510

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 1991

Intermittency in a Piecewise-Linear Circuit

Leon O. Chua, Fellow, IEEE, and Gui-nian Lin

Abstract —In this paper we present the first example of the
intermittency phenomenon observed from the canonical realiza-
tion of the Chua’s circuit family. The intermittency has been
confirmed both by experiments on the laboratory circuit, and by
computer simulation of the circuit model. An analysis of the
geometrical structure of the vector field is also presented and
the mechanism of the intermittency is identified.

[. INTRODUCTION

VER the past decade, piecewise-linear circuits have

emerged as a simple yet powerful experimental and
analytical tool in studying bifurcation and chaos in nonlin-
ear dynamics. Among the many piecewise-linear circuits
that have been studied, there is one particularly impor-
tant group whose state equations are linearly conjugate to
members of the Chua’s circuit family [1] that has been
investigated in depth. Each member of this family consists
of linear resistors, three linear dynamic elements (capaci-
tors and /or inductors), and a nonlinear resistor charac-
terized by a three-segment symmetric piecewise linear v-i
characteristics. Double scroll, torus, and other interesting
attractors and dynamic phenomena have been observed
from different members of this family [2]-[7].

There are three well-known routes to chaos. The dou-
ble scroll attractor is a typical example of a pitchfork
bifurcation from a periodic orbit to chaos via a period-
doubling route. The second (Ruelle-Takens—Newhouse)
route, which leads to chaos via three successive stages of
Hopf bifurcations, has also been observed [4]. The third
route to chaos is the Manneville~Pomeau intermittency
route. The key feature of this route is as follows. Over a
certain range of a parameter the dynamic system has a
periodic orbit. As the parameter is tuned beyond a critical
value, some irregular short bursts appear among the long
regular phases. As the value of the parameter changes
further, the bursts appear more frequently and the aver-
age time between two consecutive bursts shortens. Even-
tually the system moves into a chaotic regime. The phe-
nomenon associated with this route is a saddle-node
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Fig. 1. (a) The canonical realization of the Chua’s circuit family. (b)

The v-i characteristic of the nonlinear resistor G .

bifurcation, which is different qualitatively from those in
the other two routes. In this paper we will report the first
example of intermittency recently observed from a canon-
ical circuit realization of the Chua’s circuit family [8].

In Section II, we present the results from experimental
observations of this intermittency phenomenon in our
laboratory circuit. In Section III, we present the results
from computer simulation of the circuit model. Finally in
Section 1V, we present an analysis of the geometrical
structure of the associated vector field and identify the
mechanism which give rise to intermittency in this system.

II. EXPERIMENTAL OBSERVATION

The six-element circuit shown in Fig. 1(a) is a canonical
realization of the Chua’s circuit family. Fig. 1(b) shows
the v-i characteristic of the piecewise-linear resistor R
in Fig. 1(a). This circuit is called a canonical realization
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because it can produce all vector fields that could be
produced by the entire Chua’s circuit family and it con-
tains the minimum number of elements needed for such a
purpose.

The parameters of the elements used in this paper are:

1
Ci=3. G=-05 G=-01
G,=7, L=1, R= 02. (1)

C, is an adjustable parameter. Its value varies approxi-
mately between 0.3 to 1.5.

Fig. 2 shows the laboratory realization of the circuit in
Fig. 1. In order to normalize the physical values of the
circuit elements to a reasonable range, we adopt the
following normalization scale:

vy=1V, ip=1mA,

L,=100mH, R,=1kQ. (2)

The left part of Fig. 2 is a realization of the negative
admittance G = —1/2. The right part of the figure is a
realization of the piecewise-linear resistor Ry. The op-
amp circuit is used to realize the negative slope of Ry,
ie., G,=—0.1. Two diodes with series resistors realize
the positive slope G, = 7. The +15-V voltages connected
to the diodes ensure that the break points occur at
v, = + 1. The remaining elements in Fig. 2 are obtained
by multiplying the (dimensionless) element value in Fig.
1(a) by the corresponding normalization constant in (2).
Fig. 3 shows a series of Lissajou’s figures obtained from
the circuit. When we start from C, =40 nF, the v, -,
Lissajou’s figure is a symmetric limit cycle (Fig. 3(a)). As
C, increases and reaches a critical value, this symmetric
limit cycle splits into two asymmetric limit cycles, which
are symmetric to each other. Fig. 3(b) shows one of them.
As C, increases further, intermittency eventually occurs.
In Fig. 3(c), we can see a bright area of dense trajectories
whose boundary resembles the limit cycle in Fig. 3(b),
along with some sparse trajectory loci connected to this
bright strip. The brightness of the “strip” indicates that

C, = 100 nF,

Laboratory realization of the circuit in Fig. 1(a).

the trajectory spent much more time in this area than in
the other.

