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On Robust Chaos Suppression in a Class of Nondriven
Oscillators: Application to the Chua’s Circuit

Ricardo Femat, José Alvarez-Raḿırez,
Bernardino Castillo-Toledo, and Jes´us González

Abstract—This paper deals with a feedback control strategy for chaos
suppression. The proposed strategy is an input–output control scheme
which comprises an uncertainty estimator and an asymptotic linearizing
feedback. The developed control scheme allows chaos suppression in spite
of modeling errors and parametric variations.

Index Terms—Chaos, Chua’s circuit, synchronization, uncertain sys-
tems.

I. INTRODUCTION

Essential elements in chaos control are the following: 1) suppres-
sion of erratic dynamics in a given system and 2) stabilization of
a chaotic system about a given reference trajectory. Many results
have been reported in the literature. For instance, Lyapunov-based
methods [1], adaptive strategies [2], [3], discrete-time control [4],
chaos suppression via reconstruction of invariant manifolds [5], and
robust asymptotic linearization [6].

In this work, we propose an input–output controller based on
geometrical control theory [7]. The main idea is to lump the un-
certainties in a nonlinear function which can be interpreted as a new
state in an externally dynamically equivalent system. Thus, the new
state is estimated by means of a state observer. The state observer
provides the estimated value of the lumping nonlinear function (and
consequently of the uncertainties) to the linearizing feedback control.

II. BACKGROUND

Consider the following class of nonlinear systems whose trajecto-
ries are contained in a chaotic attractor_x = f(x) + g(x)u [where
x(t) 2 IRn is a states vector,u 2 IR is a scalar input, andf(x)
and g(x) are smooth vector fields]. Assume thaty = h(x) 2 IR
is the system output [h(x) is a smooth function]. If� is a smallest
integer such that the following conditions hold atx = x0, the above
system is said to have a relative degree� at x0. The conditions are:
1) LgL

i
fh(x) = 0; i = 1; 2; � � � ; � � 2 and 2)LgL

��1

f h(x) 6= 0

[where Li
fh(x) = L(Li

fh(x)); L
i
fh(x) is the Lie derivative of

h(x) with respectf(x)] [7]. If the smoothness assumption and the
above conditions are satisfied, we can define� new coordinates
zi+1 = Li

fh(x), i = 0; 1; � � � ; � � 1. The above system can be
written in the following canonical form [7]:

_z1 = zi+1; i = 1; 2; � � � ; �� 1

_z� =�(z; �) + (z; �)u

_� =�(z; �)

y = z1 (1)
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where�(z; �) = L�

fh(x) and (z; �) = LgL
��1

f h(x). Thus, the
following feedbacku = �[L�

fh(x) + V (x)]=LgL
��1

f h(x) is a
linearizing control law.

Without loss of generality, we can suppose that the reference signal
is yr = 0. Then, in coordinates (z; �) the linearizing feedback control
becomesu = [�(z:�) +KT z]=(z; �) whereK ’s are such that the
polynomials�+K�s

��1+ � � �+K2s+K1 is Hurwitz. Nevertheless,
if the vector fieldsf(x) and g(x) are uncertain, the coordinates
transformationz = T (x), bringing the original system into the
canonical form (1), is uncertain. In principle, since the coordinates
transformation is a diffeomorphism, one can suppose that: 1) the
uncertain transformation exists and 2) it is invertible. However, since
T (x) is uncertain, the nonlinear functions�(z; �) and (z; �) are
also uncertain, hence, they cannot be directly used in the linearizing
feedback. Moreover, the linearizing control law has been designed,
assuming that the states� 2 IRn�� are available for feedback. This
is not a reasonable assumption. We use the linearizing feedback only
as an intermediate control law toward the final controller.

III. FEEDBACK STABILIZATION UNDER UNCERTAIN VECTOR FIELDS

Let us assume the following.

A1 Only the system outputy = z1 is available for feedback.
A2 (z; �) is bounded away from zero.
A3 System (1) is minimum phase.
A4 (A4) The nonlinear functions�(z; �) and (z; �) are un-

certain. However, an estimatê(z) of (z; �), satisfying
sign(̂(z)) = sign((z; �)), is available for feedback.

Now, let us define�(z; �) = (z; �) � ̂(z); �(z; �; u) =
�(z; �) + �(z; �)u and� = �(z; �; u). In addition, let us consider
the following dynamical system:

_zi = zi+1; 1 � i � � � 1

_z� = � + ̂(z)u

_� =�(z; ��; u)

_� = �(z; �)

y = z1 (2)

where �(z; �; �; u) = ���1

k=1zk+1@k�(z; �; u) +
[� + ̂(z)u]@��(z; �; u) + �(z; �) _u +
@v�(z; �; u)�(z; �); @k�(z; �; u) = @�(z; �; u)=@xk.

Proposition 1: The manifold	(z; �; �; u) = ���(z; �; u) = 0
is invariant under the trajectories of system (2).

Proof: It suffices to prove thatd	(z; �; v; u)=dt = 0 along the
trajectories of system (2) which, using the definition� = �(z; �; u),
is straightforward.

Proposition 2: System (2) is dynamically externally equivalent to
system (1). This is, for all differentiable inputu 2 IR. System (2) has
the same solution as the system (1) module� (z; �; �)! (z; �).

