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The Double Scroll Family 
LEON 0. CHUA, FELLOW, IEEE, MOTOMASA KOMURO, AND TAKASHI MATSUMOTO, FELLOW, IEEE 

Absrrucf -This paper provides a rigorous mathematical proof that the 
double scroll is indeed chaotic. Our approach is to derive a linearly 
equitdent class of piecewise-linear differential equations which includes 
the double scroll as a special case. A necessary and sufficient condition for 
two such piecewise-linear vector fields to be linearly equivalent is that their 
respective eigenvalues be a scaled version of each other. In the special case 
where they are identical, we have exact equivalence in the sense of hear 
conjugacy. 

An explicit normalform equation in the context of global bifurcation is 
derived and parametrized by their eigenvalues. Analytical expressions for 
various Poincur~ maps are then derived and used to characterize the birtli 
and the &4t/1 of the double scroll, as well as to derive an approximate 
one-dimensional map in analytic form which is useful for further bifurca- 
tion analysis. In particular, the analytical expressions characterizing vari- 
ous La/f-return maps associated with the Poincare map are used in a 

crucial way to prove the existence of a Shilnihov-type homoclinic orbit, 
thereby establishing rigorously the chaotic nature of the double scroll. 
These analytical expressions are also fundamental in our in-depth analysis 
of the birth (onset of the double scroll) and &&I (extinction of chaos) of 
the double scroll. 

The unifying theme throughout this paper is to analyze the double scroll 
system as an unfolding of a large family of piecewise-linear vector fields in 
R3. Using this approach, we were able to prove that the chaotic dyrumics 
of the double scroll is quite common, and is robust because the associated 
horseshoes predicted from Shilnikov’s theorem are structurally stable. In 
fact, it is exhibited by a large family (in fact, infinitely many linearly- 
equideni circuits) of vector fields whose associated piecewise-linear dif- 
ferential equations bear no resemblance to each other. It is therefore 
remarkable that the normalized eigenvalues, which is a local concept, 
completely determine the system’s global qualitative behavior. 

Part I: Rigorous Proof of’chaos 

I. INTRODUCTION 

T HE double scroll is a strange attractor recently ob- 
served from a physical electronic circuit made of four 

linear circuit elements (one resistor, one inductor, and two 
capacitors) and a two-terminal nonlinear resistor char- 
acterized by a five-segment u-i curve [l]-[3]. The nonlin- 
ear resistor can be realized in the laboratory by several 
equivalent electronic circuits using two op-amps [2], one 
op-amp and two diodes [3], or two transistors and two 
diodes [4]. Since its recent discovery, this rather simple 
electronic circuit has been observed, both experimentally 
[5], [6] and by computer simulation [6], to exhibit a surpris- 
ingly rich variety of bifurcation phenomena [6] and routes 
to chaos [7]-[9]. Although the chaotic nature of the double 
scroll appears to be very convincing from both experimen- 
tal analysis and computer simulations, there remain 
legitimate objections from some critics who demand no 
less than a rigorous mathematical proof. Our main objec- 
tive in this paper is to supply such a proof. 

Proving a circuit is chaotic is a nontrivial task. Indeed, 
only four nonlinear circuits have so far been proved rigor- 
ously to be chaotic: the first three circuits [lo], [ll], [30] 
are described by a one-dimensional discrete map while the 
fourth circuit [12] is described by a second-order nonau- 
tonomous differential equation. The double scroll system to 
be studied in this paper is described by a third-order 
autonomous differential equation. In particular, we will 
choose the dimensionless form given by (2.4) of [3], which 
we rewrite in the equivalent form 

a=a(y-h(x)) 

, 

)i=x-y+z 
i=-py 

(1.1) 

where 

h(x)hX+f(x)=mIx+f(m,-m,)[lx+!i-ix-111 

0.2) 
Manuscript received March 4, 1986; revised June 19, 1986. This is the canonical piecewise-linear equation [13] describing 

research was supported in part by the Office of Naval Research under 
Contract NOOO14-86-K-0351, the National Science Foundation under 

an odd-symmetric three-segment piecewise-linear curve’ 
Grant ECS-8313278, the Japanese Ministry of Education, the Saneyoshi having a breakpoint at x = - 1 and x = 1, a slope equal to 
Foundation, the Murata Foundation, the Mazda Foundation, and the 
Institute of Science and Engineering of Waseda University. 

m,~a+l<Oattheinnersegment,andml~b+l~Oat 
L. 0. Chua is with the Electronics Research Laboratory, University of 

California, Berkeley, CA 94720. 
M. Komuro is with Numazu College of Technology, Shizuoka 410, 

Japan. 
T. Matsumoto is with Waseda University, Tokyo 160, Japan. 
IEEE Log Number 8610179. 

‘We include only three segments of the five-segment piecewise-linear 
u-i curve because the two outermost segments do not play any role in 
the formation of the double scroll. 

009%4094/86/1100-1073$01.00 01986 IEEE 



1074 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-33, NO. 11. NOVEMBER 1986 

the outer segments, respectively; namely, 

h(x)=m,x+(m,-m,), XZl 
= m,x, 1x1 <l 
.= mix - (m, - m,), X<-1. (l-3) 

Note that (1.1) is slightly. simpler than (2.4) in [3] because 
h(x) includes both f(x) and x. The double scroll system is 
therefore described by four parameters {(Y, p, m,, m,}, 
with the double scroll attractor occurring in a neighbor- 
hood of {9,14(2/7), - l/7,2/7}. 

Since the techniques and concepts to be used in proving 
that the double scroll is chaotic are quite novel and gen- 
eral, we will develop our theory for a much larger class of 
piecewise-linear differential equations of which (1.1) is a 
special case. Mathematically, our approach is to derive and 
analyze an unfolding of the double scroll equation (l.l), 
which has four parameters, into a family of three-dimen- 
sional continuous piecewise-linear vector fields char- 
acterized by six parameters. However, unlike the literature 
on unfoldings which considers only differentiable functions 
[14], our results are novel in the sense that our functions 
are required to be only continuous, not differentiable.2 

Because of the nature of piecewise-linear analysis, a 
substantial amount of symbols and notations are necessary 
to avoid ambiguity and clutter. They are summarized in 
Section II ,for ease of reference. 

The family of piecewise-linear vector fields which can be 
interpreted as an unfolding of the double scroll system is 
defined and characterized in Section III. The main results 
in this section are summarized in Theorems 1, 2, and 3. In 
particular, we have derived the necessary and sufficient 
conditions for any two vector fields in this family to be 
linearly conjugate, which is a strong form of equivalence 
from the circuit theoretic point of view and an important 
mathematical property in the theory of structural stability 
of vector fields [9]. It is remarkable that while it is often 
impossible to establish any topological conjugacy between 
nonlinear vector fieids, we were able to prove that the 
necessary and sufficient conditions for linear conjugacy 
(which is a special case of topological conjugacy) between 
two piecewise-linear vector fields in our family is that their 
eigenvalues in corresponding regions be identical. 

This important result, which is stated in two equivalent 
forms (Theorems 1 and 2) allows us to derive the explicit 
form of all members of our family of piecewise-linear 
vector fields which are equivalent (i.e., linearly conjugate) 
to each other in terms of their eigenvalues alone. This 
major result, which is formulated in the form of a canoni- 
cal piecewise-linear equation [13] parametrized by their 
eigenvalues, will henceforth be called the normal form 
equation for the double scroll.3 Again, this result is remark- 
able because finding normal forms of parametrized nonlin- 

*Our techniques necessarily differ from those used in unfolding 
“smooth” vector fields and represent, in fact, a new approach for 
unfolding other continuous piecewise-linear vector fields. 

3 The term “normal form” is used here in the same context as that used 
in global bifurcation theory of vector fields [9], and not in the circuit- 
theoretic sense of a state equation. 

ear vector fields is extremely difficult if not impossible. 
Moreover, whereas “normal form analysis” of smooth 
vector fields [9] yields only local qualitative results, our 
analysis applies globally. 

Our results from Section III provide the necessary 
foundation in Section IV for deriving the exact parametric 
equations describing various Poincare maps of an im- 
portant class of vector fields which represents an unfolding 
of our double scroll equation. These results are then used 
in a crucial way in Section V to prove that homoclinic 
orbits of the Shihnkov type [9] exist in the double scroll, 
thereby providing a rigorous proof that the double scroll is 
indeed chaotic.4 

The analytical formula for PoincarC maps in Section IV 
allows us to derive the exact coordinates of the return map 
of any trajectory of the double scroll system. These coordi- 
nates are used in Section VI to derive the analytical 
expression describing the image of several strategic loci (to 
be defined in Section VI) which allows us to explain the 
birth (i.e., onset) and the death (i.e., extinction) of the 
double scroll attractor. Unlike the preceding five sections, 
however, where complete mathematical rigor is achieved, 
some reasonable ,numerical calculations are used in this 
section to calculate two curves-called the birth and the 
death loci-which bound the region in the LX-P parameter 
space where the double scroll exists. 

Finally, in Section VII, we derive the analytic expression 
of an “approximate” one-dimensional Poincare map which 
can be used for further bifurcation analysis of the double 
scroll. In particular, this one-dimensional map is used to 
map out various regions (using different colors) in the LX-/~ 
parameter plane which exhibit different qualitative behav- 
iors. It is also used, in a crucial way, to generate a 
“period-doubling” bifurcation tree for the double scroll 
system and to calculate the associated Feigenbaum num- 
ber. 

II. PIECEWISE-LINEAR GEOMETRY AND ITS 
REAL JORDAN FORM 

Unless otherwise stated, vectors and matrices are de- 
noted by lower and upper case bold-face letters, respec- 
tively. Vectors in R3 are denoted by x = (x, y, z)r. Real 
and imaginary parts of a complex eigenvalue will be de- 
noted by (I and w, respectively. Real eigenvalues will be 
denoted by y. Vector fields will be denoted by 5: R3 + Iw3. 
Hence, t(x) denotes the vector field evaluated at x and is 
therefore itself a vector in R3 emanating always from the 
origin 0, unless otherwise stated. 

We will now extract the essential properties of the vector 
field associated with the double scroll equation (1.1) to 
define the following generalized family of vector fields .Y. 

Definition 2.1. Piecewise-Linear Vector Field Family 9: 
We define 9 to be a family of continuous vector fields 

[: [w 3 + R 3 satisfying the following properties. 

4The reader is referred to an interesting related work by Mees and 
Chapman [15], where they used optimization techniques to locate a 
heteroclinic orbit in the double scroll system. 
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(P-1) 

(P.2) 

(P.3) 

(P-4) 

(P-5) 

(P-6) 

Fig. 1. Egenspaces of the equilibria and related sets. 

[ is symmetric with respect to the origin, i.e.,5 
Q- & - y, - z> = - 5(x, Y, z). 
There are two planes U, and K, which are 
symmetric with respect to the origin (i.e., 
(x, y, z) E lJ, iff (- x, - y, - z) E U-,) and they 
partition R3 into three closed regions D,, Do, 
and D-,, as shown in Fig. 1. Here, the reference 
frame for (x, y, z) is arbitrary. 
In each region Di, (i = - LO, l), the vector field < 
is ,affine, i.e., 

D~‘(x, Y, Z) =Mi, for (X7 Y, Z> E Di 

where D.$ denotes the Jacobian matrix of t(x) 
and ikfi denotes a 3 x 3 real constant matrix. 
5 has three equilibrium points, one at the origin 
0, one in the interior of D, (labeled P’) and 
one in the interior of D-, (labeled P- ). 
Each matrix Mi has a pair of complex conjugate 
eigenvalues (labeled I$, f jG, for M, and a”, f 
jij, for M-r and M,, where 5, > 0 and G5, > 0) 
and a real eigenvalue (labeled y0 for M, and T1 
for M-i and M,, where j$, # 0 and j$ # 0). 
The eigenspace associated with either the real or 
the complex eigenvalue@ at each equilibrium 
point is not parallel to Vi or U-i. 

‘To avoid clutter, we will often use row vector (x, y, z) in place of 
column vector (x, y, z)r. 

61n the case where the eigenvalue is complex, the eigenspace is defined 
to be the vector space spanned by the real and the imaginary part of the 
complex eigenvector. 

1075 

A=LdIL, 

B=L,flL, 

C=E’(O)nU* 

D=E’(P+)nUv 

E=LdlLz 

F=(xcLz:f(x)lLzt 

Notations Associated with Fig. 1 
For each vector field c E 9, define7 

E ‘(0) p 2-D eigenspace corresponding to complex eigen- 
value go f jijo at 0, 
E’(O) k 1-D eigenspace corresponding to real eigenvalue 
Y. at 0, 
E ‘( P+ ) d 2-D eigenspace corresponding to complex ei- 
genvalue 6i + jG, at P+, 
E ‘( P+ ) p 1-D eigenspace corresponding to real eigenvalue 
$ at P+, 
L$U,nEC(0), L,%Y,nE’(P+) 

L, g (x E u,: Wll~I} (2-U 

where 11 reads “is parallel to.” Here, 5(x)llU, means the 
vector [(CC) lies on a plane parallel to U,. That L, is a 
straight line in Fig. 1 follows from the following. 
ktraight Line Tangency Property 

Let [ be a linear vector field in R3 having a pair of 
complex conjugate eigenvalues a” f j3 and a real eigen- 
value y. Let U denote any plane which is not parallel to 
each eigenspace and which does not pass through the 
origin. Then 

LA {xH: 5”(x)~~U} (2.2) 

is a straight line. 
Proof: In Appendix I, we prove the above assump- 

tions imply that there exists a suitable coordinate system 
x’ g (x’, y’, z’) in R 3 such that t is transformed into the 

7Here, superscripts “c” and “r” denote “complex” and “real”, respec- 
tively. 
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real Jordan form [16] 

and such that the equation for U in the new coordinate 
system assumes the following simplified form: 

u= {(x’, y’,z’): x’+ z’=l}. (2.4) 

For each x E L, (2.2) implies that the vector dot product 
(t%“(x), h) = 0, w h ere h P (l,O,l)r is a normal vector to U 
in view of (2:4). Substituting [(x) from (2.3) into the 
above vector dot product, and solving for y’, we find that 
L in (2.2) is a straight line defined by the equations 

L: y’=ax’+y(l-x’), z’=l-xx’ (2.5) 

where u g I?‘/; and y A y/G7. n 
Remark: The above straight line L intersects the line 

{(x’, y’, z’): x’=l, z’= 0} at the’ point (x’, y’, z’) = 
(1, u,O). 