We have also photographed the time waveforms. The
periodic waveform shown in Fig. 4(a) corresponds to the
limit cycle in Fig. 3(b). Fig. 4(b) shows a part of the
waveform associated with the trajectory in Fig. 3(c). It
consists of a long regular phase and is followed by a short
burst. This is the typical feature of intermittency. As C,
increases further, the regular phases get shorter and the
bursts appear more frequently, as indicated by Fig. 4(c).
Finally the waveform looks completely chaotic, as shown
in Fig. 4(d). The corresponding chaotic Lissajou’s figure is
shown in Fig. 3(d). Between Fig. 3(c) and (d), we can also
observe some periodic windows. If C, is increased beyond
the range that gives rise the chaotic attractor in Fig. 3(d),
half of the attractor suddenly disappears as shown in Fig.
3(e). As C, increases further, this chaotic attractor will
gradually shrink and eventually become a periodic limit
cycle. Fig. 3(f) shows a period-4 limit cycle. Immediately
after that we will get a period-2 limit cycle, as shown in
Fig. 3(g). As C, increases further, this limit cycle shrinks
gradually and eventually becomes an elliptical orbit, as
shown in Fig. 3(h), whose waveform is a nearly sinusoidal
oscillation. At last, if C, is large enough, this sinusoidal
oscillation will shrink to an equilibrium point.

Fig. 5 gives the complete bifurcation scenario for differ-
ent values of C,. There are three major bifurcations, each
of a different character. As C, increases (from the left)
and reaches the first critical value C,, a pitchfork bifurca-
tion occurs which splits the symmetric limit cycle into two
asymmetric limit cycles. As C, increases further and
reaches the next critical value C,, a saddle-node bifurca-
tion takes place. The asymmetric limit cycle loses its
stability, as manifested by the appearance of some irregu-
lar short bursts. On the other hand, if we start with a
large enough value for C, and decrease its value, we
would encounter vet another critical value C., where a
Hopf bifurcation at the equilibrium point will give rise to
a nearly sinusoidal oscillation. As C, decreases further,




512

we encounter a series of pitchfork bifurcations (period-
doubling route) that eventually leads to chaos. Thus,
starting from C, or C,, the system can enter the chaotic
regime via different routes. In addition, in the chaotic
region we have also observed some periodic windows.
However, since the main topic of this paper is intermit-
tency, we will focus our attention on the bifurcation
phenomenon around C,.

11I. COMPUTER SIMULATION

The state equations of the circuit in Fig. 1(a) are given
by

dvy 1 .

7=E‘[“f(01)+13]
1

dv

d—tz = (= Gu, +i) (3)
2

di, —1 _

I = T(l,'1+112+ Rl3)

where

f(v):va+%(Ga—Gb)(|v+ll—-|v—1|) (4)

is the v-i characteristic of the nonlinear resistor shown in
Fig. 1(b).

Before we undertake a detailed analysis of (3), which
comes from the ideal circuit in Fig. 1(a), let us first verify
that the experimental results measured from the labora-
tory circuit in Fig. 2 can be reproduced by the dynamical
equation (3), via computer simulation. Using the software
INSITE [9], [10], we plotted some trajectories for (3) using
the parameter values listed in (1). Fig. 6(a)-(h) are the
counterparts of those in Fig. 3(a)-(h). Observe that each
pair of these pictures are qualitatively the same. More-
over, the corresponding values of C, differ only slightly,
due to the tolerance of the circuit elements in the labora-
tory realization.

Also we have investigated the following numerical as-
pects of this circuit: characteristic multipliers, average
length of the regular phases, amplitude plot, and Lya-
punov exponents. Results from all these aspects confirm
the existence of intermittency.