Proof: From the equality	(z; �; �; u) = 0 and the condition
d	(z; �; �; u)=dt = 0, one can take the first integral [8] of system
(3) to get� = �(z; �; u). When the first integral is back substituted
in system (2), we obtain the solution of system (1). This implies that
the solutionz(t) 2 IR� of system (1) is the solution of the upper
subsystem (2), hence,� � (z; �; �) = (z; �).

Remark 1: The augmented state,�, provides the dynamics of the
uncertain function�(z; �; u) and, consequently, of the uncertain
terms�(z; �) and (z; �). From the minimum-phase assumption,
the following result is not difficult to prove.

Proposition 3: Under the feedbacku = (��+KT z)=̂(z), where
K ’s are the coefficients of a Hurwitz polynomial, the states of system
(2) converge asymptotically to zero.

An important advantage of system (2) is the following. The
dynamics of the states (z; �) can be reconstructed from the output
[8], [9]. We propose the following observer:

_̂zi = + Li�i(z1 � ẑ1); 1 � i � � 1

_̂z� = �̂ + ̂(ẑ)u+ L���(z1 � ẑ1)

_̂� = + L�+1��+1(z1 � ẑ1) (3)

where (ẑ; �̂) are estimated values of(z; �), respectively. Note
that the uncertain term�(z; �; �; u) has been neglected in the
construction of the observer (3).

Theorem 1: Let e 2 IR�+1 be an estimation error vector whose
components are defined as follows:ei = L��i(zi � ẑi); i =
0; 1; � � � ; � � 1 and e�+1 = � � �̂. For a sufficiently large value
of the high-gain parameterL, the dynamics of the estimation error
e converge asymptotically to zero.

Proof: Combining systems (3) and (2), the dynamics of the esti-
mation error can be written as follows:_e = LA(�)e+�(z; �; �; u)
where�(z; �; �; u) = [0; �(z; �; �; u)]T and the companion ma-
trix is given by

A =

��1 1 0 � � � 0
��2 0 1 � � � 0

...
...

. . .
...

��� 0 0 � � � 1
�r��+1 0 0 � � � 0

(4)

where r = (z; �)=̂(ẑ). The matrix (4) is Hurwitz if r > 0
for all t � 0. According to Assumption A4), this condition is
satisfied. In addition, since the trajectoriesx(t) are contained in
a chaotic attractor, hence,�(z; �; �; u) is bounded. Consequently,
for any L > L� > 0; e(t) ! 0 as t ! 1, which implies that
(ẑ; �̂)! (z; �).

Corollary 1: Now, consider the following linearizing-like control
law: u = [��̂ +KT ẑ]=̂(ẑ). Under the above feedback system (3)
is asymptotically stable forL > L� > 0.

Remark 2: High-gain observers can induce undesirable dynamics
effects such as the peaking phenomenon [11]. To diminish these
effects, the control law can be modified by means of

u = Satf[��̂ +KT ẑ]=̂(ẑ)g

where Sat: IR! B is a saturation function andB � IR is a bounded
set [10].

IV. ROBUST CHAOS SUPRESSION IN THECHUA’S OSCILLATOR

The Chua’s oscillator is widely used to study the suppression and
synchronization of chaos [12]. The circuit equations can be written
in dimensionless form as follows [3]:

_x1 = 1[x2 � x1 � f(x1)] + u

_x2 =x1 � x2 + x3

_x3 = � 2x2

y =x1 (5)

wheref(x) = bx1 + 1=2(a � b)[jx1 + 1j � jx1 � 1j]. Defining the
invertible change of coordinatesz1 = x1; �1 = x2, and�2 = x3, the
dynamical system (5) can be transformed into the canonical form (1)
and its equivalent form (3) [with� = �(z1; �) as the augmented
state]. Note thatz1 is the voltage cross capacitorC1, which is
bounded. Thus, the zero dynamics can be written as_� = C� +Dz1
whereD = [1; 0]T and

C =
�1 1
�2 0

(6)

which is Hurwitz if 2 > 0. Hence, system (5) is minimum phase.
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Fig. 1. Chaos suppression for the Chua’s oscillator:L = 30.

Fig. 2. Performance of the control input without saturation.

Then the assumptions A1)–A4) are satisfied. Thus, the asymptotic
controller becomes

_̂z1 = �̂ + u+ L�1(z1 � ẑ1) (7.1)

�̂ = + L
2
�2(z1 � ẑ1)

u =��̂ +K1ẑ1: (7.2)

Fig. 1 shows the stabilization of the Chua oscillator at the origin.
The initial conditions for system (5) were(x1(0); x2(0); x3(0)) =
(�2:0; 0:02; 4:0) and for the observer (8.1)(ẑ1(0); �̂(0)) = (1; 15).
The model parameters values were chosen as in [11]. The control gain
K1 = 1:0, the estimation constants(�1; �2) = (2:0; 1:0), and the
high-gain estimation parameters valueL = 30 were chosen. The
controller (8) was activated att = 55:0 s. The performance of the
control input is presented in Fig. 2. The effect of the input overshoot
in the output can be diminished by means of a saturation function of
the feedback controller (see Fig. 3).

V. CONCLUSIONS

A control scheme for chaos suppression has been presented. The
main idea is to lump the uncertainties in a nonlinear function which

Fig. 3. Performance of the saturated version of the control input,L = 80.

can be interpreted as an augmented state in a dynamically equivalent
nonlinear system. A state estimator provides an estimated value of
the augmented state and, consequently, of the uncertainties. Thus,
the controller comprises two parts: 1) a state observer and 2) a
linearizing-like control law.
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