state (Uy, Vp) and constant input, a tone exists in the non-
chaotic modulator. Very approximately, the quantizer inputs in
the two modulators will differ by Up(a™ — 1) at time n, and
the difference will at some point cause the quantizer input to
have different signs in the two modulators. Once a modulator
output bit is flipped in the chaotic modulator compared to the
nonchaotic one, the nonlinear folding of the quantizer takes
effect, and any simple oscillations are broken. This effect will
tend to occur when the quantizer input in the non-chaotic
modulator assumes a small value Ugy,.. We can therefore
estimate the tone persistence time 7n.jy,e from

Usmall

U (10)

In normal applications, « is close to 1 and Usman/Up is on the
average less than one. Using the approximation log (1+z) ~ =
for z <« 1, we obtain from (10) that

1 Us mall
U

1

=L0T

(1D

Ttone ~
a-1

Very roughly, the expected tone persistence time is thus
1/(cc — 1). As an example, an audio application may have
a sampling rate of 44100 samples/s, in which case a tone
suppression time of a few hundred samples may be acceptable.
The integrator poles would need to be on the order of 1.01.
As a further example, we can return to Fig. 4, which shows
a tone persistence time on the order of 100 samples for pole
locations of 1.01.

4.3. Design of Double-Loop Modulator

The normalized double-loop modulator contains seven de-
sign constants, namely, the scaling factors (v, ¢, B, g), the
integrator poles (o, 3), and the largest normalized constant
input £max for which the modulator is designed to operate. The
largest unnormalized constant input X ., is related to £,.,
by Xmax = B&max- Our design approach will be to assume
that the integrator poles («, ) are first chosen according to
the considerations in Section 4.2 and that o = 3.

Assuming that the integrator poles are specified, we have
the same five degrees of design freedom left as in [14], [16],
and [17]. Three of these degrees are eliminated by imposing
the stability constraints

Umax = L: Vmax = L: B(]- + £max) = L-, (12)

where L is a specified circuit clipping level, and U,,,x and
Vmax are upper bounds on the absolute values of the state
variables. Equation (12) ensures that the integrator outputs as
well as the output of the input summing node do not exceed
the clipping level. The bounds U,,., and V. are obtained
from the weak bounding theorem of Section IV and are only
valid for initial potentials determined by the potential P in
the theorem.

The scaling factors can be manipulated in the following
way: Letting Unaxo and Va5 o denote upper bounds on the
state variables when ¢ = g = 1, we must have

L L
b= g

?
Vmax 0

_ _ Vmax 0
¢Umax 0

in order to achieve Up,,x = L and Vjyox = L when the scaling
factors ¢ and g are not restricted to unity. Similarly, to satisfy
B(1 4 &max) = L, we must have

) (13)
[]maxo

L
B=——. 14
1 + £max ( )
Using (1), we then find that
d) 1 + Emax
G= == —>— 15
B VmaxO ( )
and thus
1 + fmax
G=—"" 16
g UmaxO ( )

Having used the poles (a, 3) to suppress tones and the
parameters ¢, g, and B to ensure practical stability, we will
use v and &,,,,x to optimize the SNR measure gG. For a given
maximal normalized input &,,x, we must thus choose v to
minimize U,y .- For the special case of ideal integrators, the
optimal v is given by [14] and [17]

1+ /7=%—

2
1+ 14+&max

for 0 < €max < V5 —2

17)
for V5 — 2 < Emax < 1.

In general, the optimal 7 is determined numerically as a
function of &,.x. The remaining degree of freedom & ax
controls a tradeoff between the approximate SNR measure gG
and the dynamic range of constant inputs specified by

L‘fmax
(14 €max)”

The dynamic range of allowable, un-normalized constant in-
puts is the range [—Xmax, +Xmax), Which increases mono-
tonically with £,,x. On the other hand, the SNR measure
gG typically has a single maximum at some value &max, 0.
The situation is illustrated in Fig. 9, which is drawn for
the optimized modulator with poles on the unit circle. A
suitable criterion must be established that trades off these two
considerations. Our criterion is to choose £;ax such that &pax
is greater than {;,.x,0 and such that the approximate SNR
measure is 10% below its peak value. In this way, the largest
normalized input usually becomes a few decibels larger than
&max, 0 at negligible cost in SNR.

