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We investigate the stability of synchronous motion in an array of bidirectionally coupled elec-
tronic circuits. We compute Lyapunov exponents of the generic variational equation associated
with directions transversal to the synchronization subspace. Using Lyapunov exponents we
derive conditions for the coupling strength for which the stable synchronous solution exists.
We also find the limit on the size of the network, which can sustain stable synchronous motion.
Theoretical results are compared with the results of numerical experiments.

1. Introduction

Networks of discretely coupled oscillators provide a
versatile model for a variety of phenomena observed
in real systems in such areas as physics, biology
and medicine [Perez-Muñuzuri et al., 1997]. The
dynamics of such systems is one of the more lively
of studied topics [Kaneko, 1990; Perez-Munñuzuri
et al., 1995; Ogorza lek et al., 1995, 1996].

Depending on the dynamics of individual oscil-
lators in the network and the type and strength
of coupling between them, a variety of interest-
ing behaviors can be observed, including hyper-
switching and clustering [Kaneko, 1990], attractor
crowding and various kinds of spatial, temporal
or spatiotemporal ordered structures referred to as
self-organization [Haken, 1994].

Among various types of dynamical behaviors
occurring in coupled systems is the synchroniza-
tion behavior when some or all cells behave in the
same manner (Pyragas [1996] introduced the no-
tions of weak and strong synchronization to distin-
guish these two cases).

Stability of the synchronous motion becomes
a very important problem. In this paper, we
study the stability of synchronous motion in a

one-dimensional lattice of bidirectionally coupled
chaotic circuits.

2. Dynamics of the Network

Let us consider a one-dimensional array composed
of simple third-order electronic oscillators (Chua’s
circuits) shown in Fig. 1(a).

The circuits are coupled bidirectionally by
means of two resistors cross-connected between the
capacitors C1 and C2 of the neighboring circuits.
Every circuit is connected with two nearest neigh-
bors. The dynamics of the one-dimensional lattice
composed of n circuits can be described by the fol-
lowing set of ordinary differential equations:

C2ẋi = −yi +G(zi − xi)
+ G1(zi−1 − zi) +G1(zi+1 − zi) ,

Lẏi = xi ,

C1żi = G(xi − zi)− f(zi)

+ G1(xi−1 − xi) +G1(xi+1 − xi) ,

(1)

where i = 1, 2, . . . , n and the lattice forms a ring
(xn+1 = x1, zn+1 = z1, x0 = xn, z0 = zn).
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f is a five-segment piecewise-linear function [com-
pare with Fig. 1(b)]:

f(z) = m2z +
1

2
(m1 −m2)(|z +Bp2| − |z −Bp2|)

+
1

2
(m0 −m1)(|z +Bp1| − |z −Bp1|) . (2)

Observe that Eq. (1) defines a diffusive coupling
where the “error” signal for the last variable zi−1−zi
and zi+1 − zi is injected into the first equation and
vice versa. In our study we use typical parame-
ter values for which an isolated circuit generates
chaotic oscillations — the “double scroll” attractor
(C1 = 1/9F , C2 = 1F , L = 1/7H, G = 0.7S,
m0 = −0.8, m1 = −0.5, m2 = 0.8, Bp1 = 1,
Bp2 = 2). For the integration of the system the
fourth-order Runge–Kutta method was used with
the time step τ = 0.1.

The setup described above is slightly differ-
ent from the one used in our previous experiments
[Ogorza lek et al., 1995, 1996]. Here we use bal-
anced chaotic circuits, where the value of the re-
sistor connecting capacitors C1 and C2 in a single
circuit is modified. This ensures the existence of a
synchronized chaotic solution. If we apply identi-
cal initial conditions to every oscillator in the ar-
ray (xi(0) = x(0), yi(0) = y(0), zi(0) = z(0) for
i = 1, . . . , n) then all the circuits oscillate syn-
chronously and the equations describing the array

.
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Fig. 1. (a) Nonlinear oscillator and its connection to the
neighbors, (b) a five-segment piecewise-linear function.

can be written as

C2ẋ = −y +G(z − x) ,

Lẏ = x ,

C1ż = G(x− z)− f(z) ,

(3)

where xi = x, yi = y and zi = z for i = 1, . . . , n.
Hence in the case of equal initial conditions the
network as a whole behaves chaotically as a single
uncoupled circuit. Our aim in this paper is to in-
vestigate the stability of this synchronous solution.