We are now ready to define the following important 
points in Fig. 1: 

APL,nL,, BkL,nL, 

C~U,nE’(O), DAU,nE’(P+) 

EkL,nL,, FA {xEL~: <(x)((L,) 

where <(x)11 L, means the vector E(x) lies on Vi and is 
parallel to the straight line L,. These points are well 
defined because it can be proved that no two lines among 
L,, L,, and L, are parallel to each other. 

For simplicity, we will often suppress the superscript + 
and write P instead of P+. The following strategic points 
play a crucial role in Section III. 

Definition 2.2. Fundamental Points of 5: 
The four points A, B, E, and P defined above are 

called the fundamental points of 6. 
Note that the continuity of the vector field 5 implies that 

In general, each 3 x 3 matrix Mj defining a vector field 
.$ E A?’ in region Di requires nine nonzero parameters. Our 
next objective is to eliminate as many of these parameters 
as possible by reducing Mi to its real Jordan form and 
U,, to its simplified form. 

Let q,,: D, + R3 and I,: D, + R3 denote the ap- 
propriate affine transformations which reduce M, and Mi 
to the real Jordan form in (2.3) while simultaneously 
transforming the equation describing U, 1 to the simplified 
form in (2.4). It follows from (2.3) and (2.4) that in terms 

of the new coordinate system, we have* 

4 \k,(o) = 0 (2.6) 

!l$(u,)=yo~ {(x,y,z): x+z=l} (2.7) 

\k,(U-,)=V,-A {(x,y,z): x+z=-1) (2.8) -1 0 
;D$,(S(*;‘x)) =&,(x) 4 : a0 [ 1 0 x (2.9) 

0 0 Yo 

where a0 p Eo/3, and y. A ~o/Oo. 

b) \k,(P) = 0 (2.10) 

!P1(ul)=vl~ {(x,y,z): xiz=l} (2.11) 

-‘I 0 
;D$(E(*[‘(x)) =[,(x) p : u1 [ 1 0 x (2.12) 

0 0 Yl 

where ui k a”,/~& and yi ~~,/3,. We will henceforth call 
(2.9) and (2.12) the normalized Jordan form of MO and M,, 
respectively. 

Definition 2.3. D, Unit and D, Unit of 5: 
We define the set {to, Vo,\k,} as the Do unit of 5 and 

the set of { tl, V,, qk,} as the D, unit of 5. 
Geometrically, the Do unit of 5 is simply the middle 

region Do in its new reference frame (x’, y’, z’), which we 
labeled simply as (x, y, z) in Fig. 2. It is important to keep 
in mind, however, that these two reference frames involve 
different coordinate systems. 

The images of the important points A, B, C, D, E, and 
F in Fig. 1 will be denoted by corresponding subscripts in 
an obvious way’: j 

Do: A,A\k,(A), B,A\k,(B), Co%‘o(C), 

Dop’I’o(D), E,%\k,(E), Fobqo(F) 

D,: A,+,(A), B,+,(B), Cl%‘l(C), 

D+&(D), E+‘&(E), F,+,(F). 

Our next goal is to derive the coordinates of each of 
these points in their new reference frames. Since A, B, C, 
D, E, and F are located on various intersection lines in 
Fig. 1, their images (under any affine transformation) must 
lie on corresponding lines in the new reference frames. 
These lines are images of intersections between various 
eigenspaces (E ‘(0) or E ‘(0)) with the plane U, in Fig. 1. In 

‘Strictly speaking, we should use x’ and x” to denote vectors in the 
new coordinate systems. as in (2.3) and (2.4). However, we will hence- 
forth suppress the primes and double primes to avoid clutter. Since we 
will be dealing mostly with the new coordinate systems in the following 
sections, no confusion should arise. 

‘Note that the same symbols D,, and D, are used to denote a region in 
Fig. 2(a) and a point in Fig. 2(b). There wrll be no confusion, however, 
since its meaning will be clear from the context. 
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stsbls 
eigenvocfor 
E’(P) 

unstrblo 
l lgsnspsco 
EC(P) z ID,-unit 

olrblo 
l lgonspaco 
EC(O) 

unstrblo 
/ 

rlgsnvrctol 
E’(O) 

‘1 (E’(P)) t 

.A 

(a) (b) 
Fig. 2. Geometrical structure and typical trajectories of the original piecewise-linear system and their images in the Do u$t 

and D, unit of the transformed system (real Jordan form). (a) Original system and typical trajectories. (b) Do and D, umts 
and half-return maps. 

particular, it can be shown that 
\k,(E”(O))= {(x,y,z): z=O},i.e.,thex-yplane 

(2.13) 

*o@‘(O)) = {(x, Y, z): x = y = 0)) i.e., the z-axis 
(2.14) 

qo(Lo)= {(x,y,z): x=1, z=o} (2.15) 

\k,(L,)= {(x,y,z): y=uox+yo(l-x), z=l-x}. 
(2.16) 

Since C = E'(O)n U,, ii follows from (2.14) and (2.7) 
that Co = (O,O, 1). 

Since E = Lo n L,, it follows from (2.15) and (2.16) that 
Eo = (1, uo, 0). 

Since F E L, and ,$(F)IIL,, it follows that F, E \k,( L2) 
and Eo( Fo)((\ko(Lz). Hence, the coordinate of F. must 
satisfy 

y=uox+yo(l-x), z=l-x, 
00x - Y x +uoy YOZ -= -=- 

1 0, - y. -1 . 
(2.17) 

Since A, lies on the line \k,(L,), we can write A, = 
(1, po,O) for some p. E R. 

Since B = L, n L, and .$(B)jIL,, the.co*ate of B, is 
determined by B, E ‘k,(L,) and ~o(Bo)~~BoAo, where the 
“arrow” denotes the vector from B, to A,. Since B,, E,, 
and F, all he on the line Fo(L,), it follows that 

m=k,&i$ (2.18) 

where k, is a scaling constant. 
Similarly, we can derive the coordinate of A,, B,, D,, 

E,, and Fl in the new reference frame for the D, unit in 

Fig. 2 and obtain 

E,F;=k,F,B; (2.19) 

where k, is a scaling constant. 
For future reference, the explicit coordinates for the 

image of all strategic points in Fig. 1 are tabulated below. 
Strategic Points in D, Unit (a, 2 ~&b/3,, y0 k ~0/~0) 

A, = (1, po,O) (2.20) 

where” 

po~uo+~(u~+l), koAyo(po-uo)/(u;+l) (2.21) 

B,=(Y~(Y,-~~-P~)/Qo~Y~~~-P~(~o-Yo)~/Qo~ 

l- ~o(~o - uo - po)/Qo) (2.22) 
where 

QoA (q,-~o)~+l 

co = (O,O,l) (2.23) 

E, = (1, ~08) (2.24) 

6 = (~o(~o -2uo)/Qo, YO[~- uobo - vo>l/Qo, 

(62 + We,). (2.25) 

Strategic Points in Dl Unit (a, % &l/G,, yl p Y,//r3,) 

A, = (1, pl,O) (2.26) 

“The two expressions in (2.21) (resp., (2.27)) are equivalent to each 
other. The value of k, (resp., k,) is specified in (2.33). 
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where 

p1 A (~1 + k,( 01’ +l)/vl, k, A ul( PI- h’(~: +I) 
(2.27) 

B, = (1, q,o) (2.28) 

D, = (WA 1) (2.29) 

4 = (YI(YI - 01 -P&I, Y&- P~J, - udl/Q,~ 

l- Y1(Y1- (J1- P&QJ (2.30) 
where 

Q+ (u,-Y,)~+~ (2.31) 

4 = (~1(~1--2d/Q,, Y&- du.1- ul)l/Ql, 

(01’ + 1)/Q,). (2.32) 
Note that k, cannot be calculated directly from (2.21) 

since it depends on pO, which in turn depends on ‘k,. A 
similar situation applies to k, in (2.27). However, they can 
be easily calculated from the relationship 

k, = l/k, = k A - j$Jyl (2.33) 
which will be derived in Section III. The relationship 

k,k, =1 (2.34) 

follows from the ratio between the lengths (denoted by 1.1) 
of the following vectors (see Fig. 2): 

(2.35) 

The above explicit expressions for the coordinates of the 
strategic points in the D,, and the D, units will play a 
crucial role in our derivation of PoincarC maps in Section 
IV. 

III. CANONICAL PIECEWISE-LINEAR NORMAL FORM 
In Section II, we have defined a very large family 2 of 

continuous piecewise-linear vector fields. From the 
circuit-theoretic point of view, LC represents the family of 
all third-order piecewise-linear circuits whose vector fields 
satisfy (Pl)-(P6) of Definition 1. Our objective in this 
section is to partition this family into “equivalence classes” 
so that all vector fields belonging to a given equivalence 
class have identical qualitative behavior. We will define 
two forms of equivalence; namely, linear equivalence and 
linear conjugacy. 

From the circuit-theoretic point of view, two circuits are 
said to be linearly equivalent iff, except possibly for a 
uniform change in the time scale, their respective solutions 
are qualitatively identical. If the same property holds with 
the same time scale, then the two circuits are said to be 
linearly conjugate. For example, two first-order autono- 
mous RC circuits [17] with time constants 7i and r2 are 
linearly equivalent but not linearly conjugate unless ri = r2. 
Hence, two linearly conjugate but distinct vector fields 
essentially represent the .same circuit but with two differ- 
ent choices of state variables which are related to each 

other by a linear transformation. We will now define these 
two concepts precisely. 

Definition 3. I. Linear Equivalence: 
Two vector fields E and 5’ in 08” are said to be linearly 

equivalent iff there exists a nonsingular linear transforma- 
tion G: Iw ’ + Iw n and a real number v > 0 such that” 

G+=v(@G). (3.1) 
Definition 3.2. Linear Conjugacy: 
Two linearly-equivalent vector fields are said to be lin- 

early conjugate of each other iff v =l in (3.1). 
The concept of linear conjugacy is a special case of the 

well-known concept of topological conjugacy [9] where the 
“linear transformation” is replaced by a “homeomor- 
phism.” In general, it is extremely difficult if not impossi- 
ble to prove two nonlinear vector fields are topologically 
conjugate, let alone linearly conjugate. It is therefore re- 
markable that for the class of vector fields 5 E 2, we 
cannot only classify them into equivalence classes, but we 
can derive the explicit form of one vector field-called the 
normal form -in each equivalence class which is selected 
in accordance to a unified approach. 

Recall from Definition 2.1 that for each vector field 
< E Z’, the associated eigenvalues are denoted by C$ f jS, 
and To for M,, and ~?i + j&i and j$ for Mi. Because .$ is a 
continuous vector field by definition, these eigenvalues are 
constrained in some definite way so that arbitrarily speci- 
fied eigenvalues of the above form may not correspond to 
a vector field in P. Our main result in this section is to 
derive this constraint among the eigenvalues and to use 
them to completely characterize the class of all linearly 
conjugate vector fields. 

Theorem 3.1. Linear Conjugacy Criteria: 
(a) For each set of eigenvalues defined by the six “eigen- 

value parameters” 

{c+.o,~~:o,~l,~l,~l} (3.2) 
there exists a vector field 5 E 8 having these eigenvalues 
* 

3, > 0, 0, > 0, and y,,j$ < 0. (3.3) 
(b) Two vector fields E E .JZ and E’ E 2 are linearly 

conjugate of each other e they have identical eigenvalues, 
i.e., 

60 = 64, 3,=Ly), g)=y; 

Cl = a”;, 6, = 3;, y1 = jq. (3.4) 
Proof: We will first state and prove Theorem 3.2 and 

then prove that it is equivalent to Theorem 3.1. We will 
then prove Theorem 3.2 since it is easier. Moreover, it is 
Theorem 3.2 (and not Theorem 3.1) which will be used in 
the following sections. 

Definition 3.3. Normalized Eigenvalue Parameters: 
For each set of eigenvalues defined by the six eigenvalue 

parameters {c?,,, 9,, &,, Ci,9,, $}, we define five nor- 

l1 Here, “ o ” denotes a “corn osition” operation. Hence, (3.i) implies 
for each x E R”, G(l(x)) = v(&Gx)). 
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malized eigenvalue parameters 

{ @O,YO,~l>Yl, k) (3.5) 

where 
I 

00 
p~,yoP~,ul~~,yl~~,kp-~~ (3.6) 

Note that one more parameter must be specified before the 
eigenvalues associated. with (3.5) can be uniquely re- 
covered. 