Xmax = Bfmax =

V. RESULTS

We have applied the design technique described in Section
4 to the general double-loop modulator. Table I summarizes
the results in a form which is immediately useful to designers.
For a given location of integrator poles, the table presents the
scaling factors which best trade off the requirements on SNR
performance, tone rejection and system stability, as discussed
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TABLE [
DESIGN TABLE: Optimized scaling factors as a function of pole locations. The clipping level is denoted by L, and the dynamic range for sinusoidal inputs and
the safety factor are abbreviated by DR and SF, respectively. The peak SNR and DR numbers are valid for sinusoidal inputs at an oversampling ratio of 128.

a=3 q G b/L B/L Xmax y Peak SNR (dB) ° DR (dB) Ntone SF
l 0.53 0.64 0.49 0.66 0.51 233 90 102 N/A N/A
1.002 0.53 0.64 0.50 0.66 0.51 2.34 90 101 500 47
1.005 0.53 0.64 0.50 0.67 0.50 2.36 89 99 200 17
1.01 0.53 0.63 0.52 0.67 0.48 2.41 87 94 100 8.7
1.02 0.53 0.63 0.53 0.68 0.46 2.50 82 93 50 43
1.03 0.52 0.62 0.55 0.69 0.44 2.58 76 91 33 2.9
1.05 0.52 0.60 0.59 0.72 0.39 2.76 67 82 20 1.8
1.07 0.51 0.58 0.64 0.74 0.35 2.95 60 74 10 1.4
SNR (dB)
SNR measure 100
80 -
60
40
: 20
, : . overall
, ¢ Xmax,0 i choice
0.0 . :
0.0 02 04 06 Xmax 0 T T T |

Fig. 9. Tradeoff between approximate SNR measure and dynamic range of
constant inputs as a function of normalized constant input.

previously. The table also shows four parameters relating to
the requirements.

» The peak SNR observed in a simulation with sinusoidal
inputs of varying amplitudes. Sinusoidal inputs can be
considered more realistic than constant inputs, and the
application of sinusoidal inputs serves to confirm the
design which was carried out for constant inputs. An
example of an SNR curve is shown in Fig. 10; the figure
is drawn for the optimized double-loop modulator with
o = (3 = 1.005 and an OSR of 128. The horizontal axis
shows the input amplitude in dB relative to an amplitude
of 1. A sinc® decimation filter was used to remove the
high-frequency quantization noise. The input and output
conditions were thus identical to those used in [14] and
[17].

¢ The dynamic range of sinusoidal inputs, defined as the
range of sinusoidal input amplitudes over which the SNR
is at least 0 dB. The dynamic range is measured in
decibels and has little connection with the dynamic range
of constant inputs specified by X ax-

» The estimated tone persistence time 1/(a — 1).

» A safety factor relating to system stability. Referring to
the potential map in Fig. 11 and to the weak bounding
theorem, the safety factor is the ratio P/ Pp, that is, the
ratio between the potential at which the upper bound on
the potential crosses the 45° line for the last time, and the
upper bound on the absolute value of U derived by the

T
-100 -80 -60

-40 -20 0
Input ampl. (dB)

Fig. 10. SNR versus sinusoidal input amplitude for the optimized modulator
with poles at 1.005.

bounding technique described in Section III. The safety
factor is a measure of the size of the perturbations that
would be required to throw a chaotic modulator designed
according to our technique into either system instability
or clipping. The potential plot in Fig. 11 is the negative
potential map for the optimized modulator with its poles
at a = = 1.005; note the logarithmic axes. The safety
factors reported in Table I are the smallest of the safety
factors for the positive and negative potential maps.

