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Controlling Chua’s Global Unfolding Circuit Family

Guanrong Chen, Senior Member, IEEE

Abstract— The self-unified and conventional feedback control
strategy developed by the present author and his colleagues for
the control of chaotic dynamical systems is extended from the
Chua’s circuit to its global unfolding, driving the circuit dynamics
from chaotic attractors to any desirable trajectories such as
unstable limit cycles. A simple and realistic sufficient condition
for such controllability of the global unfolding is derived. A
similar sufficient condition for the controllability of the whole
family of nonlinear dynamical systems that are topologically
equivalent to the Chua global unfolding is also established.

I. INTRODUCTION

N INTERESTING and challenging research subject re-

cently arising in the field of nonlinear dynamical systems
is the control of chaos, namely, the investigation of bringing
order into chaos. The state-of-the-art development of this
stimulating and promising research can be seen from, for
example, the survey and tutorial paper [1]. Our specific interest
in this new research direction has been to study the design of
conventional feedback controllers that can drive the phase-
space trajectory of a nonlinear dynamical system from one
region to another, particularly from a chaotic orbit of the
system to one of its unstable limit cycles, which, as is well
known, is rather difficult. The feedback control approach
developed by the present author and his colleagues, which
has been summarized in [1], provides a conventional and self-
unified strategy. This technique has been successfully applied
to the control of chaos, for both continuous-time and discrete-
time nonlinear chaotic systems such as Chua’s circuit [2], [3],
Duffing’s oscillator [4], and the Lozi and Henon systems [5],
[6). A general nonlinear controller design principle for this
purpose was outlined in [7], using the Duffing system as an
example.

The objective of this paper is to study the control of the
Chua circuit family and its global unfolding. The idea and
technique for the control of Chua’s circuit developed in [2],
[3] will be further generalized and extended to the Chua global
unfolding circuit family, and as well to all the nonlinear
dynamical systems that are topologically equivalent to this
global unfolding.

To facilitate our discussion, let us first briefly review the
structure of the Chua global unfolding circuit family. This
whole circuit family is built on the Chua’s circuit [8], with an
additional linear resistor placed therein, as shown in Fig. 1. In
the figure, L is an inductor, C, C; are two capacitors, g is a
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Fig. 1. The Chua global unfolding circuit family.

piecewise-linear resistor, and R and Ry are two linear resistors
where Ry is the new element added to the canonical circuit, as
described in [9]. The dynamics of this global unfolding circuit
family is described by

Cric, = G(ue, —ve,) — 9(ve,)
Cyic, = G(ve, —ve,) +iL 1)
LiL = —1)02 - RQiL,

where iy, is the current through the inductor L, vc, and vc,
the voltages across Cy and Cs, respectively, G = 1/R, and

g(vc,) = g(vey; mo, m1)

1 .
= moc, + 5 (m1 — mo)(luc, + 1| = o, = 1)

with mg < 0 and m; < 0 being some appropriately chosen
constants [8], [9].
By using the following transformation:

z(1) = ve, (), y(r) = v, (2),
2(1) = éi[,(t), with 7= g; t, ?2)

the circuit equations (1) can be reformulated as the following
dynamically equivalent state equations:

& =p(-z+y - f(z))
y=z-y+tz
z=—qy— hz, ®

where p = C3/C1 > 0, ¢ = C2/LG* > 0, and h =
C,/LGRy are the main bifurcation parameters of the circuit
and the nonlinear term f(z) is a three-segment piecewise-
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linear function defined by

f(z) = g(x; mp, my)

1
= mbo + 5 (my — m)(jz +1] - |z~ 1)

mor+m) —my T>1
miz lz| <1
myx — mj +mg z < -1,

where m{ = mo/G < 0 and m{ = m; /G < 0.

II. CONTROLLING THE CHUA GLOBAL
UNFOLDING CIRCUIT FAMILY

There are different methods in introducing order into the
chaotic dynamics of Chua’s circuit (see, from example, [10],
[11]). Among them, the conventional feedback control ap-
proach developed by us in [2], [3] has the advantages that the
given system structure and parameters need not be changed
or be manipulated by the user, since the (linear or nonlinear)
controller, after being designed, can automatically direct the
system trajectory to the target, and that the method has a
routine procedure to follow. This technique will be generalized
and extended in this section, to control the whole family of
global unfolding of Chua’s circuit.