Theorem 3.2. Linear Equivalence Criteria: 
(a) There exists a continuous vector field E E B having 

(3.5) as normalized eigenvalue parameters = 

y,y,<Oand k>O. (3.7) 
(b) Two vector fields <E A? and [‘E .Y are linearly 

equivalent CJ they have identical normalized eigenvalue 
parameters. Moreover, the positive scaling constant in (3.1) 
is given by 

v = to/q) = i&/G;. (3.8) 

Note that the eigenvalues of two distinct vector fields 
having identical normalized eigenvalue parameters are gen- 
erally not identical because one more parameter must be 
specified in order to identify the eigenvalues uniquely. It 
follows from Theorem 3.1 that two vector fields having 
identical normalized eigenvalue parameters are generally 
not linearly conjugate to each other. Indeed, (3.8) implies 
that the additional condition Jo = Gb is needed for linear 
conjugacy. 

Lemma 3.1: Theorems 3.1 and 3.2 are equivalent. 
Proof: = Suppose Theorem 3.1 holds. Then it fol- 

lows from (3.3) that ~o~i/Lioijl ( 0 and, hence, (3.7) holds. 
Conversely, given any { uo, yo, cri, yi, k} satisfying (3.7), 
define 

p (~,J,Y,, - qyo/y,k -~o/~lk, -~o/k}- (3.9) 

Since ijl 2 - yo/ylk > 0 and fo%= - y;/k < 0, (3.9) 
satisfies (3.3) and, hence, Theorem 3.1 implies there exists 
5 E Y associated with (3.9). This proves (a) of Theorem 
3.2.. 

To prove (b) of Theorem 3.2, suppose 5 and [’ are 
linearly equivalent and, hence, G 0 6 = ( &o/&)[’ 0 G holds 
for some G. Then the two vector fields 5 and (G,/sb)< 
are linearly conjugate and must have identical eigenvalue 
parameters {Go, 3,, fob, 4,&i, yi}. It follows that the eigen- 
value parameters of 5’ are given by 

Using (3.6), we obtain the following normalized eigenvalue 
parameters of 5’: 

To _----- ..,,r,.,P-Y - 
00 a0 a1 a1 Yl 

= bo>yo,~,~y,~kl 

which are identical to those of E. 

{~&i)303”1,~1,%) = 
( i 

2 (~&~b,P&a”;Jw;) 

and, hence, 6 and (a,/&)[ are linearly conjugate to each 
other. 

The above proves Theorem 3.2 holds. 
= Suppose Theorem 3.2 holds. Then given [E $P, its 
associated k = -ye/R > 0 in view of (3.7), and, hence, 
qoj$ < 0. Moreover, Go > 0 and iji > 0 by definition. Hence, 
(3.3) holds. Conversely, given any set of eigenvalue param- 
eters, (3.2) satisfies (3.3). Its associated set of normalized 
eigenvalue parameters 

00 To 4 91 - To --- 
I* 

-- w,rPr> e 
3,’ 00 a1 a1 Yl 1 

clearly satisfies (3.7). It follows from Theorem 3.2 that 
there exists a vector field [’ E 2 having these normalized 
eigenvalue parameters, and (&,/&#’ E 2 is linearly con- 
jugate to 5. Hence, ((so/&#’ and 5 have identical eigen- 
value parameters; namely, {go, So, yo, a”,, G7,, Y,}. Hence, 5 
is the desired vector field. 

To prove (b) of Theorem 3.1 holds, suppose G 0 E = E’ 0 G 
holds for some G. Then, 5 and 5’ have identical normal- 
ized eigenvalue parameters 

i 

_ _ e w I 
00 Yo 01 Yl - Yo 
--:>r---= -- 
Go’ijo’ol cdl ’ 71 1 i 

66 7; q y; - 7; 
--~ 2 -, > N, 3 . . 3 

Sb wo Wl Wl y; i 

and v A ijo/& = 1. Hence, 5 and [’ have identical eigen- 
values. 

Conversely, if ,$ and 5’ have identical eigenvalues, then 
they have identical normalized eigenvalue parameters and 
v p (3,/3b = 1. It follows from Theorem 3.2 (b) that G 0 [ 
= 5’ 0 G and, hence, ,$ and 5’ are linearly conjugate to 
each other. 

This proves Theorem 3.1 holds. n 
Remark: Since two linearly-conjugate vector fields in 2 

represent the same circuit (with different choice of state 
variables), or two equivalent circuits, the concept of linear 
conjugucy is too strong for “qualitative” analysis. Since our 
goal is to characterize classes of nonlinear circuits ex- 
hibiting similar qualitative behavior, quantitative dif- 
ferences in circuit time constants are irrelevant: two series 
RC circuits with different time constants ri > 0 and r2 > 0 
exhibit identical qualitative behavior and belong therefore 
to the same class. It is not surprising therefore that the 
weaker concept of linear equivalence is all that we need to 
study the qualitative properties of piecewise-linear vector 
fields. 

Before proving Theorem 3.2, we need the following 
result. 

Lemma 3.2: Let [[u] denote the family of all vector 
fields in 2 having the same normalized eigenvalue 
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parameters u A (uo, yo, ui, yi, k). Let 2, ok, 3, and z 
denote the four vectors from the origin 0 in Fig. I to the 
four fundamentalpoints P, A, B, and E (Def. 2.2), respec- 
tively. Then the following properties hold. 

(a) All polyhedrons whose vertices consist of the origin 
and the four fundamental points of vector fields belonging 
to the family [[p] are similar in the sense that 

ZF=lOA+mOB+nZ (3.10) 
where I = I(u), m = m(u), and n = n(u) are real numbers 
which depend only on P and, hence, are identical for all 
vector fields in &I. 

(b) The numbers k,, k,, and k defined in (2.21), (2.27), 
and (3.6) are related by 

k = k, = l/k,. (3.11) 
(c) There exists a vector field ,$ E [[u] = 

y,y,<Oand k>O. (3.12) 

Proof: See Appendix II. 
Proof of Theorem 3.2 

Statement (a) is equivalent to statement (c) in Lemma 
3.2 and is proved in Appendix II. It remains to prove 
statement (b). 

9 

e 

Suppose there exist a nonsingular linear transforma- 
tion G and a real number v > 0 such that G 0 [ = 
vt 0 G. Then the eigenvalues of 5 and S’.must satisfy 
4 + jGj = v$ k jv6; and Ti = VT/, (i = 0,l). It fol- 
lows from (3.6) that their respective normalized eigen- 
value parameters are identical. 
Let ([PI be the family of all vector fields in 2 
having the same P = ( uo, yo, ui, yi, k) as their normal- 
ized eigenvalue parameters. Let 4 + jLsi (cSi > 0) and 
yi # 0, (i = 0,l) denote the eigenvalues of 5 E 5[ u] 
and let 6: * j3; (Z,I > 0) and f; # 0 (i = 0,l) denote 
the eigenvalue of [’ E .$[l~,]. Denote the fundamental 
points of E and E’ by {A, B, E, P} and 
{A’, B’, E’, P’}, respectively. Let the vector from the 
origin to these points be denoted by {A, B, E, p} 
and {A’, B', E', P'}, respectively. 

Hence, A = (A,, A,,,, A,), where (A,, A,, A,) denotes 
the coordinate of the point A. 

By (P.3) of Definition 2.1, there exist matrices Mj and 
Ml (i = 0,l) such that 

Ml@- p), XED, 
t(x) = MIX, XGDo 

Ml(X + p), xeD_, 

and 
M;(x- P'), XED; 

p(x) = iqx, x E 0; (3.13) 
M;(x + P'), XED’, 

where Di and D,! (i = 0, f 1) are the affine regions of E 
and .$‘, respectively. It follows from the continuity of E and 

E’ that 

M,[A,B,E]=M,[A-P,B-P,E-P] (3.14) 
M,'[A',B',E'] =M;[A'- P',B'- P',E'- P'] (3.15) 

where [ .] denotes a 3 x 3. matrix made up of various 
column vectors defined above. 

Now recall that the normalized Jordan forms of MO in 
(2.9) and Mi in (2.12) are obtained by two appropriate 
affine transformations \Eo and 9,. It follows from (2.6) 
and (2.10) that ‘k, and \k, can be expressed by 

\k,(x) = cpox (3.16) 

and 
$(x)=@,(x-P) (3.17) 

where a0 and ai are 3 X 3 matrices to be determined as 
follows. Since q. maps {A, B, E} into {A,, B,, E,}, we 
have 

@,,[A,B,E] =k,,Bo,Eol* 

a,,= [A,,B,,,E,,][A,B,E]-l. 
(3.18) 

Similarly, since *i maps {A, B, E} into {A,, B,, E,}, we 
have 
(&[A - P,B- P,E- P]= [A,,B&]* 

@,=[A,,B,,E,][A-P,B-P,E-PI-'. (3.19) 

It follows from (2.9) and (2.12) that 

(i=O,l) (3.20) 

where 

(3.21) 

Now, by hypothesis, 5 and .$” have identical. normalized 
eigenvalue parameters. Hence, their respective normalized 
Jordan forms Jo and Jd of MO and M,’ are identical. 
Substituting (3.18) into (3.20), we obtain 

-&I= $[&B,,r,][A, B, El-’ ( 

*&[A, B, Elk,, Bo, Eel-’ 

= -$a,, B,, E,I[A’, B’, ET’ 

df,'[A',B',E'][Ao,Bo,Eo]-'=J;. (3.22) 

Let us define next a linear transformation G: Iw 3 + R3 
and a real number v > 0 as follows: 

GA [A~,B~,E~][A,B,E]-l, &~~/ci3;,. (3.23) 

Premultiplying both sides of (3.22) by 
J,[A', B', E'][A,, B,, E,]-‘and postmultiplying both sides 



CHUA et d.: DOUBLE SCROLL FAMILY 1081 

by [A,, B,,, &,][A’, B’, I?‘]-‘, we obtain 

[A’,B’,E’][A,B,E]-l~o[A,B,E][A’,B’,E’]-’ 
I 

= 
i 1 

“O M,‘. (3.24) 
3; 

Substituting (3.23) into (3.24) we obtain 

~44, = GM,G-? 

Equation (3.13) implies 

(3.25) 

@(x)ID, = G(E(G-lx)lDo), XE 0;. (3.26) 

Now rewrite (3.10) from Lemma 3.2 in the following 
vector form: 

l’=[A,B,E][br~,n]~, P’=[A’,B’,E’][Z,m,nlT. 
(3.27) 

But 

GP=GIA,B,E][I,m,n]T=[A’B’E’][I,m,n]T=P’. 
(3.28) 

Now solving (3.15) for Mr’ and (3.14) for MI and using 
(3.25) and (3.23) repeatedly, we obtain 

vi& = vM;[ A’, B’, E’] [ A’ - P’, B’ - P’, E’ - P’] --I 

= GM,,;-‘[A’, B’, E’][G(A - P), 

G(B-P),G(E-P)]-’ 

=GMo[A,B,E][A-P,B-P,E-P]-lG-’ 

= G&G-‘. (3.29) 

Now for any x E Oil, (3.13) implies 

ec4LY+, = vi&(x T P’) 

= GM,G-‘(x T P’) (in view of (3.29)) 

= GM,(G-‘x T P) (in view of (3.28)) 

= GC(G-l&+l (in view of (3.13)). 

(3.30) 
Equations (3.26) and (3.30) together imply 

vE’(x) = G[(G-lx) (3.31) 

for all XE D;U Dgl. Hence, (3.1) holds and .$ and <’ are 
linearly equivalent. This completes our proof of Theorem 
3.2. n 

Our main result (Theorem 3.1) allows us to partition all, 
vector fields in 2 into linearly conjugate equivalence classes, 
each one parametrized by the eigenvalues c$, k j3,, j& 
a”, + j&r, and j$. Since all vector fields in 2 having the 
same eigenvalues have identical qualitative behavior, it 
suffices to investigate only one member in each class. Our 
next theorem provides a canonical piecewise-linear equa- 
tion involving 12 parameters each of which is expressed 
explicitly in terms of only six eigenvalue parameters, namely 
{ c?~, G,, j$, 4, i3,, T1}. Since these are the minimum num- 
ber of parameters needed to uniquely identify a vector 

field 6 E DEP, and since there exists a one-to-one correspon- 
dence between each linearly-conjugate equivalence class of 
vector fields in B and each equation in (3.32) of Theorem 
3.3 below with a fixed set of numerical parameters, we will 
henceforth call, (3.32) the normal form equation for the 
‘vector fields in 8. Although this term has already been 
used in circuit theory to mean “state equations,” we have 
adopted this terminology here at the risk of some ambigu- 
ity in order to be consistent with the terminology used by 
PoincarC, Arnold, etc. [9]. 