3.1. Characteristic Multipliers

For C, <C,, the circuit exhibits periodic solutions as
shown in Fig. 6(a)—-(b). Let us consider the Poincare map
of the orbit. Pick an arbitrary plane (e.g., i;=0). For a
periodic orbit the fixed point of the Poincare map is
stable and the two eigenvalues of the corresponding
Poincare map are located inside the unit-circle. The
eigenvalues are also called characteristic multipliers, or
Floquet multipliers.

For C, > C,, the intermittency starts and the periodic
limit cycle is no longer stable. This implies that at least
one of the characteristic multipliers must cross the unit
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Fig. 3. Lissajou’s figures of (v(t),v,(¢)) of the circuit in Fig. 2. Hori-
zontal scale: 0.5 V /div in (a)-(d) and 0.2 V /div in (e)-(h); vertical scale:
1V /div in (a)-(d) and 0.5 V /div in (¢)-(h). Position in the center of the
screen: (0,0) in (a)—(d) and (—1,1) in (e)-(h). (a) C, = 40 nF: a symmet-
ric limit cycle. (b) C, = 53 nF: an asymmetric limit cycle. (¢) C, =53.8
nF: intermittency starts. (d) C, = 70 nF: a chaotic attractor. (e) C, = 80
nF: a chaotic attractor, which looks like the upper-left half of the
attractor in (d). (f) C, = 102 nF: a period-4 limit cycle. (g) C, = 106 nF: a
period-2 limit cycle. (h) C, =125 nF: a nearly sinusoidal oscillation.

circle when C, reaches C,. Using the numerical algorithm
described below, we calculated the characteristic multipli-
ers near C,. Our algorithm proceeds as follows: First, use
the Newton-Raphson algorithm to find a periodic trajec-
tory. If the algorithm converges, there is a periodic orbit.
Then, construct two orthogonal vectors, A: (0,0,)=(1,0)
and B: (v,,v,)=(0,1). Using the variational equation of
the original nonlinear system, we calculate the maps of
the vectors A and B. Suppose their maps are A, =(a,, a,)
and §,=(b,,b2), then the characteristic multipliers m,
and m, are found by calculating the two roots of the
following quadratic equation:

m*—(a,+b,)m+(ab,—ab,)=0.

(%)
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Fig. 4. Waveforms of ¢ (1) of the circuit in Fig. 2. Horizontal scale: 2 ms /div: vertical scale: 0.5 V/div. (a) C; =53 nF: a
periodic waveform. (b) C, = 53.8 nF: long regular phase with short burst. (¢} C, =36 nF: regular phases get shorter and
bursts appear more frequently. (d) C, = 70 nF: a completely chaotic waveform.
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Fig. 5. Bifurcation scenario when € in Fig. 2 varies.

For the range of C, used in our numerical algorithm,
multipliers are found to be real numbers inside the unit
circle, and only the one tending towards 1 is graphed in
Fig. 7. Observe that when C, approaches the value C,
somewhere between 0.558 and 0.559, this characteristic
multiplier approaches + 1.

Hence, among the three types of intermittent phenom-
ena (depending on where an eigenvalue crosses the unit
circle [11]), our numerical results show that the phe-
nomenon we observed is a rype-1 intermittency.

3.2. Average Length

For C, > C,, Figs. 3(c) and 6(c) show that the trajecto-
ries spent a long time oscillating in the regular phases. In
this regime, the trajectories are nearly periodic. The shape
of the Lissajou’s figure during each “period” is very
similar to the limit cycle in Figs. 3(b) and 6(b). However,
they are not really periodic. Instead, each conseccutive
“period” is seen to shift by a very small amount. More-

over, when the total displacement has accumulated to a
certain threshold value, a sudden burst is seen to take
place. Immediately after the burst, the trajectory appears
to be chaotic until it is reinjected into the regular phase,
sooner or later. The time between two bursts is not fixed
and seems random. We can estimate only its average
value. For different values of C,, we have estimated the
average length of the regular phases between 100 bursts.
This length is estimated by counting the number of “peri-
ods” between every two consecutive bursts and the results
are shown in Fig. 8. It is known that the scaling law for a
type-1 intermittency is given by [11]
la(Cy—C,) 2

Observe that the empirical curve in Fig. 8 is quite close to
this law.