3. Stability of the
Synchronous Motion

In this section, we investigate the stability of the
synchronous motion using Lyapunov exponents.
We follow the framework introduced in [Pecora &
Carroll, 1998].

Let xi = (xi, yi, zi)
T denote the vector of vari-

ables of the ith circuit. Let F be the dynamics
of the uncoupled circuit, x = F (x) as defined by
Eq. (3). Then the dynamics of the ith circuit can
be written in the following form:

ẋi = F (xi) +G1

∑
j

GijExj , (4)

where G1 is the coupling strength and E is the ma-
trix that is used for coupling. For the bidirectional
coupling we consider that the coupling matrix is

E =


0 0 1/C2

0 0 0

1/C1 0 0

 . (5)

G is the matrix of couplings between circuits. In
our setup we use Gij = 1 for adjacent oscillators,
Gii = −2 (this corresponds to the modification of
G connecting capacitors C1 and C2 by −2G1) and
Gij = 0 if |i − j| > 1 (no connection for distant
cells):

G =



−2 1 0 · · · 0 1

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −2 1

1 0 0 · · · 1 −2


. (6)
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For the network composed of n = 2 circuits the
self-coupling coefficient is Gii = −1 (each circuit is
connected with one circuit only and in order to bal-
ance the circuit we have to modify the value of the
conductance G by −G1). Hence in this case, the
matrix G has the form:

G =

(−1 1

1 −1

)
. (7)

In all cases (n = 2, n ≥ 3) the sum
∑
j Gij = 0

and hence the synchronization manifold in invari-
ant (if xi = xj for all i, j the last term in Eq. (4)
disappears).

Let us create the variational equation of Eq. (4)
and diagonalize G obtaining a block diagonalized
variational equation with each block having the
form (for details see [Pecora & Carroll, 1998]):

ξ̇k = (DF +G1γkE)ξk , (8)

where γk are eigenvalues of G (k = 0, . . . , N − 1).
The above equation for k = 0 is the variational
equation for the synchronization manifold. Other
eigenvalues correspond to transverse eigenvectors.

The idea, introduced in [Pecora & Carroll,
1998], is to compute the maximum Lyapunov ex-
ponent for the generic variational equation

ξ̇ = (DF + γE)ξ , (9)

as a function of γ. In the general case, Eq. (9)
should be solved for γ from the complex plane. In
our case, however, as the matrix G has only real
eigenvalues it suffices to solve it for real line only.

We have computed the maximum Lyapunov ex-
ponent of the generic variational equation for 60
equidistant points from the interval (−2, 1). The
results are shown in Fig. 2.

In order to use the solution of the variational
equation plotted in Fig. 2 for the investigation of
stability of synchronous motion let us assume that
we have n oscillators in the array and the coupling
strength is G1. First we compute the eigenvalues
γk of G. For n = 2 the eigenvalues are γ0 = 0,
γ1 = 2. For n ≥ 3 they can be computed as γk =
−4 sin2 πk/n. We pick up the eigenvalues associated
with transverse eigenvectors (γ1, . . . , γn−1). The
synchronous motion is stable if λmax is negative for
γ = G1γk, where k = 1, . . . , n − 1. We can read
this information from Fig. 2.

Now we derive conditions for G1 ensuring sta-
ble synchronous state and find the array sizes for

.
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Fig. 2. Maximum Lyapunov exponent λmax of the generic
variational equation for real γ.

which it is possible to obtain stable synchronous so-
lution. Let us assume that there exist an interval
of γ for which the maximum Lyapunov exponent of
Eq. (9) is negative. From Fig. 2 one can see that
this assumption is fulfilled. Let us denote the ends
of this interval by α and β (with α < β < 0). We
have estimated that in our case α ≈ −1.171 and
β ≈ −0.229.