Theorem 3.3. Normal Form Equation for 8:‘2 
Every equivalence class of linearly conjugate vector fields 

in 2 defined by { &,, L3,, y,,, a”,, 5r, f,} satisfying (3.3) can 
be described analytically by the following canonical piece- 
wise-linear equation: 

(3.32) 

The 12 parameters in (3.32) are expressed explicitly in 
terms of {I& G7,, j& a”,, G7,, y,} as follows: 

(3.33) 

( a - 
a:+3:)~l((~l-~o)2+3:) 

l=- ~,{(a,2+i;:)~l-(~~++~)~o} 
(3.34) 

a23 = 

a31 = a21 

(3.40) 

“Although only invoked indirectly in the sequel, Theorem 3.3 repre- 
sents one of the main rest&s of this paper and is the basis of many future 
results yet to be published. Indeed, eq. (3.32) can be interpreted as the 
unfoldings of the double scroll equation (1.1). 
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b _ (6:+G:)i;l-(15;+Lg)fo 
2- 2@; + r$)$ a23 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

Proof: See Appendix III. 
Remark: Equation (3.32) is equivalent to the following 

equation: 

I 

4(x, Y, z - sy, 

ax> YP 4 = M,(x, y, zy, 

MI(X, Y, z + s) T 

where 

Z>l 

IZI 6 1 (3.45) 

Z,<-1 

-a11 a12 a13 

a21 a22 a23 

.a31 ‘32 a33 1 
(3.46) 

(3.47) 

and aij (1~ i, j < 3) are defined by (3.33)-(3.41). 

IV. POINCAR~ AND HALF-RETURN MAPS 

Definition 3.1 implies that in so far as the qualitative 
behavior is concerned, we only need to study one member 
of each ZinearZy equivalent family of vector fields < E 2. 
Theorem 3.2 implies that we can, without loss of gener- 
ality, choose the simplest vector field 5 E 2 having a 
given set of normalized eigenvalue parameters { uO, yO, 
ul, yl, k}‘as defined in (3.6), where yOyl < 0 and k > 0. 

Note that a piecewise-linear vector field with an arbi- 
trary {c+,, yO, uI, yl, k} may be discontinuous at the 
boundary planes,& and K, and, hence, is not a member 
of 2 even though it satisfies (P.l)-(P.6) of Definition 2.1. 
Theorem 3.2. therefore provides the foundation for this 
section by stipulating the additional necessary and suffi- 
cient condition (3.7) for the existence of a continuous 
vector field &th the given parameters.13 Stated in words, 
this eigenvalue condition asserts that the real eigenvalue 
associated with the equilibrium point P+ (resp., P-) must 
be opposite in sign to that at 0. Hence, trajectories along 
the real eigenvector at P+ (resp., P-) and those at 0 must 
have opposite stability properties. 

Since our main motivation in this paper is to char- 
acterize the double scroll in [3], where y0 > 0, we will 
henceforth restrict our analysis to the following subset 
L?,, c Z’ of vector fields, henceforth called the double scroll 
family 5(uo, yo, ul, yl, k), 

20 e { ttuo, ~o,ul, ~1, k>bo < 0, ~0 ’ 0, 01’ 0, 

~~‘0, k>O} (4.1) 

where { uo, yo, uI, yl, k} are the normalized eigenvalue 
parameters. Stated in word, the eigenvalue pattern of any 
member of the double scroll family at the equilibrium 
point P+ (resp., P-) must be a mirror image (except for 
scales) of that at the origin 0.14 

Remark: It follows from Theorem 3.3 that to study the 
global dynamics of the double scroll family, it suffices to 
study the canonical piecewise-linear equation (3.32). 

The eigenspaces (defined by the real and imaginary 
parts of the complex eigenvectors) of a typical vector field 
[ E 2. are shown in Fig. 2(a) along with two typical 
trajectories. Since all trajectories occur in odd-symmetric 
pairs (property (P.l)), Fig. 2(a) shows only half of the 
salient features. Note that the qualitative behavior of Figs. 
9 and 11 in [3] is identical to that of Fig. 2(a). 

The upper trajectory rl in Fig. 2(a) originates from 
some point on U,, moves downward, turns around (before 
reaching U-J, and returns to U, after a finite amount of 
time. It continues to move upward before turning around 
and returns once more to UI.15 This typical trajectory 
defines a return map, called a Poincurb map from some 
subset S c U, into S. l6 We can decompose this PoincarC ’ 
map into two components: a “half-return map,” which 
maps the initial point on U, to the,first return point on U,, 
and a “second half-return map,” which maps the first 
return point to the second return point on U,. 

The lower trajectory r2 in Fig. 2(a) also originates from 
U,, moves downward, penetrates U-,, and after some 
finite amount of time, turns around, and returns to U-, a 
second time. By the odd-symmetry of the vector field, 
however, we can identify each return point x in U-, by its 
reflected image - x in U,. Similarly, the portion of r2 
below U-, can be identified with a corresponding version 
of rl above U,. Through this identification scheme, both 
typical types of trajectories r, and l?, actually define the 
same PoincarC map, which in turn is simply the composi- 
tion of two half-return maps. 

Unfortunately, the half-return maps in Fig. 2(a) cannot 
in general be calculated by an explicit formula or al- 
gorithm because the coordinates of the return points can 
only be found by solving a pair of transcendental equa-. 
tions. Since these half-return maps will be used in a crucial 

14Since the eigenvalue pattern of the feedback system in [18] satisfies 
this property, it too is a special case of the double scroll family of vector 
fields to be investigated in this paper. 

“This typical trajectory can never penetrate the upper oblique plane 
because this plane is an elgenspace and is therefore an invariant set. 

161n the following, we will choose S to be the “infinite” wedge 
A,BE, c U1 &-I- Fig. 2(a) representing the area bounded by the two . _. - 13This eigenvalue condition (3.7) is not necessary for continuity of the 

vector field if we allow the piecewise-linear system to have only one 
equilibrium point instead of three, as stipulated in (P.4). 

stmght hnes BAA, and “Em, where A, and Em denote that these two 
lines both originate from B and extend to co. 
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- way in Section V to prove the double scroll is indeed 
chaotic in a rigorous mathematical sense, we must find a 
new coordinate system so that these half-return maps can 
easily be calculated and its errors rigorously estimated. 
That such a coordinate system always exists for any E E Z0 
constitutes one of the key contributions of this paper. Our 
approach for deriving this new coordinate system is to 
work with the greatly simplified but equivalent real Jordan 
forms of the regions D, and D, in Fig. 2(a), namely, the 
D, unit and the D, unit in Fig. 2(b) described earlier 
(Definition 2.3). 

4.1. Half-Return Map v0 
Consider first the D,, unit at the bottom of Fig. 2(b) 

representing the image of D, in Fig. 2(a) under the affine 
transformation q0 (recall (2.6)-(2.9)). The three fundamen- 
tal points A, B, and E in D, map into A,, B,, and E,, 
respectively. Since L, maps into the straight line LzO 
passing through B, and E,, it follows from (2.1) and the 
qualitative nature of trajectories in Do that the vector field 
s,,(x) has a downward17 component for all x to the right 
of J& and an upward component to the left. Hence, any 
trajectory originating inside the triangular region 

*AoBoE, 
A { x E V, ] x is bounded within triangle A, B, E, } (4.2) 

must move down initially. But because the z-axis in the D, 
unit is the image of an unstable eigenvector, this trajectory 
must move toward V, as depicted by the upper trajectory 
in the D, unit. This trajectory defines the map 

r; : aA,B& + V, (4.3) 

via the obvious image 

%+ (4 = &b) (4.4a) 

where cp,‘<x) denotes the j7ow (in the D, unit) from x to 
the first return point where the trajectory first intersects V, 
at some time T > 0, where 

In order to derive an algorithm for calculating ~0’ (x) 
and r; (x), let us magnify the triangular region aA,B,E, 
on V, and the angular region L A,B, E, on V, as shown in 
Fig. 3(a). Since the z-coordinate of each point (x, y, z) on 
V, is simply z = 1 - x, it suffices to specify each point on 
V, by its (x, y) coordinate. Our next crucial step is to 
define a “local” coordinate system (u, u) on V, so that 
each point x0 = (x, y)r E LA,B,E, is uniquely specified 
in terms of (u, u) such that $ (x) and 7r; (x) can be 
expressed in terms of u and u. 

We will define our local (u, u) coordinates2’ as a weighted 
sum of the four comer points A,, B,, E,, and F,, whose 
(x, y) coordinates have already been found in (2.20), (2.22) 
(2.24), and (2.25), in terms of the normalized eigenvalue 
parameters, namely, 

x,(u,u)=u[uA,+(1-u)E,]+(l-u)[uB,+(l-u)F,] 

(4.10) 

T=T(x)~inf{t>Ojq&(x)~V,}. (4.4b) 

Here, we assume that q’(x) does not hit IL, before time 
T. The more general case is fully treated in [20]. 

Consider next a typical trajectory originating from a 
point in the infinite wedge (angular region) 

L A,B,E, A { x E V,]x lies within the wedge-like 

extension of aA,B,E,} (4.5) 

to the right of A,E, in the D,, unit as depicted in Fig. 
2(b). This trajectory must move downward (because it 
originates to the right of L2,) and eventually intersects V; . 
This trajectory corresponds to the portion of I, within D, 
in Fig. 2(a) and defines the map18 

r; : LA,B&,\AA,B,E, + V; (4.6) 

where 0 < u < cc and 0 G u G 1. Here, we have abused our 
notation by denoting the (x, y) coordinates of the four 
corner points by A,, B,, E,,, and F,, respectively. Note 
that x,(1,1) = A,, x,(1,0) = E,, x,(0,1) = B, and 
x,(O,O)=I;,. Note also that all points along the line seg- 
ments E,A, and FOB0 have a u-coordinate equal to 1 and 
o,pectively. Sir&a&y, all points along the line segments 
BOA0 and FOE0 have a u-coordinate equal to 1 and 0, 
respectively. A typical point H with a (uo, uo) coordinate 
can be identified as the intersection between the u = u. 
coordinate line and the u = u. coordinate line. All points 
inside the triangular region *AoBoE have 0 < u < 1, and 
all’ points inside the angular region L AoBoE outside of 
the A A,B, E, have 1 < u < cc. Hence, in terms of the 
(u, u) coordinate systems (4.2) and (4.5) assume the follow- 

via the obvious image 

6 (4 = cpx4 (4.7a) 

where 

T=T(x)kinf{t>Ol&,(x)~Vi} (4.7b) 

is the time this trajectory first penetrates I’;. By identify- 
ing this return point in I$; with its reflected odd-symmet- 
ric” image in V,, we can define the following half-return 
map 

~~‘0: LA,B,E, + V, (4.8) 

by 

fob) = 
qT(x),. x E *AoBoE 

- %- (4 x E LA,B,E,\AA,B,E,’ 

(4.9) 

“Throughout this section, “downward component” or “moving down” 
“Throughout this paper, odd-symmetry in R3 means symmetry with 

respect to the origin. Hence, two points (x, y, z) and (x’, y’, z’) are odd 
(resp., “upward component” or “moving up”) means the vector field symmetric iff (x’, y’, z’) = (- x, - y, - z). 
enters the boundary plane V0 from above (resp., leaves Va from below). 

“The symbol \ denotes set difference operator throughout this paper. 
“The reason for choosing this unconventional coordinate system will 

be obvious in Section 4.6. 
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u-u, coordlnete line 

coordlnete line 
rdinete Ilne 

v-0 coordinate line 

, .-~--------‘------------- 
‘k 

u=u+(v,t) I 12 
O 4l+a-t 

. . (b) (b) 
Fig. 3. Fig. 3. Geometrical interpretations of the local u-v coordinate system for representing the half-return map T$ (a) Details Geometrical interpretations of the local u-v coordinate system for representing the half-return map T$ (a) Details 

of the Do unit: thick arrows denote the direction of the vector field at various points along L, = qo( L2), where all vectors of the Do unit: thick arrows denote the direction of the vector field at various points along L, = qo( L2), where all vectors 
lie on the V. plane. (b) Graph of a possible inverse return-time function u = u+ (v, t). Here, f+ (u) denotes the set of first lie on the V. plane. (b) Graph of a possible inverse return-time function u = u+ (v, t). Here, f+ (u) denotes the set of first 
return times which is not connected whenever U+ (v, t) is not a monotone function. return times which is not connected whenever u+ (v, t) is not a monotone function. 

ing equivalent form: 

*AoBoE, = {x0( w)h u> E [OJI x [OJI} (4.11) 

LAoBoEo= {-q,bv)l<~,~~ E [O,~)x[O,l]}. (4.12) 
Theorem 4.1, Calculating the rO’ Return Map: 
Given x0 A (x0, yo)T E aA,B,E,, the return map 

1~: (x0) is given by 

T: ( xo(u, u)) = coo’ ??t 
[ 

-tot: x,(24, u) (4.13) I 
where (u, u) is the local coordinate of (x0, yo) = 
(x,(u, u), y,(u, u)), where 0 Q u gl, 0 Q u ~1, and t is the 
“first return time” calculated explicitly as follows. 

(a) Use the second local coordinate “u” to calculate the 
inverse return-time function 21 defined by 

U+(U,t) 4 (cpb(Bo,), h) - 1 
M(BO” - AO”), h) 

(4.14) 

21Given any “return time” to, 0 Q to < cc, and anx coordinate line 
v = uo, (4.14) implies that there exists a unique u = u. = tit ( vo, to) such 
that the trajectory cpbp(x( uo, vo)) starting from x,,( uo, II,,) at t = 0 would 
hit V. at r=tO. 

where 

cpb(x) denotes the location of the trajectory in Iw 3 
which originates from x, 

A,, k x0(1, u) denotes the location in R3 of a point along 
the line segment E,A, “u” units from E,, 

B,, 4 x,(0, u) denotes the location in lR3 of a point along 
the,line segment FOB0 “u” units from Fo, 

h 2 (l,O,l)T denotes the normal vector from the origin 
to V,, and ( , ) denotes the usual vector dot 
product in R3. 