Consider the global unfolding described by the system (3).
Let (T, 7, Z) be a target trajectory of the system, which can
be any orbit, like a (stable or unstable) limit cycle (including
equilibrium points), a chaotic trajectory, etc., of the system.
Observe that (T, g, Z) is itself a solution of system (3),
namely, the system equations hold if (z, y, z) are replaced
by (Z, 9, Z), where the resulting system will be labeled (3')
below. By subtracting (3") from (3) and then adding the linear
feedback control of the form

U1 K11 0 0 T —T
uz| _ | 0 K2 O y—y
uz | 0 0 Kssl|l|z-—2 @

into the resulting system, with the new notation

X=z-%, Y=y-7 ad Z=z-% (5

we arrive at the following new system:

X=p(-X+Y - f(z, 7)) - KX
Y=X-Y+Z-KpY ©
Z=—qY - QR%Z — K337,

where all notation are defined as above, and f| (z,7) =
f(z)—f(T) (see [2] for more details about the exact expression
of the nine-segment piecewise linear function f).

By imitating the proof for the case of the simple canonical
circuit given in [2], we obtain the following result on the
controllability of the Chua global unfolding circuit family (3):

Fig. 2. Feedback control configuration for the Chua global unfolding circuit
family.

Theorem 1: Let (T, 7, Z) be any target trajectory of the
Chua global unfolding circuit described by system (3). The
chaotic trajectory (z, y, z) of the system can be driven to
reach the target trajectory by the linear feedback control (4),
if the constant feedback gains satisfy the following conditions:

K1 > —-pmy, K >0 and K33 > —Cy/LGRy (7)
where the control can be applied to the chaotic trajectory at
any time.

The closed-loop feedback control configuration of this sys-
tem is shown in Fig. 2, from which one can see that the
constant feedback gain matrix K = diag[K11, Ka2, K33] is
connected to the circuit from outside in a closed-loop manner
and the circuit itself needs not to be modified.

We remark that if negative feedback control is preferred as
usual, then the last inequality of (7) can be simply replaced by
K33 > 0. In this case, and in the case that Ry does not exist,
the condition obtained above reduces to the one obtained in

[2].

III. CONTROLLING EQUIVALENT
NONLINEAR DYNAMICAL SYSTEMS

In this section, we further extend the above result for the
controllability of the Chua global unfolding to a whole class
of nonlinear systems that are topologically equivalent to the
global unfolding.

Consider the so-called C/ep-family of nonlinear dynamical
systems consisting of, roughly speaking, all the piecewise
linear differential equations of the form

z a1y a12 @13 [®
Y| _ (@21 a2 023 Yy
z a3l G32 Q33 z

by
1 by
5l +il=le-1p 2], ®

where {a,-]-, b]-}? are constants, such that

=1
1 0 0
a11 a12 a13

A:= det #0,

3 3 3
2 i=1013051  Dj=1 015052 Do 015453

(see [9] for the exact definition of C/eo and for more detailed
discussions).
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We first introduce the following invertible linear transfor-
mation:

T 1 0 0 -1
L - 3 an 3 a2 3 a3
z 2=1013851 D05y arja52 Y5 a15a43
r 1 0 0
_Gimy G 0
X G+m! e G(G C'S 2
Gtmy G2 _GG+my) ¢ G
( o )"‘ G, T TG GG
x 2 ©)

where all notation are as before. Under this nonsingular linear
transform, denoted by

z 3 1 T Tz ré
vl |7l = To1 Toa Tos| |7
2 ¢ T51 T32 T33) (¢

3 2
G + m) G?
To1 = |a a1;ai1 — 0) _
21 13 Jz:; 15051 ( ch X
+mh\ <
- (a11+ C'1 O)Zauags /A,
j=1
oS
Ty = a; ajja;s/A,
Tos = —a13G/(C1C24),
G+m)\ e
Ts = (a11+ e 0);&1]'(11‘2-0-(“2
G+m6)2 2 <
— a1;a; A,
( G C:iCy &V /
G G(G+m}) G?
Taog = — | — a4 i S e | P
32 Clj;a1](l]z+0«12( c +0102) /A,