3.3. Amplitude Plot

Recall that the trajectory in the regular phases looks
“periodic” but with each period changing slightly. For
simplicity let us refer to the maximum value of the v
coordinate in cach “period™ as the “amplitude.” Consid-
ering two consecutive amplitudes as a one-dimensional
map (i.e., taking the new amplitude as a function of the
last amplitude), we can draw the associated amplitude
plot, or the Lorenz plot. Fig. 9 shows this plot, where we
have also plotted the unit-slope diagonal line for compari-
son purposes. Since the one-dimensional map is very close
to this diagonal line, they are almost indistinguishable in
some arcas. Observe that the onc-dimensional map is
always located beneath the diagonal, and is unstable
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Fig. 6. Trajectories of (v,v,) of the circuit in Fig. 1 from computer simulation. (a) C, = 0.40: a symmetric limit cycle. (b)
C, =0.558: an asymmetric limit cycle. (¢) C, = 0.56: intermittency starts. (d) C, = 0.72: a chaotic attractor. (¢) C,=0.80: a
chaotic attractor, which looks like the upper-left half of the attractor in (d). (f) C,=1.325: a period-4 limit cycle. (g)
C, =1.36: a period-2 limit cycle. (h) C, = 1.449: a nearly sinusoidal oscillation.

(slope > 1) near the origin. There is a very narrow gap
between the amplitude plot and the diagonal. This narrow
gap forces the trajectory to oscillate a long time before it
diverges towards the origin. As the amplitude decreases
towards 1, the gap becomes wider. This means that the
amplitude will change drastically once it enters this area.
Then the trajectory looks chaotic and traverses wildly.
Sooner or later, however, it will reinject into the narrow
gap and the same phenomenon will repeat itself. How-
ever, since the reinjection process is “random” and since
there is no fixed entry point for the reinjection, the
“length” of the regular phases appears somewhat “ran-
dom.” This means that for a given set of parameters, the
long-term waveform is never repeated, while the short-
term waveforms could vary wildly. Some regular phases

are shorter, while others are longer. Also, short-term
waveforms sampled from circuits with different parame-
ters could look alike. However, for different values of
parameters, even though similar short-term waveforms
could appear, the probabilities of their appearance are
different.

3.4. Lyapunov Exponents

We have also calculated the Lyapunov exponents for
various values of C, around C,. Our algorithm for calcu-
lating Lyapunov exponents is based on its definition and
the Gram-Schmidt orthonormalization technique [10].
However, one point should be mentioned: Since the aver-
age length of the regular phases can be extremely long at
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Fig. 6. Continued

values of C, just beyond C,, in order to estimate the
Lyapunov exponents accurately, we must calculate them
over long lapses of time. Otherwise, the intermittency
regime cannot be distinguished from the periodic regime
and the numerical results would be misleading. Fig. 10
shows the first and second Lyapunov exponents we have
estimated. For C, < C,, the first Lyapunov exponent A, is
almost zero, as it should be since the trajectory is peri-
odic. The second Lyapunov exponent A, is negative and
increases towards zero. This coincides with the increase
of characteristic multiplier m, towards +1. It is known
that A, and m, for a T-periodic trajectory must follow the
relationship [10]:

(6)

/\2=?lnml.

In Fig. 10 we have also plotted (denoted by small squares)

the values of A, as calculated from (6) using the data for
m, in Fig. 7. The results are quite close, which also
justifies our algorithm.

IV. ANALYSIS

In this section we will present an analysis of the geo-
metrical structure of the vector field defined by (3) and
will identify the mechanism of intermittency in our circuit.