(b) Use the first local coordinate “u” (0 < u < 1) to 
calculate 

t=inf{t>,Olu+(u,t) =u}. (4.15) 
Proof: The dynamics in the Do unit is (2.9) whose 

flow r&(x,) from a point x0 = (x0, yo, zo)r is given by 

[ 

e (Iof cos t - e”O’sint 0 X0 
QGtxo) = e”O’sin t eoo’cos t 0 I[ 1 Yo . (4.16) 

0 0 eYo’ ZO 

Since A,, + &(A,,), B,,, + cpb(B,,) and since for fixed t, 
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cpb( x0) in (4.16) is a linear transformation, the straight line 
segment A,,&, joining A,, and B,,, in Fig. 3(a) maps 
into a straight line segment cpb( A,,)cpb( B,,) joining 
&(A,,) and cp&,). Now if we let f, A &(x0), then f, 
must divide the length of the vector cpb( A,,,)&( B,,) into 
the same proportion as x,, (i.e., point H in Fig. 3(a)) 
divides the vector A,,B, into lengths u and 1 - u, respec- 
tively. In particular ** 

(P,cpb(B,,j,h) 
= ( cpb(Aov)cpbtB,,f, h) 
= (cpb@,,), h) -(%, h) 

(cpbt4c&,),h) 

(4.17) 

(4.18) 

where (4.18) is simply the ratio between the projections 
along the normal vector h of the vectors in the numerator 
and the denominator in (4.17), respectively. But 

(f,,h) = (&, &,o, &,),(l,o,l)) = 2,, + ZA,, =I (4.19) 
since f, lies on V,. Substituting (BO, h) =l into (4.18), we 
obtain (4.14), where we have written u+ (u, t) in place of u 
to emphasize that the right-hand side of (4.14) is a well- 
defined continuous single-ualued functions of u E [0, l] and 
t E (0, co). The superscript “ + ” denotes its association 
with YT~ to distinguish it from u- (u, t) in Theorem 4.2, 
which is associated with v,,. n 

Remarks: 
1) Since any initial point x,(1, u) lies on the stable 

eigenspace qO(EC(0)), cpb(x,(l, u)) may not return to V, 
but instead converges to the origin 0 at t + 00. In this 
case, however, it is logical and convenient to define 
1~: (~~(1, u)) A C, = \k,(C) since we have earlier identified 
C,, and 0 as the same point. It follows from this definition 
that u’(u,t)+l as t+co. 

2) It can be shown that the vector field tO(E,,) is 
directed from E, to A,, &(B,,) is directed from A, to B,, 
and .$a(&) is directed from F, to B,, as shown in Fig. 
3(a). It follows from the continuity of t(x) that the vectors 
along the line segment B,Fb are as depicted in Fig. 3(a). 

Since the vector field E(x) has a downward component 
for all x to the right of the line segment EoFo in Fig. 3(a), 
and since t(x) is directed to the right for all x E E,F,, it 

follows that all trajectories starting on EoFo or slightly to 
the right of EoFo will first move downward towards the 
right before returning to V,. Hence, ~0 (x) is continuous 
even along the points on E,l;b. 

In contrast, the vector field t(x) has an upward compo- 
nent for all x to the left of the line segment FOB0 in Fig. 
3(a). Moreover, since t(x) is directed to the left for all x 
E FOBO, it follows that the trajectories starting from points 

22A veczr from point x tzqoint y in W3 is-denoted throughout this 
paper by xy. The length of xy IS denoted by !q~l. 

along FoBo will first move upward before returning to V,, 
whereas trajectories starting from points arbitrarily close 
to FOB,, (but on the right-hand side) will first move down- 
ward and return to V, after a much shorter time. Conse- 
quently, ~0’ (x) is discontinuous along FOB,,. For conveni- 
ence, we will define 

~T~(x)=x forallxe FOB,,. (4.20) 

In other words, we define each point x E FoBo as a fixed 
point of ~0 (x) and, hence, its first return time is equal to 
zero, namely, 

u+(u,t) A0 at t=O. (4.21) 

3) Between t = 0 and t = co, u+ (u, t) is a continuous but 
not necessarily monotonic function of t. The continuity 
follows from (4.13). 

4) Remarks l)-3) imply that a typical inuerse return-time 
function u’( u, t) has the form shown in Fig. 3(b): it starts 
from the origin and approaches u = 1 asymptotically while 
making some (possibly none) oscillations in between. It 
follows from (4.15) that the set I+(u) of “first return 
times” t as u changes from 0 to 1 is in general not a 
connected set. For the example in Fig. 3(b), we have 
I+(u) = P, t,lU(t*, co). 

5) The example in Fig. 3(b) demonstrates that, in gen- 
eral, the return time t is a discontinuous function of u and, 
hence, of the initial point x,,. This shows that it is, in 
general, impossible to express the return time t as a 
continuous function of x0. Consequently, our algorithm 
for calculating t in Theorem 4.1 is the best result obtain- 
able. 

Following the, same notation and proof as Theorem 4.2, 
we obtain the following theorem. 

Theorem 4.2. Calculating the r,,- Return Map: 
Given x0 4 (x,,, yo)r E LA,B,E,\AA,B,E,, the return 

map r;(xO) is given by (4.13), where (u, u) is the local 
coordinates of (x0, y,,), 1< u < 00, 0 < u d 1, and t is the 
first return time calculated explicitly as follows. 

(a) Use the second local coordinate “u” to calculate the 
inverse return-time function 

(cpb@d,h) +l 
u-(U’t)A (cp;(B,,,-A,,),h) * 

(4.22) 

(b) Use the first local coordinate “a” (1~ u < co) to 
calculate 

t=inf{t>Olu-(u,t)=u}. (4.23) 

It follows from Theorems 4.1 and 4.2 that the half-return 
map 7r0 defined in (4.9) can be explicitly calculated, i.e., 
without solving any system of nonlinear equations. Here, 
we assume that the inverse return time functions u+ (u, t) 
in (4.14) and u-(u, t) in (4.22) have been plotted and, 
hence, the first return times t in (4.15) and (4.23) are 
simply read off these curves. This operation is of course 
equivalent to finding the inverse of a function of one 
variable-a simple reliable task compared to that of solv- 
ing a system of transcendental equations. 
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--X 

(4 
Fig. 4. no associated with a monotone inverse return-time functions. (a) 

Vo @ne. (o,,,y,,,oI,yr,k)=(-0.3,1.5,0.2,-2.0,0.75). (b) Graph of 
the inverse return-trme functions u = u-(1, r) and u = u+(l, t). (c) 
Magnification of (b) over the region 0.90 < u < 1.10. 

For the rigorous proof and analysis in the following 
sections, it is neuer necessary to calculate the first return 
time t. Instead, the image under rrO of various constant-u 
lines, which is given explicitb via (4.10), (4.13), (4.14), and 
(4.22), is used directly. 

Example 4.1. rO with Monotone Inverse Return-Time 
Function: 

Consider the vector field 6 with (q,, yO, ui, yi, k) = 
(-0.3,1.5,0.2, -2.0,0.75). The images of theline segments 
B,A, and FOE, in the &-plane under the half-return map 
7r0 = n: are shown in Fig. 4(a) as two “spirals” from B, to 
C,, and from F, to C,,, respectively. We will henceforth 
denote such curves by [z] and [=I, where [ -1 denotes 
both end points are included. 

tl 
A 

I.,, p ,,,, ,,,,,,,, 

J u-u-( 1 ,t1 

u2- ,.or- ,/” .,, ... _, 
.\ 

ut--, 
,,.’ 

3rd 
%a 

. . . .._ 
“L . . ..__.. 

I.” - 2nd - 
-- ._...._. 

Wl”,” 
.. -,___. __. .._.- --------------- 

map .< 
./AJ=U+(l,t) : 

I.0 - 1st _ r.turn 
m*p 

(4 
Fig. 5. rrc associated with a nomnonotone inverse return-time func- 

tions. (a) V plane. (~o,y~,(1~,7~,k) = (-0.2,0.75,0.2, -1.0,0.75). The 
positions o P pomts a, W, x0 ( I+, 1) and x0 ( u2, 1) are not exact but are 
exaggerated to give more space. {b) Graph of the inverse return-time 
functions u = u- (1, r) and u = u (1, t). (c) Magnification of (b) over 
the region 0.90 < u < 1.10. 

The images of the line’segment A,A,, and E,,E,, 
(where A,, and E,, denote the extension of the respec- 
tive straight lines to + cc) in the VO-plane under the 
half-return map n, = - rr; are also shown in Fig. 4(a) by 
the “spirals” [C&4’,,) and [C,E&), where AL, and E& 
denote, respectively, the extension of the respective curves 
to +co. 

The eraohs of the inverse return-time functions u = 
~‘(1, t)“along BJ, and u.= u-(1, t) along A,&,, are 
shown in Fig. 4(b). A magnification of these curves in Fig. 
4(c) shows that both functions are monotone functions. 
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Example 4.2. r0 with Nonmonotone Inverse Return-Time 
Function: 

Consider the vector field 5 with (ua, yO, ui, yr, k) = 
(-0.2,0.75,0.2, - 1.0,0.75). The image in the VO-plane un- 
der the half-return map n,, = ~0’ of the line segment BoAa 
is shown by the spiral [a] in Fig. 5(a). Its corresponding 
inverse return-time function u+ (1, t) as shown in Fig. 5(b) 
and magnified in Fig. 5(c) is a monotone function as in 
Example 4.1. 

However, the image in the V$plane under the half- 
return map 7r0 = - r; of the line segment A,A,, consists 
of the union of two disconnected curves (EO] and [E). 
This phenomenon can be explained by looking at the 
associated inverse return-time function u-(1, t) in Fig. 
5(b) whose magnification in Fig. 5(c) shows a nonmono- 
tonic curve with a local minimum at t,, and a local 
maximum at t,. The image of the line seg_ment 
xO(u,,l)x,(u,,l) under vO=-lTg is the spiral [ab] in 
Fig. 5(a). 

If we plot the second and the third’ return maps of 
xc,(ul,l)xO(uz,l), we would obtain the curves (@ dur- 
ing the time interval t, < t Q t, and (a%‘) during the time 
interval t, < t < t,, where t, = inf{ t > t,lu-(1, t) = ur}. 

4.2. Half-Return Map VT, 
Consider next the D, unit at the top of Fig. 2(b) 

representing the image of D, in Fig. 2(a) under the affine 
transformation \k, (recall (2.10)-(2.12)). The three funda- 
mentalpoints A, B, and E in D, map into A,, B,, and E,, 

respectively. Here, we abuse our notation by using the 
same symbol D, to denote the top region in Fig. 2(a) and 
a point on the z-axis in the D, unit in Fig. 2(b). We will 
inherit the same notations in the preceding section with the 
exception that each subscript ‘0” corresponding to D,, unit 
should be changed to “1” for the D, unit. Hence, we 
define again a local coordinate system (u, v) such that the - - 
line segments E,F1 and A,B, in I’, in Fig. 2 correspond to 
the v = 0 and v = 1 coordinate line, respectively. Likewise, 
the line segments F,B, and E,A, correspond to the u = 0 
and u = 1 coordinate line, respectively. Any point xi in- 
side the wedge (angular region) bounded by B,A,, and 
B,E,, is uniquely identified by 

xl(u,v)=u[vA,+(l-v)E,]+(l-u)[vB,+(l-v)F& 

forO<u<cc andO<vdl. (4.24) 
Under this local coordinate system, we can define the 
triangular region A A,B, E, and the angular region 
LA,B,E, as follows: 

aA,B,E,s {~~(~,v)l(~,v)~E[0,1]X[0,1]} (4.25) 

LA146 p { xdu, v)I( u,v) E [O,cc)X[O,l]}. (4.26) 
Finally, we define the second half-return map 

TQ(X): LA,B,E, + V, (4.27a) 
via the obvious inverse image 

dx) = cp;‘b) (4.27b) 

Shaded area 
donotrr the 
fan-Ilk, roglon Y 

q A;B,E, 
r.ot,l,, ,,,,,,,,, [ ,,,, 

X 

-1.0 

-0.” 

-3.” 

-4.0 
-0.0 -5.0 -1.0 0.0 I.0 2.0 

Fig. 6. V, plane. ,, yl, k) = (-0.4,0.3,0.2, -1.0,0.3). 
F,w,D,p ?r,(F,), P q(z), aa q(e2a2), E,AIP 
w,(E,A,), and fi p q-‘(F,). The position of fi is exaggerated in this 
figure for clarity. The actual position of fi is very close to aI. 

where cp; ‘(x) denotes the flow (in the D, unit) from x to 
the first return point where the trajectory first intersects Vr 
at some “reverse” time - T < 0, where 

Our next theorem shows that 7r1 can be calculated by an 
explicit algorithm similar to that of r,,. 

Theorem 4.3. Calculating the rt Return Map: 
Given x1 p (x1, yl)= E LA,B,E,, the half-return map 

rl(xl) is given by 

7r1(x1(u,v)) =e-“I’ $f& u, v) (4.28) 

where (u, v) is the local coordinate of (xi, yr) = 
(xi(u, v), yi(u, v)), where 0 < u < cc, 0 < v ~1, and t is 
the “first” return time calculated explicitly as follows. 