Note that the peak SNR and the dynamic range of sinusoidal
inputs both depend on the OSR used in the sinusoidal input
simulation. These numbers should therefore only be taken as
examples, and should be replaced by more realistic simulations
for any specific application. The other numbers in the table
are independent of the OSR.

Note also that the design results for o B = 1 differ
slightly from the results presented in [14], [16], and [17]. This
is exclusively due to the introduction of an objective choice
of €max as stated in Section 4.3.

Table 1 shows that the optimized scaling factors are not very
sensitive to changes in pole locations up to o = 3 = 1.005.
As the poles are moved further outside of the unit circle and
into the chaotic regime, the simulated dynamic range and peak
SNR decrease more rapidly. Depending on the application, a
reasonable design choice might be the optimized modulators
with poles at 1.005 or 1.01 that have tone rejection times on



658 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 40, NO. 10, OCTOBER 1993

P2

PC L/

45 degree line

10
PB

upper bound

lower bound

0.10 4 T T 1 Pl

0.10 1 10 100

Fig. 11. Log-log plot of the negative potential map for the optimized chaotic
modulator with poles at 1.005. The safety factor for the map is defined as the
ratio Pe / Pg.

the order of 100-200 samples and are not more than 1 b (6
dB) inferior to the optimized modulator with ideal integrators.

The table also shows that the optimal value of the normal-
ized internal feedback factor v increases as the poles move
outside of the unit circle. Intuitively, stronger internal feedback
is needed for the same degree of stability as the poles are
moved outside of the unit circle and the potential for instability
increases.

According to the table, the ratio between the tone rejection
time and the safety factor is approximately constant at 1012,
indicating that the safety factor decreases approximately as
1/(a — 1). Safety factors less than one are impossible, as the
conditions of the weak bounding theorem would be violated.

Our design technique breaks down when no potentials can
be found for which the weak bounding theorem of Section
III holds; this occurs at pole locations of approximately
a = 3 = 1.08 and is caused by condition 2c of the
weak bounding theorem. Simulations indicate that modulators
with pole moduli somewhat greater than 1.08 do not behave
qualitatively differently than the optimized modulators in Table
I. The breakdown is therefore due to inherent limitations in
the bounding technique.

VI. CONCLUSIONS

Like other authors [11]-[14], we have argued that chaos
may be used constructively to reduce or eliminate disturbing
tones in the output of XA modulators. We have quantified
the idea specifically for the general double-loop modulator
with constant inputs, and we have derived a semi-analytical
method to optimize a tradeoff between tone suppression, SNR
performance, and dynamic range. Our results are directly
applicable to design of double-loop modulators, which are
important practical circuits. However, a circuit designer in-
terested in applying the results should simulate the effect of
circuit nonidealities such as finite op—amp gain, which are
likely to be dominant in any particular application.

The presented optimization process can potentially be im-
proved in two ways. First, the employed measures of SNR
performance and tone persistence are both quite approximate.
Second, given better measures, the integrator poles locations
could be optimized individually; for instance, it might be
advantageous to set 5 > « > 1 as the noise shaping
characteristic tends to depend more critically on integrators
further into the loop than on integrators towards the input
summing node [14]. On the other hand, it appears difficult to
improve upon the state variable bounds. Future research may
also be directed towards exploiting chaos in higher order ¥ A
modulators. Although the presented bounding technique relies
heavily on the state space being 2-D, it is possible that similar
ideas can be applied to higher-order modulators. In any case,
it is important to investigate whether higher order modulators
are as susceptible to tones as lower order ones and whether
the SNR penalty for introducing chaos is indeed a decreasing
function of the order as suggested in [12].

Finally, it would be interesting to investigate the utility of
chaotic behavior in error diffusion coders for image halftoning.
Error diffusion coders are essentially the 2-D analog of LA
modulators. It appears that objectionable artificial patterns in
halftoned images could be suppressed through the introduction
of chaos. This approach could be easier to implement than
dithering, and local average values could be preserved by
putting one modulator pole at dc. However, the resulting
stability problem appears quite difficult to solve.
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