T3 = a12G/(C1C2A),

with

3 3
A =aq E 015053 — a13 E ayjajs # 0,
j=1

j=1

the nonlinear system (8) (with the state vector [zyz]T) is
transformed to the Chua global unfolding system (3) (with a
new state vector [£7¢]T), namely, to the global unfolding:

£=&(-¢+n-£(9)
n=£{-n+(

10
C= - 1%C, (1

831

where

A mo 1 mi1 — mg
[O="getsg—gm—+1-[¢-1])

in which all circuit parameters C;, Cs, G, etc. can be calcu-
lated by using the inverse transform 7'~!, which is equivalent
to using the “equivalent Chua’s circuit algorithm” described
in [9]. More precisely, the algorithm works as follows: Start
with the given nonlinear dynamical system (8). First, calculate
the eigenvalues (u1, po, ps) and (vq, va, v3) associated with
the linear and affine vector fields, respectively, of the system.
Then, set

g =v1t+rvatus
q2 = V1V + vovg + v3u,
q3 = V12V3.

P1 = p1+ p2 + pg,
P2 = ppe2 + paps + Uapiy,
P3 = pip2p3,

Next, set

h=—m+%_m@ﬁﬁrﬂﬂ,

q —p1 qg1—p1
ks = pg — q3 —Ps3 +P2-Q2( +IJ2—¢I2),
q1 — P1 q1 —P1 q1 — D1
kg = P27 %2 ﬁ,
g —p1 ke
ko = —kks + by 228
P1—q
Finally, calculate
Ci=1,
Co = —ka/ks,
G =1/R = —ky/k3,
L=—k2/ky,

Ro = —k1k3 /koka,
kz( Pq— @2 k3
my = Gm) = = + £ -2,
0 0= ks \ P n—a k3
P2—'12)_k_§
pm—q) ki

k.
m1 = G, :l(q1+ (1)

k3

The reader is referred to [9] for more details about this
equivalence of the two systems.

Now, we return to the control problem of the given non-
linear dynamical system (8). Let (Z, ¥, Z) be any phase-space
trajectory that we are targeting (e.g., unstable limit cycles) of
the nonlinear dynamical system (8). We first transform system
(8) to its equivalent Chua’s global unfolding (10), and then
derive the sufficient controllability conditions for system (10).
After all, the inverse linear transform produces the desired
controllability conditions for the original system (8). This is the
basic procedure. Yet its algebraic manipulations are somewhat
tedious, and are hence omitted. The final result is summarized
in the following theorem:

Theorem 2: The chaotic trajectory (z, y, z) of the nonlin-
ear dynamical system (8) of family C/¢p can be driven to
reach any target trajectory (%, ¥, Z) of the system by a linear
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Fig. 3. Feedback control configuration for equivalent nonlinear dynamical
systems,

feedback control input of the form

Uy K11 0 0 T—X
_fuw2] _ | 0 Ks 0 y—7
v= usz - 0 0 K33 z—Z |’ (12)

which is to be added to the right-hand side of the given system
(8), if the three constant feedback gains of (11) satisfy the
following conditions:

C.
Ky > _62 mi,

3
G(sz,':l 1433 — 1113)
C.C. 3 s 3
102 ‘11221':1 1043 — 11132,»:1 a1;a:2

K22

>0

G Ga
(K33+F) 3 12 3
0/ C1C;y (a122i=1 al’iais_alsz,‘:l aliaiz)

13)

where C1, Cs. G.Ry and m; are given by (11). Moreover, the
control can be applied to the chaotic trajectory at any time.

The closed-loop feedback control configuration of the sys-
tem is shown in Fig. 3, where A = [a;;]3x3 and b = [b1 by b3]T
are given in (8), and f is defined in (10).
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