(a) Use the first local coordinate “u” to calculate the 
inverse return-time function 

(4.29) 

where E,, A x,(u,O) denotes the location in R3 of a point 
along the line segment F,E, “u” units from F,, and 
A,, p xt(u, 1) denotes the location in R3 of a point along 
the line segment B,A, “u” units from B,. 

(b) Use the second local coordinate “u” (0 < v < 1) to 
calculate 

t=inf{t>O]v(u,t)=v}. (4.30) 

Proof: Follows mutatis mutandis the proof for Theo- 
rem 4.1. n 

Example 4.3. IT, with Nonmonotonic Inverse Return-Time 
Function: 

Consider the vector field 5 with (u,, y,, ui,yi, k) = 
(-0.4,0.3,0.2, -1.0,0.3). Since al(x) is defined to be the 
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(8) 

(4 

(h) 

Fig. 7. Graphs of the inverse return-time functions u = a( U, t). The parameter values are the same as those of Fig. 6. (a) 
o = ~(0 t . (b) Magrufrcanon of (a) over the region 0.995 < u < 1.005. (c) u = v( at, t), where ur = 0.570. (d) Magnification of 
(c) ovei ti .’ e regon 0 995 < u < 1.005. (e) u = v(u,, t), where u s = 0.786. (f) Magnification of (e) over the region 0.995 < u < 
1.005. (g) u = ~(1, t). (h) Magnification of (g) over the region 0.995 < u < 1.005. 
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reverse flow, the vector field (i(x) on Vi becomes - (i(x) 
in following the image of x under ni(x). Hence, the 
direction of t(x) along the line LzO = \k,( L,) in Fig. 3(a) 
must be reversed in the corresponding line Lll = \k,( L,) in 
Fig. 6. Hence, TV is discontinuous along the line seg- 
ment m in Fig. 6, whereas it is continuous along the line 
segment FIB,. This is the opposite of 7ro(x), which is 
discontinuous along FOB0 but continuous along E,F,. Note 
that E,F, corresponds to our v = 0 coordinate line. 

The image of FIB, under rri is the spiral [Fml] in 
Fig. 6. In Appendix IV, we shall prove that this spiral is 
tangent to the line”E,B, at Fl. The image of the line 
segment E,A, is shown in Fig. 6 as part of a large spiral 
[m]. The continuation of this spiral to the right of A; is 
the image of the extension of E,A, beyond A,. 

cum fla2, in addition to already being discontinuous 
along EiF,.23 

Let us summarize the behavior of vIT1 in Fig. 6 as follows. 

(1) T~(AA,B,E,) =a fan-like closed region q A;B,E, 
(shown shaded) in Fig. 6. 

(2) Ir,(B,aJ = D,. [:::: 1 
Here, ?r,(B,az) actually maps into the origin in the 
unstable eigenspace \k,( E ‘( P)), which becomes a 
stable equilibrium under the reverse flow v;‘. It is 
logical and convenient to identify the origin with 
D;= \k,(P+) in V,. 

(3) Since 7~~ is discontinuous along E,F,, we will de- 
fine (as in ro) 

The inverse return-time function v = ~(0, t) in Fig. 7(a) 
and its magnification in Fig. 7(b) shows that it is a 
monotonic increasing function of t. However, the inverse 
return-time function v = ~(1, t) in Fig. 7(g) and its mag- 
nification in Fig. 7(h) shows that it is not monotonic and 
has a value larger than 1 for t, -C t < t,, where t, p inf{ t > 
O]v(l, t) =l} is the time it takes A, to go to A;. The time 
interval (t3, t4) therefore corresponds to the time where the 
extension of the outer spiral [m] lies to the right of the 
line segment B&(i.e., the v = 1 coordinate line). 

rr(x) A x for all x E E,F, . (4.33) 

In particular 

dfl) = Al = 4. (4.34) 

(4) 

With this definition, r1 becomes continuous at 
El&. 

(5) 
Recall that FIB, and E,A, correspond to our u = 0 and 

u = 1 coordinate lines, respectively. There exist 0 -C ufi 
u2 < 1 such that the corresponding coordinate lines aleI 
(u = ur line) and a2e2 (u = u2 line) are mapped under ,rrr 
into the following two curves: 

(a) ~i(a,e,) is a spiral [e-r], which is tangent to 
E,B, at F,; 

or, is one-to-one at all points inside the triangular 
region A A, B, E, and its boundary except the points 
along the line segment [B,az) and the isolated 
point fi, i.e., on aA,B,E,\([B,a~U {fi}). 

-’ 71 is well-defined at all points in the fan-like 
region q lA;B,E, except for the two isolated points 
Fl and D,. 

(6) 

(b) n,(a,eJ is a curve [z], which is tangent to A;A, 
at B,. 

The graph of the inverse return-time functions v = 
v(ui, t) is shown in Fig. 7(c) and its magnification in Fig. 
7(d) shows that it is monotonic with an inflection point 

The spiral (F-J is the set of discontinuous 
points of rr;‘. The function a;’ is discontinuous 
at these points because r;‘(x) +fia2 from the 
right as x + W, from the right, whereas m;‘(x) 
+ FIBI from the right as x + WI from the left. 
This follows because the return map 7r1 is discon- 
tinuous along the curve fz, and because 7r1&$ 
= FIBI = 7rl- ‘(Fml). 

Using the above properties, we can now define the 
inverse half-return map s;’ as follows: 

i 

dv 2 

-=Oand $=O 
dt ;i 

where 
Tl -l: q A;,B,E,, + LA,B,E, (4.35) 

W,4El, A {(x, y, z) E V,(y > UlX + yl(l - x), x 91) 
(4.36) 

at some time t,. The graph of the inverse function v = 
v(u,, t) is shown in Fig. 7(e) and its magnification in Fig. 
7(f) shows that it is nonmonotonic with a maximum value 
v=l at t=t,, where t, is the time it takes to go from a2 
to B,. 

Now let fr be the inverse image of Fl in Fig. 6, i.e., 
7ri( f,) = Fl. Similarly, let the inverse image of FIBI be 
denoted by vx], namely, the curve fx in Fig. 6. Since 
the region bounded by the closed curve ele2a2fiel is 
found to map into the region bounded by the arc a, line 
FIB,, arc G, and line e2e1, whereas the neighboring 
region bounded by the closed curve jr=jr is mapped 
into the region bounded by the closed curve Fml 
in Fig. 6, it follows that ITS is discontinuous along the 

is the region above the line B,E,, and to the left of AlA;, 
in Fig. 6, and where 

$-l( Dl) p B, (4.37) 

q-y F,) A fl. (4.38) 

Note that ~1~ is discontinuous along [Fml]. 

4.3. Connection Map @ 
Since the Do unit and the D, unit in Fig. 2 have 

different reference frames, let us “match” the two units by 

23These additional discontinuity points occur when we choose our 
parameters close to those which gave us the double scroll. They may not 
occur inside A&i$& for other choices of parameters. 
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defining the affine connection map via the formula 

@ A (QJ”(~olcJ-l (4.39) 

where qll, and \k,l, denote the restriction of \k, and \ko 
on U,. Again, since zi =l- xi, it suffices to find the 
explicit formula relating (x0, yo) E Do to (x1, rl) E D,. 
Since 4, = (1, po,O) + A, = (1, pl,O), then 

[;:I 4[;;] =L[$-;o]+[;l]. (4.40) 
Hence 

(4.41) 

Now, since B, d (Box, B,,) + B, g (Blx, B,,) and E, A 
(E,,, E,,,) + El 4 (El,, El,), it follows from the action of 
L in (4.41) that 

It follows from (4.42) that 

El, - 4, 
El, - Al, 

Box-A,, Eo, - A,, -’ 
Boy-Aoy Eov-A,, I . 

(4.43) 

Substituting (2.20), (2.22), (2.24), (2.26), (2.29, and (2.30) 
for the respective components of Ai, Bi, Ei into (4.42) we 
obtain the following formula for L: 

v(x) = T;%)?T~@-~(x), if x E LA,B,E, 

= @~~Wb;‘(x), if x E V/\LA~B,E,. 
(4.46) 

Note that m(LA,B,E,) C LA,B,E, and r;l is well de- 
fined for all x E V/\LA,B,E, in view of (4.36). Here, Vi’ 
denotes the F/,-plane to the left of x = 1. 

4.5. V, Portrait of V, 
In our study of the global dynamics of the double scroll 

family in the following sections, we will often need to look 
at the image via @ of the half-return map of several line 
segments defined as follows: 

B,C,g hoW’( A,B,) = &ro( A,B,) (4.47) 

I;lc,g hoV( F,E,) = (avo( FOE,) (4.48) 

ma (ProW1( AlA,,) = Qro( A,A,,) (4.49) 

c,E;,e aToP( E,E,, ) = @vro( E,E,, ) (4.50) 

E,A;& q( E,A,). (4.51) 
-- 

The images G, s, C,A;,, C,E;,, and a ,for a 
typical set of normalized eigenvalue parameters { uo, yo, 
ul, yl, k} for a vector field < E To are shown in Fig. 8. We 
will henceforth refer to this picture as the V, portrait of V,. 
Note that Cl 2 @(Co) = q,(C). 

Stated in words, the V, portrait of V, consists of four 
distinct sets of points: 

- - 
Set 1. two boundary lines B,A,, and B,E,, represent- 

ing the V,-coordinates of points along the - - 
boundary lines BoAOoo and B,E,, of the infinite 
wedge LA,B,E,; 

(4 +G1 

L = (d+l)(ko +l)Q,y, 

-yl(k,+l)[Qo+uo<uo-vo><kl+1>1 vovdko +l)(kl +I> 

X I -y,(k,+l)(u,-yo)[u,(u,-y,)+lb Yo(kl+1)[Q,+y,(u,-y,)(ko+1)1 

I 

(4.44) 

-y~(ko+l)(u,-y,)[uo(uo-yo>+11 

where Qi k (ui - yi)’ + 1, k, A k, and k, 2 l/k. 
Note that L is expressed directly in terms of the normal- 

ized eigenvalue parameters {a,, yo, ul, yl, k}. 

4.4. PoincarP Map T 
We will now use the half-return maps r. and 7~~ and the 

connection map Q, to define a Poincare map 

77: v;-+v; (4.45a) 

where 

v;a {(X,j)EVrIX<l} (4.45b) 

Set 2. the boundary line E,A, of the triangular region 
aA,B,E,; 

Set 3. four spirals representing the image of points in 
Set 1 under the To-map (in Do unit) but 
translated into the coordinates on V,; 

Set 4. a partial spiral representing the image of the 
points in Set 2 under the al-map. 

In Section V, we will consider the important case when 
Set 4 includes the point C,, i.e., Cl E E,A;. 

4.6. Spiral Image Property 
The various spirals in Figs. 4(a), 5(a), 6, and 8 were 

calculated by computers for various specific sets of param- 
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-2.0 1.0 -3.0 -1.0 0.” 2.0 3.0 

Fig. 8. VI portrait of Va for (u,,,,J,~)u~, yr, k) = (-0.4, 0.5, 0.05, 

X 

-2.0, 

eters. In general, the image under $, r;, or rIT1 of any 
bounded straight line segment along a u = us or u = u0 
coordinate line is always a spiral. To prove this important 
property, it is convenient to rewrite (4.13) and (4.28) in a 
more compact form by identifying a point x = (xi, yi) in 
the I$-plane (i = 0,l) by a complex number (phasor) X = (xi 
+ h). 24 For example, (4.28) can be rewritten into the 
equivalent form 

T,( X1( U, u)) = X,(u, u)e-(“l+jl)’ (4.52) 
where Xi(u, u) B xia(u, u) + jx,,( u, u) and xi(u, u) p 
[%a(% u>, Xlb(W u)IT. 

Nbw for 1 E (0, &), X1( ~a, u(uO, t)) represents one point 
along the u = u0 coordinate line. If u( a,,, t) increases 
monotonically from u = 0 to u = 1 as in Fig. 7(a) when 
us = 0, then Xi(u, u) moves monotonically from u = 0 to 
u = 1 as t increases from 0 to co. If u(ua, t) is not 
monotonic but is bounded between u, and ub as in Fig. 
7(h), Xi(u,, ~(a,,, t)) will move back and forth along 
portions of the u = u0 coordinate line while moving from 
u, to Us. In either case, since x:Ju, u)+ x&(u, u) < co, 
q(uo9 u(‘Ql, t)) I+ 0 as t + 00. The loci of points under vi 
along u=us is therefore a shrinking spiral whose am- 
plitude is modulated in accordance with x1( us, u( ue, t)). If 
x1(2+), u(uo, t)) varies only slightly for all t E (0, co), as in 
the cases ,shown in Figs. 6 and 8, the shrinking spiral 
would look almost like a “logarithmic spiral.” The same 
interpretations apply to rri and r;. 

In view of the odd symmetry of the vector field 5, spiral 
images under TO’, 7r;; and rri always occur in odd-sym- 
metric pairs. This proves formally that the cross section 
along the Vi and U-i boundary planes of the double 
scroll attractor consists of two tightly wound odd-symmet- 
ric spirals, thereby justifying our choice of the name “dou- 
ble scroll.” 

Since the image of rz, r;, and v1 of an arbittwy curve 
or line segment in Vi is, in general, a curve with no special 
properties, it is indeed remarkable that the images along 

24 We use capital letters to denote phasors. 

the u = us and u = u,, coordinate lines are always spirals. 
It is precisely this observation that prompted us to choose 
this unconventional local coordinate system. 