The conditions for the stability of synchronous
motion are α < G1γk < β for k = 1, . . . , n − 1.
Using the formulas for γk one can easily obtain the
range of G1, for which synchronization is possible:

G1∈
(−β

2
,
−α
2

)
for n=2 ,

G1∈

 −β
4 sin2 π

n

,
−α
4

 for even n≥4 ,

G1∈

 −β
4 sin2 π

n

,
−α

4 sin2 (n− 1)π

2n

 for odd n≥3 .

(10)

For a given network size n synchronization is
possible if the above intervals are not empty. For
n = 2 the interval (−β/2, −α/2) is nonempty if
−β < −α, which is true in our case. Now let us
consider n ≥ 3. The intervals in Eq. (10) are not
empty if

sin2 π

n
>
β

α
for even n , (11)

sin2 π

n

sin2 (n− 1)π

2n

>
β

α
for odd n . (12)



2222 Z. Galias et al.

Table 1. Coupling strength G1 for
which λmax is negative for G1γi,
i = 1, . . . , n − 1. For these values
the existence of stable synchronized
state is possible.

n G1

2 (0.1145, 0.5855)

3 (0.0763, 0.3903)

4 (0.1145, 0.2928)

5 (0.1657, 0.3237)

6 (0.2290, 0.2928)

7 (0.3041, 0.3080)

One can easily obtain the following conditions:

n <
π

arcsin
√
β/α

≈ 6.86 for even n , (13)

n <
π

2 arcsin 0.5
√
β/α

≈ 7.05 for odd n . (14)

Thus, synchronization is possible for n =
2, . . . , 7. In Table 1, we collect the values of the
coupling strength G1 for which the maximum Lya-
punov exponent of Eq. (9) is negative for G1γi,
i = 1, . . . , n−1. They were obtained using Eq. (10).

4. Computer Simulations

In this section we compare theoretical predictions
with the results of computer experiments.

In order to test the stability of a particular so-
lution one can perturb this solution by a random

additive signal with a small amplitude and observe
the steady-state behavior of the system. If the sys-
tem converges to the solution under consideration
one claims that the solution is stable.

We have performed such an experiment for
n = 2, . . . , 7 and different G1. The value of G1 was
modified from 0 to 0.6 with the step 0.005. The re-
sults are shown in Fig. 3. As a solid line we plot the-
oretical predictions from Table 1. In experiments
the chaotic synchronous solution is perturbed by a
random additive signal of amplitude 0.0001 (result
plotted below the solid line) and 0.01 (result plotted
above the solid line). Results of computer simula-
tions are plotted as dots. The dot is plotted if after
time t = 1000 the state is still synchronous.

One can clearly see that the results of exper-
iments with smaller amplitude of perturbation are
closer to the theoretical results. This corresponds
to the fact that using Lyapunov exponents we can
obtain only local information along the synchro-
nization subspace. If the initial point is far from
the synchronization subspace we cannot predict the
behavior of the system using Lyapunov exponents.
Another problem is that the negativity of Lyapunov
exponents is only a necessary condition for the ex-
istence of stable synchronous solution.

It is interesting to note that for n = 7 we
have not found G1 with experimentally stable syn-
chronous solution. This will be discussed later.