For simplicity let us denote (v,,v,,15) by x =(x,y,2)
The R? space of (x,y,z) is divided by two boundary
planes U;: x=1and U_,: x = — 1. The subspace between
U, and U_, is denoted by D, and the subspaces above U,
and below U_, are denoted by D_; and D_,, respec-
tively. The vector field in the R? space is continuous,
symmetric with respect to the origin, and piecewise linear.
The origin is obviously an equilibrium point. The sub-
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Fig. 8. The plot of the average length versus the parameter C,.

spaces D, may or may not have equilibrium points,
depending on whether the inequality

(G+G,(1+GR))(G+G,(1+GR) <0 (7)

is satisfied or not [8]. For the parameter values given in
(1), (7) is satisfied. Therefore, D, , and D _, have equilib-
rium points P* and P~, respectively. From (3), the coor-
dinates of P*: (+ x,, +y,, + z,) is given by
(G,-G,)(1+GR)  ~(G,-G,)
G,+G(1+RG,) ' G,+G(1+ RG,)’

(x,, 9, 2,) =

-6(G,-G,) |

G,+G(1+RG)) | (8)

Since the dynamic behavior of any member of the
Chua’s circuit family is determined completely by the six
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triangles) below the axis is the second Lyapunov exponent A, obtained
from direct calculations, while the lower curve (denoted by small squares)
is A, calculated from (6).

eigenvalues [3], let us consider the eigenvalues of our
circuit. In the D, region the state equation (3) becomes
linear:

de, | -G, 0 1
dr C, c, (" o
dv, 0 -G 1 M
s | LI | I PR
di a, G | o2
dis -1 -1 -R

— —  — || i iy
a | | L L L "] i

9)

where M, is a constant matrix. The characteristic equa-
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tion of M, is:

G R
Is1—Myl=s>+s*| —+—+—
c,'¢,’L
.. (GG GR _GR 1 1
+ F—
‘e, " Le, T Lo, T Le, T LG,
G+G,+GG,R .
LC,C, B (10)

Substituting all parameter values into (10) and solving the
cubic equation, we obtain three eigenvalues in D,. The
three eigenvalues in D ,; can be obtained the same way
with G, replaced by G,. For the parameters given in (1)
and C, = 0.56, the eigenvalues in D and D _, consists of
a real and a pair of complex—conjugate values, namely:

yo=0.686417, o+ jwy=0.153220+ j2.14037
y, = —20.8554, o)+ jw,=0.274096+ j1.18942. (11)

The eigenspace corresponding to a real eigenvalue is a
line and will be denoted by E’. The eigenspace corre-
sponding to a pair of complex—conjugate eigenvalues is a
plane spanned by the real and imaginary parts of the
complex—conjugate eigenvectors and will be denoted by
E°¢. After some algebraic manipulations, we obtain the
equations of the cigenspaces in the following explicit
forms:
_ y
Covo+ G Gy +G,
z
(CIYO + Ga)(cz'YO +G)
2

E"(0):

2 a
wg + 0'0+F
1

G\?
g+ —

E(0): C, x

-C,| w3+ y

¢,
G G, 0
+|— - — =
G G :
x+xp

YTy
Cyi+G  Ciy + G,
z+zp
(Coy, + Ga)(C271 +G)

E'(P*):

2

E«(P*): C (xFxp)

2 Gy
Wi |o +—
1 1 c,

G 2
wi+lo+—
G

G G, - 0
—_——— + = .
+ c, ] (zF zp)

-G, (y ¥ yp)

(12)

Fig. 11 shows the geometric structure of the eigenspaces
corresponding to the eigenvalues calculated in (11). In the

Fig. 11.

The geometric structure of the intermittericy system.
figure we have also plotted the lines L, L, L, and the
fundamental points A4, B,C, D, E, defined as follows [3]:
Ly=E<(O)nU,

L,=E(P*)nU,

L,={xeU;: =0}

A=LyNL,

B=L,NL,

C=E(0)nU,

D=E(PY)nU,

E=LyNL,. (13)

The equation of the line L, is simply x =1 and z=G,.
The positions of the other lines and the fundamental
points can also be determined from (8), (12), and (13).
Let us analyze a typical trajectory in this system. The
vector field on the U, plane is divided by the line L, as
follows. The vector field of every point on the U, plane
but above the line L, is directed upwards while the vector
field of every point on the U, plane but below the line L,
is directed downwards. Because vy, <0, any trajectory that
penetrates U, from below will be sucked towards the
E<(P*) plane. However, since E°(P") is an cigenspace,
the trajectory can never penetrate it. Theoretically, a
trajectory needs an infinite amount of time to reach
E<(P*) and therefore never actually does. At the same
time, since o, >0, the trajectory will rotate outwards
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around the axis of E"(P*). Due to the combination of
these two motions, the trajectory will eventually intersect
the U, plane in the wedge area subtended by £ ABE.
After the trajectory penetrates the U, plane from above
and re-enters the D, region, it will be subject to two new
motions due to y,>0 and o,> 0: diverging from the
E°(O) plane and rotating outwards around the axis of
E"(0). For simplicity, let us denote the area 2 ABE\
AABE by AABE and denote the area of ZA B E™\
AA B E~ by AA~ B~ E™. Any trajectory starting from
a point x € AABE will move downwards until it hits the
U_, plane, while any trajectory starting from a point
x € A ABE will either hit the U_, plane, or come back to
hit the U, plane. As for the trajectories starting from
x € AE, they will move downwards but constrained all the
time on the E€(O) plane before hitting the line A~E~ at
some finite time.