V. PROOFOFCHAOSINTHEDOUBLESCROLL 

An equilibrium point Q of a vector, field 5 is said to 
have a homoclinic point if there exists a trajectory which 
tends to Q as t + + 00 and as t + - co. Such a trajectory 
is called a homoclinic orbit through Q. The significance of 
homoclinic orbits is given by the following important 
result. 
Shilnikou’s Theorem [9], [15], [19], [28], [29]25 

Let 5 be a continuous piecewise-linear vector field asso- 
ciated with a third-order autonomous system i = f(x), 
x E R3. Assume the origin is an equilibrium point with a 
pair of complex eigenvalues (I * jw (u < 0, w # 0) and a 
real e&revalue y > 0 satisfying ]a] < y. If in addition, 5 
has a homoclinic orbit through the origin, then 4 can be 
infinitesimally perturbed into a nearby vector field 5’ with 
a countable set of horseshoes. 

Since horseshoes give rise to extremely complicated be- 
havior typically observed in chaotic systems [9], one of the 
few rigorous methods to prove a system is chaotic is to 
apply Shilnikov’s theorem. In this section, we will prove 
the double scroll family (4.1) is chaotic by showing that the 
conditions of Shilnikov’s theorem is satisfied. In particular, 
we will prove that there exist parameters such that the 
trajectory along the unstable real eigenvector E’(0) from 
the origin will enter the stable eigenspace E ‘(0) in Fig. 
2(a) and, hence, return to the origin. By symmetry, the 
trajectory along the other unstable real eigenvector would 
behave in the same way. These two special trajectories are 
shown in Fig. 9(b) and are therefore both homoclinic 
orbits. 

Theorem 5.1. Homo&nib Orbits in the Double Scroll 
Family: 

Let 5 be any vector field in the double scroll family 

Assume E satisfies the following conditions. 

(i) Let C, 5 q,(C) mapunder rr;’ into a point on 
the line segment A,E, in the D, unit (see the Vi 
portrait of V, in Fig. 9(a).26 

(ii) In the Do unit (Fig. 2(b)), no trajectory starting 
from points on the line segment AoEo in the 
eigenspace z = 0 intersects the boundary line x = 
-1. 
Then c has a horrioclinic orbit through the origin. 
If, in addition, 

25The original Shilnikov theorem requires f( .) to be an analytic 
function. lhe piecewise-linear version we invoke in this uauer is used in 
[15] and [19]. - 

_ _ 

26Recall C is the intersection of the unstable real eigenvector at the 
origin with the upper boundary U, in Fig. 2(a) and n, is the half-return 
map defined in Section 4.2. Condition (i) means that G= ~r(ErAr) 
must pass through the point Cr. 
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Fig. 9. Homoclinic orbits. (a) VI portrait of V,. (b) Two odd-symmetric 

homoclinic orbits through the origin. 

w luol < Yo (5.2) 
then 5 is chaotic in the sense of Shihrikov’s the- 
orem. 

Proof: Theorem 3.2 guarantees that the vector fieid 
5 E 2. is continuous and the half-return map 7r1 is well 
defined. 

Consider the trajectory r, through the origin and mov- 
ing upward along the unstable real eigenuector E’(O) in Fig. 
2(a) until it hits at point C. Since C, = *i(C) and 
c; A q’ (C,) EA,E,= \k,(rQ (see Fig. 9(a)) in view of 
condition (i), it follows that the trajectory I?, through C 
must land at a point C, on segment AE in Fig. 2(a). But AE 
lies on the stable eigenspuce E ‘(0) at the origin, and since 
condition (ii) guarantees that the trajectory rFz through C, 
will not intersect the lower boundary U-i, it follows that 
I?,2 must remain on, the eigenspace E c(O) and converge to 
the origin as t + 00. Since r A I’, u I’, u I’,* tends to the 
origin as t + + do and as t + - 00, it is a homoclinic orbit. 

If, in addition, laoI < yo, then the hypotheses of Shilni- 
kov’s theorem are satisfied and, hence, 5 is chaotic. w 

Theorem 5.2. Chaos in the qouble &roll: 
The double scroll system (l.l)-(1.3) is chaotic in the 

sense of Shilnikov’s theorem for some parameters m,, m,, 
(Y, and /3. In particular, if m, = -l/7, m, = 2/7, and 
(Y = 7, then there exists some /3 in the range 6.5 < p Q 10.5 
such that the hypotheses of Shilnikov’s theorem are satis- 
fied. 

Before we can prove Theorem 5.2, we will need four 
lemmas to be stated and proved below. To avoid rep- 
etition, we make the following assumption. 

Standing Assumption: The parameters for all lemmas are 
m, = -l/7, m,,= 2/7, a= 7, /3 E J A [6.5,10.5]. (5.3) 

Also, we will use the abbreviated notation 
X t in a G X G b (resp., X J in b > X > u) (5 -4) 

to mean the variable X = X(p) increases (resp., decreases) 
monotonically and satisfies a Q mm(X) Q max(X) < b as 
p increases monotonically in the range J. 

Lemma 5.1: As p increases monotonically from & = 6.5 
to p2 = 10.5, the following parameters also vary monotoni- 

cally as indicated: 27 

(i) co t in - 1.066296 G to G - 0.906832 
9, t in 1.382371~ 3, < 2.228686 
y. 4 in 2.132590 >, To z 1.813664 (5.5) 

(ii) cYl 4 in 0.295297 > c1 > 0.138551 
G3, t in 1.879726 < t, d 2.527628 
j$ t in - 3.590593 < j$ < - 3.277103 (5.6) 

(iii) a0 t in -0.771352 < a0 < -0.406890 
u1 J in 0.157096 >, ui >, 0.054814 
y. J. in 1.542704 >, y. > 0.813782 
yi t in - 1.910168 Q yi < - 1.296513 (5.7) 

(iv) ko/yo t in 0.384997 < k,/y, Q 0.680079 
k,/y, J in -0.881427 > k,/y, 5 - 1.393659. (5.8) 

Moreover, the above bounds can be calculated to any 
desired accuracy. 

Proof: It follows from (l.l)-(1.3) that the real eigen- 
value yi corresponding to m = m i (i = 0,l) is a real root of 
the characteristic polynomial equation 

x3+(am+1)x2+(am-a++)x+c$m=O. (5.9) 

Solving (5.9) for /3, we obtain 

8=P(x)&x(x+l)-* 
x+am’ 

(5.10) 

It follows from (5.10) that if a > 0 and am >l, then p: 
(- co, - am) + Iw is an increasing bijection (i.e., one-to-one 
and onto), and if (Y > 0 and am < 0, then p: (- am, 00) + 
R is a decreasing bijection. Hence, for (Y = 7 and m. = 
-l/7 (resp., m, = 2/7), To (resp., 7,) decreases (resp., 
increases) and satisfies 

1.813664 < min(~o) < max(yo) Q 2.132590 

(resp., - 3.590593 6 min ( j$) G max ( yi) 6 - 3.277103) 
(5.11) 

as p increases from 6.5 to 10.5. 
Now the solutions of (5.9) are related to its coefficients 

as follows: 
2tj+fi= -((cYmi+l) 

~~+GD?+2~i~i=cy(mi-1)+J3 

yi( 6; + (3;) = - c$mi. (5.12) 

Solving for ci and (3; from (5.12), we obtain for i = 0,l 

fYi=-i(ami+l+Ti) 

&f=-i(ami-1-yi)2- 
a2mi 

yi+ami’ 
(5.13) 

Combining (5.11) and (5.13), we obtain properties (i) and 
(ii). 

Property (iii) follows directly from properties (i) and (ii) 
and the assumptions a0 < 0, y,, > 0, and 3, > 0. 

27Recall the following definitions: for i = 0 or 1, q d Ei/G,, y, 2 
~~/3,,k,~l/k,~k~-~~/~~,Qi~(ui-~i)2+1,pi~ui+ ($+l) X 
(ki/Yi). 
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(iv) For each fi E J Property (iv) follows from properties (i) and (ii) and the 
relationships 

k, 71 71 4 -=- - 
i-)/i- i 

- =-- 
Yl YO a1 70 * 

(5.14) 

Finally, note that the bounds in properties (i)-(iv) can 
be calculated to be exact to any number of digits because 
(5.10) and (5.13) are rational expressions. n 

Our next goal is to examine the loci of points obtained 
by applying the half-return map ri to the segment &A, 
(i.e., u = 1,O G u G 1) on Vi: they are obtained by substitut- 
ing u =l and u = ~(1, t) for t E 1(l) into (4.28), where 1(l) 
denotes the set of “first return times” for u E [O,l] 

40 = +l(L 4 t))) 

=e -01‘ 
[ 

cost 
-sint ~$]Xl(l, u(l, c)) (5.15) 

for t E 1(l). Using the phasor notation (4.52) (5.15) as- 

time. We will-now show that these two spirals are sand- 

sumes the following compact form: 

wiched between two logarithmic spirals. 
Remark: To simplify our notations, all vectors in the 

X(t) = X,(1, ~(1, t))e-(al+jl)‘, t E 1(l). (5.16) 

following three lemmas (Lemmas 5.2, 5.3, and 5.4) are 

Similarly, it follows from (4.13) that the loci of points 
obtained by applying the half-return map V$ to the seg- 

projected onto the x-y plane, and&ence, represent two- 

ment BOA0 (i.e., u = 1,O G u < 1) on V, assumes the follow- 
ing compact form: 

dimensional vecc. For example, UE, and so should be 

x(t) = xo(u+(l,t),l)e(OO+jl)t, 

interpreted as D,A, and a, respectively. 

t E I+(l) (5.17) 

where X0 is the phasor associated with x0 and I+ (1) is the 
set of “first return times” for u E [O,l]. We have already 

Lemma 5.2: 

identified the set of points in (5.16) and (5.17) as portions 
of a shrinking spiral whose amplitude is modulated in 

lAoI 2 IEole@O (5.21) 

where 6, > 0 denotes the angle subtended by the two 
vectors E, and a, on the x-y plane. 

Proof 

(i) It suffices to show that 

WI a I4 419 O>l a IJV (5.22) 

Since x,(1, u) = Z?i + um, u E [0, 11, it follows 
from plane geometry that ~ 

)x1(1, u)12 = 

If we can show that 

(Z&g)>0 (5.24) 

using 
obtain 

E,A; = ([(J&J~- ~d+l+ YIP&Q,, 

.* 

{P&J,(v YI)+~] - v&‘Q,). (5.26) 

Calculating the inner product between (5.25) and (5.26) 

$ 

we obtain 

(~,,EIA;)=-a,~,(p:+l)/Q,. (5.27) 

(5.27) and Lemma 5.1 (iii) (ai > 0, y1 < 0), we 
the desired inequality (5.24). 

This is proved by the same method as in (i). 
From (5.24), we have 0 < 6, < n/2. Hence 

9, < tan 6,. (5.28) 

Moreover, since 0.054814 Q ui < 0.157096 (Lemma 
5.1), it is easy to verify that 

1-2~~9~ < eT2’191. (5.29) 

Since (5.20) is equivalent to 

lE112/lA112 G ew2”1’l (5.30) 

it follows from (5.29) that to prove (iii) of Lemma 
5.2, it suffices to prove 

(9 

00 

(iii) 

For each p E J, and any time t E 1(l), the magni- 
tude of x(t) of the spiral (5.16) in V, is bounded 
by two exponentials 

IAlle-“l’> Ix(t)! > JElle-Olf. (5.18) 
For each p E J, and any time t E I+(l), the mag- 
nitude of x(t) of the spiral(5.17) in V, is bounded 
by two exponentials 

IAOleOOf > Ix(t)1 > IBOleOO’. (5.19) 
For each p E J 

lEll < IAlle-“l’l (5.20) 
where 9, z 0 denotes the angle subtended by the 
two vectors a, and OA, on the x-y plane. 

then (5.23) would imply (5.22) because (x,(1, u)12 is 
an increasing function of u E [0, l] and since ] A,J = 
lx,(Ll)l and IEd= Ixdl,W 

‘To prove (5.24), we make use of the first two coordi- 
nates of E, from (2.30) and A, from (2.26) to write 

OE’1=(Yl(Y~-o,-Pl)/e,,Y,[l-P,(a,-Y,)l/e,) 
(5.25) 

(E,12/IA,(2 ~1-2~~ tan6,. (5.31) 

Since A, and E, are projected onto the x-y 
plane, we can suppress the z- coordinate in (2.26) 
and (2.30) and obtain after simplification 

IA,12 = P; +l, l&l2 = Y:( P: +1)/Q,. (5.32) 
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Now define the normal vector to E, as follows: 

E,I p (-Y~~-P&I - u&Q,, 
YI(YI - UI- P&Q,> (5.33) 

then it follows from (2.30) that 

(E,I=IE:Iand ?%,l%il. (5.34) 

A straightforward calculation shows 

tan 9, = (721, z$)/c( zT1,z3,) 

=1/h - Yl>. (5.35) 

Substituting (5.32), (5.35) and (5.28) into (5.31) 
and solving for yl, we obtain 

(5.36) 

Hence, to prove (iii) of Lemma 5.2, it is sufficient 
to prove (5.36) holds over the parameter range 
assumed by yi and u1 for /3 E J. To verify this, 
note that the right-hand side of (5.36) decreases 
over the range 0.054814 G u1 G 0.157096 with a 
minimum value equal to - 0.1650. Since the maxi- 
mum value assumed by yi is -1.296515 (Lemma 
5.1 (iii)), it follows that (5.36) holds for all p E J. 