Now let us discuss several examples. In Fig. 4
we plot the steady-state behavior for n = 3 and four
different coupling values G1 = 0.05, 0.1, 0.35, 0.4.
For each case we plot yi versus yi+1. Hence we
can clearly see whether the neighboring circuits are
synchronized. One can observe that for G1 = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6

2

3

4

5

6

7

n

G

Fig. 3. Theoretical versus simulation results for the network size n = 2, . . . , 7. Solid line — theoretical prediction based
on conditional Lyapunov exponents, lower and upper dots — synchronous behavior in the steady-state observed in computer
simulations after perturbation of the synchronous state by random signals of amplitude 0.0001 and 0.01, respectively.
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Fig. 4. Steady-state of perturbed synchronous motion in
an array composed of n = 3 circuits for different coupling
strengths: (a) G1 = 0.05, (b) G1 = 0.1, (c) G1 = 0.35,
(d) G1 = 0.4. In each row, we plot yi versus yi+1 for
i = 1, 2, 3.

and G1 = 0.35 the steady-state is synchronous,
while for the other two cases the steady-state is
not synchronous. Although it is not synchronous
globally, one can see that in both cases there exists
a cluster of two circuits oscillating synchronously.
Results observed numerically are in good agree-
ment with the theoretical prediction, from which
it follows that the synchronous state is stable for
G1 ∈ (0.0763, 0.3903) (compare Table 1 and Fig. 3).

We obtain similar results for n = 5. For
G1 = 0.17 and G1 = 0.32 we observe stability of

synchronous behavior, while for G1 = 0.15 and
G1 = 0.325 the synchronous mode is not stable
(see Fig. 5). The experimental results agree very
well with theoretical predictions (compare Table 1).
Another interesting phenomenon is the existence of
clusters composed of two circuits oscillating syn-
chronously. There is one cluster for G1 = 0.15 and
two clusters for G1 = 0.325. One of them is not
visible as it is composed of circuits 3 and 5, which
are not neighbors.

Finally let us consider the network composed
of seven oscillators. In this case, the interval of
coupling strength with stable synchronous motion
is very narrow G1 ∈ (0.304, 0.308). We choose
two values of coupling coefficients: G1 = 0.30 and
G1 = 0.306. The trajectory of the system after time
T = 1000 is shown in Figs. 6(a) and 6(b). In the
steady-state, the system is not in the synchronous
mode. This is in contrast to the theoretical pre-
dictions, as for the second case we expect the syn-
chronization behavior. The escape from synchro-
nization manifold is very slow. For G1 = 0.30 we
observe loss of synchronous behavior after T ≈ 400.
For G1 = 0.306 the escape time is even longer:
T ≈ 800. We believe that the reason for this
disagreement is small noise, coming from the in-
tegration procedure, that causes desynchronization
bursts. The stability of synchronous behavior is not
robust (the maximum Lyapunov exponents corre-
sponding to transversal directions is negative but
very close to zero). We have repeated the exper-
iment using smaller integration step (τ = 0.02 in-
stead of τ = 0.1). The results are shown in Fig. 6(c).

(a)

.
(b)

.
(c)

.
(d)

.

Fig. 5. Steady-state of perturbed synchronous motion in an array composed of n = 5 circuits for different coupling strength:
(a) G1 = 0.15, (b) G1 = 0.17, (c) G1 = 0.32, (d) G1 = 0.325.
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Fig. 6. Steady-state of disturbed synchronous motion in an array composed of n = 7 circuits for different coupling strength:
(a) G1 = 0.30, (b) G1 = 0.306, time step τ = 0.1 (c) G1 = 0.306, time step τ = 0.02.

After a very long time T = 10 000 one still observes
synchronization behavior.

5. Conclusions

In this paper we have investigated the stability of
synchronous solution of a one-dimensional array of
bidirectionally coupled chaotic circuits. We have
found the upper limit on the size of the network,
that can sustain stable synchronous motions. For
different array sizes we have found the ranges of
the coupling strength, for which the synchronous
motion is stable. We have confirmed that the the-
oretical predictions of the existence of the stable
synchronous solution compare very well with the
results of computer simulations. We would like to
stress that the study of synchronization properties
based on Lyapunov exponents presented in this pa-
per gives local information in the neighborhood of
the synchronous state only. Many other attractors
may exist and in fact, for each coupling strength
considered we have observed an abundance of at-
tractors without the synchronization property.
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