Compared to the double scroll dynamics, we observe
the following significant differences:

1) In the double scroll dynamics, we have y,>0 and
0, < 0. But in our present intermittency dynamics,
we have >0 and g, > 0.

2) In the double scroll dynamics, the trajectory starting

from any point x € AE needs an infinite time to

return to either U, or U_, plane. But in our present
intermittency dynamics, it always hits the U_, plane
in some finite time.

In the double scroll dynamics, two trajectories start-

ing from points immediately adjacent to the right

and left side of the line AE will hit two different
planes, U, and U_,. But in our present intermit-
tency dynamics, they will both hit the U_, plane.

3

~

Therefore, we can expect the dynamic behavior of our
present system to be quite different from that of the
double scroll system. When we start our computer simula-
tion from a small value of C,, the trajectory is a symmet-
ric limit cycle (see Fig. 6(a)). In this situation the trajec-
tory enters the D, region through AABE andAA™B E~,
as depicted in Fig. 11. In Fig. 11 we denote the four
intersecting points of the limit cycle with the planes U,
and U_, by a, b, ¢, and d. The trajectory enters the D,
region via points b and d and leaves the D, region via
points a and c. The positions of the points a and ¢ are
symmetrical. So are the points b and d. As the value of
C, increases, the limit cycle deforms continuously but is
still symmetric. At some critical value C, = C,, symmetry
is broken and the limit cycle becomes asymmetric from
then on. For the parameter values given in (1), the value
of C, is somewhere between 0.554 and 0.555. It follows
from the symmetry of (3) that when a limit cycle T is
asymmetric, there must exist another limit cycle that is
the odd-symmetric image of I'. Starting from initial condi-
tions odd-symmetric to the current ones, we can always
find it.

For C, > C,, the positions of points 4 and ¢ (also, b
and d) are no longer symmetric. As ¢, increases, all of
them will move towards the right in Fig. 11. This situation
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persists until some value of C, when point d moves
exactly on the line 4~ E~. Since the E(O) plane is an
eigenspace, the trajectory will remain on it when traveling
in the D, region. Therefore, the point a is also on the
line AE. However, there is no bifurcation at this value of
C,. If we increase C, further, all four points of a, b, ¢,
and d will move to the right of the E(Q) plane and the
limit cycle will also stay all the time to the right of the
E<(0) plane.

When C, increases further, at certain value of C,, the
limit cycle becomes unstable and intermittency takes
place. By computer simulation, we can only find an ap-
proximate value for C,, which is close to an exact value
between 0.558 and 0.559. In Fig. 12(a) we show the
Poincare intersection at x =1 (i.e., the U; plane) for
C, =10.56, chosen just a little larger than C,. (The corre-
sponding trajectory is shown in Fig. 6(c).) In this figure we
have also plotted the lines L,,L,,L, and the points
A, B, E. At all points above the line L,, the trajectory
penetrates the U, plane from underneath. After it pene-
trates the U, plane, the trajectory will be sucked towards
the E(P*) plane very quickly because |y,|> o;. On
returning to the U, plane, the trajectory almost touches
the ES(P*) plane and thus always penetrates the U,
plane downward at points in the wedge area Z ABE and
very close to the line L,. The Poincare intersection in Fig.
12(a) verifies this. Observe that all downward intersecting
points (i.e., points below L,) are located almost on the
line L.

Observe next a trajectory starting from point a in Fig.
12(b). It will travel in the D_, region while being at-
tracted towards the E(P) plane. When it returns to the
U, plane its intersecting point is b. After leaving b, it will
hit the U_, plane at a point symmetric to point ¢ in Fig.
12(b). Then the trajectory enters the D _, region. When it
comes back to the U_, plane it will hit a point symmetric
to point d in Fig. 12(b). Afterwards the trajectory will
travel in the D, region and hit back at the U, plane.
However, in an intermittency situation, the trajectory
does not hit the U, plane at the same point (point &) this
time. Instead, it will hit a point a' which is very close to
point a, as depicted in Fig. 12(b). Also, when the trajec-
tory hits back at the U, plane from above, the intersecting
point will be b', which is very close to point b. The next
two intersecting points on the U_, plane will be symmet-
ric to points ¢’ and d', which are very close to points ¢
and d. Thus the trajectory is nearly periodic. In each
round, it deviates only a little from the previous round.
The map of point a approaches the line L, in this
manner, i.e., a—a — --- — a’, etc. The time waveform
in this situation looks nearly periodic and therefore corre-
sponds to the regular phase in Fig. 4(b).

However, when the map of point a gets closer to the
line L,, the situation will change. Remember that X = 0
for the vector field on the line L,. When the map of point
a is very close to the line L,, after the trajectory pene-
trates the U, plane from below it will come back rapidly
to touch the U, plane from above. During this short
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Fig. 12. (a) The Poincare intersection at the x = 1 plane for C, = 0.56.

(b) Magnification of Fig. 12(a).

period of time the trajectory has not been compressed
close enough to the ES(P*) plane. In Fig. 12(b) we can
see that the map of point b gradually diverges from the
L, line. Also, the maps of points ¢ and d in Fig. 12 are
moving towards the left. Since they are the asymmetric
images of the intersecting points on the U_, plane, the
actual intersecting points are moving towards the right.
Finally, they will move to such a position that the return
trajectory from the U_, plane can no longer reach the U,
plane. In such a situation, the trajectory will turn back to
hit the U_, plane. This type of motion is quite different
from the “regular” one and therefore causes a drastic
change of the trajectory motion. In Fig. 12(b) observe that
the intersecting points near a” and b” become more
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Fig. 13. Trajectories of (¢'5,i,) from computer simulation. C, = 0.56.

sparse, which means that whenever the trajectory reaches
this part, the displacement of each cycle will become
bigger. In the one-dimensional map we obtained in Fig. 9
(i.e., the amplitude plot), this situation corresponds to the
case where the map moves away from the diagonal.
Therefore, the trajectory no longer looks regular and the
dynamics change rapidly. The time waveform in this situa-
tion therefore corresponds to an irregular burst in Fig.
4(b).

After the trajectory enters an irregular motion regime,
it goes wild. However, whenever it penetrates the U, or
U_, plane, it always goes through £ ABE and
£ A~ B~ E~. Once its penetrating point falls into the area
representing regular motions (e.g., 0.45 <y < 0.8 in Fig.
12(b)), everything will repeat again. This is the mechanism
of the intermittency in our system.

When traveling in the area of regular motion, the
trajectory looks like a band or a ribbon. Due to symmetry,
there are two symmetric areas of regular motion in the
system. Since the reinjection from “bursts” into “regular
motion” is quite “random,” the trajectory could equally
well inject into either one of the area of regular motion.
The complete scenario of the trajectory is therefore com-
posed of two solid “bands” and some sparse “threads”
around them. This can also be clearly seen from Fig. 13,
the (y, z) projections of the trajectory. We will henceforth
refer to this trajectory as a “double band attractor.”

V. CoNcLUDING REMARKS

1) We have presented an example of intermittency in
the Chua’s circuit family. This result enriches the dynam-
ics and shows that all three major routes to chaos can be
found in this circuit family.

2) The intermittency phenomenon from the circuit in
Fig. 1(a) is a co-dimension 1 bifurcation. Hence, if we
adjust any other parameter instead of C,, a similar bifur-
cation course will take place. For example, if we set R =0
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in (1), the intermittency will start around C,=1.05. In
this situation the circuit actually contains one less param-
eter than the circuit shown in Fig. 1(a). However, in a
physical realization the inductor will always contain some
resistance. Therefore, the circuit in Fig. 1(a) is more
robust and easier to realize in the laboratory.
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