(iv) It follows from (2.20) and (2.24) that (5.21) is 
equivalent to 

(l+p,2)-(1+u~)eZUo90>0. (5.37) 

To prove this, let us define the function 

g(t)kl+tan2(cp+t)-(l+u,2)e2”of, 

t E [o, 4Il (5.38) 

and 

cphin-luoE -z, 
i 1 2O 

. (5.39) 

It is easy to verify that 

g(O) = 0 (5.41) 

g’(t)=2tan(cp+t)[l+tan2(cp+t)] 

-2u,(l+ u,2)e2”o’ (5.42) 

g’(0) = 0 (5.43) 

g’(t)20 for 0<1<:-~ (5.44) 

where (5.44) follows from a0 < 0 and - 7r/2 < ‘p <2Since 
E, = (1, uo), ‘p is the “negative” angle between OE, and 
the x-axis. Hence, 0 < 9, < 1~/2 - cp falls within the range 
of t in (5.44). Moreozr, since A, = (1, po) and ‘p + 8, is 
the angle between OA, ,and the x-axis, it follows that 
tan(cp + ao) = po. Hence, letting t = 9, in (5.38), we ob- 
tain 

g(9,) = (1+p,2)-(1+u~)e20~90>0. W (5.45) 

Lemma 5.3: For each /3 E J, the double scroll system 
(l.l)-(1.3) is a member of the double scroll family (5.1) 
and satisfies hypotheses (ii) and (iii) of Theorem 5.1. 

Proof: It follows from Lemma 5.1 that for each /3 E J, 
a0 < 0, y. > 0, u1 > 0, yi < 0, and k > 0. Hence, the vector 
field E E 9 defined by (l.l)-(1.3) is a member of Z. C 2 
in (5.1) for all p E J. Moreover, the ranges assumed by u. 
and y. in Lemma S.l(iii) imply .luol < y. for all p E J. 
Hence, we need only prove hypothesis (ii) of Theorem 5.1 
holds for all /3 E J. 

Suppressing the z-coordinate from (2.20) and (2.21), we 
can write 

A, = (1, PO), 
k0 

Po=~o+--(~cf+l) (5.46) 

where - 0.771352 G a0 d - 0.406890 and 0.813782 < y. d 
1.542704. Since 

poGmax(ao)+m= (max(u,2)+1) =0.39<0.4 

(5.47) 

we have 

lAoI =l+ pi x1.16 and ‘p. 2 tan-‘(p,) E 0, z 
i 1 

(5.48) 

where ‘p. is the angle between a0 and the x-axis. Now, 
for t>~/2-9~ 

<JiZexp[$max(o,)] 

= 0.78 cl. (5.49) 

Since 0 < ‘p. < 7r/4, it can be shown that the trajectory 
x,(t) starting from A, remains in the region x > 0 for all 
0 c t < r/2 - ‘po. Consequently, x,(t) never reaches the 
line x = - 1 for t > 0, namely, 

{ Xo(l,l)e(“o+jl)‘(t > 0} C {(x, y)lx > -l} (5.50) 

where each phasor on the left at any time t > 0 is identi- 
fied as a point in the x-y plane. Similarly, it can be 
shown that the trajectory x,(t) starting from E, never 
reaches the line x = - 1 for t > 0, namely, 

(Xo(l,O)e(oo+jl)t~t s- 0} C {(x, y)lx > -l}. (5.51) 

Since 

Xo(Lu> = ux,(Ll) +(1- ~)&0,0), u E [OJI 
(5.52) 

and since at any time t the flow of a linear system is a 
linear function of the initial state, it can be shown that 

{X0(1, u)e(oO+il)‘lt > 0} C {(x, y)lx > -l}. (5.53) 

n 
Lemma 5.4: Let C, p q,(C) = (xc, yo) and J’l A q,(F) 

= (xF, yF) on the x- y-plane28 in Fig. 2(b). Then for 

28Recall that all vectors in Lemma 5.4 are projected onto the x-y 
plane. 
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every/3 E J, we have 
x,<x,cl and y,>O. (5.54) 

Moreover, C, is a continuous function of j3 for all p E J. 
Proof: From (2.32), we identify 

xF=Y,(Yl -24/Q,, YF=Y~[~-~~(u~-Y,)I/Q,. 
(5.55) 

Since C, = *(Co) = Qi(O,O) when projected onto the x-y 
plane, where @ is the connection map defined in (4.40) and 
(4.44), we can calculate the exact coordinates of xc and yc 
as follows: 

X 
c=l- b:+l)[(uo+yokl)2+l] 

ko'+l)Q, 
(5.56) 

yc= 
~1b~,b,-~,)l (ul’+l)yok, 

Ql - (d+l>u,Q, 

~{kl~o[~,(~,-~,)+ll+2~0~,(~,-~,)}. (5.57) 
From (5.55) and (5.57), we obtain 

a:+1 
XF -xc= Q,(u,‘+l) Yok,(Y&, -20,) ’ 0 (5.58) 

because yak, > 0 and a0 < 0 for /3 E J (Lemma 5.1). Hence, 
xc < xF. The fact that xF < 1 follows from the geometry of 
the D, unit in Fig. 2(b), where A,B, lies on the line x = 1. 
To prove yc in (5.57) is positive, it suffices to show 

(~~+l)klYo{klYo[~~(~l-Y1)+11+2~0~~(~;-~1)~ 

‘[l-u,(a,-Y,)lY,2(u~++1) (5.59) 
because yi < 0 for p E J. We can rewrite (5.59) as follows: 

Since for all /3 E J 

>l-q,(u,-y,). (5.60) 

k,you, 4 
-=---0 and ~,(a,-yi)>O (5.61) 

YlUO 60 

we have 
{left side of (5.60)-right side of (5.60)) 

6; + (3: 
=- 

c2 + G2 
- 1 (because a, = &/Si, ?=O,l) 

0 0 

ml70 
=--1 

m0% 
(because yi (6: + 3:) = - cY/3mi, 

i=O,l) 

1095 

Fig. 10. The circles bounding S, and S, on the V, plane and related 
arcs. 

-2min(~o) 
>, 

&Pl 
- 1 = 0.0102 

1 2 
becausem,=-T,m,=? 

> 0. (5.62) 

Since yi is a continuous function of S in view of (5.10), it 
follows from (5.13) that li, (3,, and ki are also continuous 
functions of /3 for i = 0,l. Since C, = (x,, yc) is given in 
(5.56) and (5.57), C, is a continuous function of p. n 
Proof of Theorem 5.2 

It follows from Lemma 5.3 that it suffices for us to 
prove that hypothesis (i) of Theorem 5.1 holds for some 
p E J, i.e., we must prove that there exists some p E J 
such that C, E nl(E,A1) as depicted in the Vi portrait of 
V, in Fig. 9(a) when this happens. 

To do this, let us draw two concentric circles S, and S, 
with their centers at D, = (0,O) in the Vi-plane and a 
radius equal to IAll and lE11e-2n01, respectively, as shown 
in Fig. 10. Let I be the horizontal line through D, (i.e., the 
x-axis) and 1’ be the vertical line through F1. Clearly, 1’ is 
to the left of the x =1 line in view of Lemma 5.4. Let S, 
intersect I and I’ at points a and a’, respectively. Let S, 
intersect 1 at a point b to the left of D,. Depending on the 
value of lEll and ui, S, either intersects 1’ at two points, in 
which case the upper point is labeled b’, or otherwise, let 
b’ be the point where S, intersects 1 to the right of D,, as 
shown in Fig. 10. Let g- be the upper point where S, 
intersects the y-axis. Let R denote the region enclosed by 
the closed contour formed by either aa’b’nba (if b’ lies on 
I!) or s (if b’ lies on-l). In other words, R denotes 
the portion of the ring (area between S, and S,) above the 
x-axis and to the left of 1’. Hence, R is a simply-connected 
region. 
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Consider next the two logarithmic spirals 

x,(t>=E,exp[-(u,+jl)t], t>O (5.63) 

and 

X,(t)=~,exp[-(u,+~l)t], t ” 0. (5.64) 

Note that XA(t) and XE(t) correspond to the two shrink- 
ing spirals Am’ (starting from A, at t = 0) and E,cc’ 
(starting from E, at t = 0), respectively, as shown in Fig. 
10. It follows from Lemma 5.2(iii) that d” lies on the 
extension of the line D,E,. 

Since both 1 X,( t ) 1 and 1 X, ( t ) 1 shrink exponentially with 
the same rate ui, the time tElc it takes XE(t) to go from 
E, to c (where it first intersects i) is equal to the time t,,,, 
it takes X,(t) to go from d” to d (where it first intersects 
r). Note that tElc = t,,,, = L E, D,dn radians), where 
L E,D,d is the angle between D,E, and D,d. Since 
LE,D,d < 2~7, it follows that d must lie to the left of c, 
which in turn must lie to the left of b. 

Depending on ul, the continuation of the shrinking 
spiral from points d and c may either intersect I’ or 1. Let 
this point of intersection be d’ and c’, respectively. Let 
t,,,,, denote the time it takes to go from d” to d’ and let 
tE1,, denote the time it takes to go from E, to c’. Since 
t,,,,, < 2m and tEic, < 2a, both d’ and c’ must lie outside 
of S, in Fig. 10, and c’ must be below d’ in view of 
Lemma 5.2(i). Hence, d must lie between a and c, whereas 
d’ must lie between a’ and c’ in Fig. 10. 

Recall next the image under 7~~ of the line segment 

E,A, 7 {(x(u,u), y(u,u))lu=1,O~u~1} (5.65) 
and its extension beyond A,( u > 1) is given by 29 

x(t) = x,(1, ~(1, t))exp [-(q + jlbl, t 2 0. 
(5.66) 

A part of this image is shown by the bold spiral E,ee’ in 
Fig. 10 (it corresponds to a part of a in Fig. 6 and 
(4.51)). Here, e 2 X(t,) is the point at which X(t) first 
intersects I at some time t, and e’ $ X( t2) is the point at 
which X(t) first interesects either I’ or I to the right of D, 
(if it does not intersect I’) at some time t,. Since both e 
and e’ lie to the left of x =l, its associated starting point 
X,(1, ~(1, t)) must lie to the left of the u =1 line. Hence, 
we must have 0 < ~(1, ti) < 1, i = 1, 2, and 

x1(1> ~(1, ti)) E ‘IE, 7 i =1,2. (5.67) 

It follows that e must lie between c and d, and e’ must lie 
between c’ and d’ in Fig. 10 for all /3 E J. 

If we can show that there exists some p E J such that 
C, p q,(C) lies on the bold spiral 2, we will be done. 
Since C, is a function of j3 (assuming (Y, m,, and m, are 
fixed), we will denote this function by C,(p). Now sup- 
pose it is possible to find a & E J such that C,(&) is 
located outside of S,, and a p2 E J such that C,(&) is 

29Recall from Fig. 6 that the image under ?I of the extension of the 
line segment to the right of A, corresponds to th e extension of the outer 
spiral beyond Ai to the right and, hence, must he in the region with u > 1. 

-3.0 -P.” -,.o 0.0 I.0 2.0 3.0 

(a) 

-3.u -2.0 -1.0 0.0 1.0 2.0 3.0 

(4 

Fig. 11. Vt portrait of V and the two bounding circles S, and S, 
(which appear as ellipses &e to unequal horizontal and vertical scales). 
The parameters (a, /3, m,, mr) are (a) (10.5,7, -l/7,2/7), (b) 
(8.6,7, -l/7,2/7), (c) (6.5,7, -l/7,2/7). 

located inside of S,. Lemma 5.4 guarantees that C,(P) 
must lie in the simply-connected region 

ffb {(x,y)lx~x,, yzo}. (5.68) 

Since C,(p) is a continuous function (Lemma 5.4), the 
set (assuming without loss of generality 8, < P2> 

La {G03)I&a3a32} =H (5.69) 

is a plane curve (parametrized by p) starting from a point 
(p = j?J outside S, and ending at a point (j3 = p2) inside 
S,. Since this curve must lie within H, I, ‘must cross the ee’ 
spiral at some point &,, & < & < p2. Hence, hypothesis (i) 
of Theorem 5.1 is satisfied when B = &,. 



CHUA et al.: DOUBLE SCROLL FAMILY 1097 

It remains for us to show there exist & and p2 with the sponding to /3 =10.5, 8.6, and 6.5 are shown in Fig. 11(a), 
above stipulated properties. When /3 = 10.5, we calculate (b), and (c), respectively. It follows from Theorem 5.2 that 
(xc, yc) using (5.56) and (5.57) and obtain the double scroll system (l.l)-(1.3) has a homoclinic orbit 

]C,(10.5)] = 0.7064 < 0.8 < (E1]e-2no, = 0.9151. (5.70) when m, = - l/7, m, = 2/7, (Y = 7, and p = 8.6. 
2) Using the parameters ((Y, /3, m,, m,) = (7,8,6, - $, f), 

Similarly, when Jl = 6.5, we obtain we have confirmed by computer simulation the existence 

]C,(6.5)] ~1.4155 >1.3> IA,1 ~1.2477. (5.71) of a double scroll attractor similar to those reported in 

Hence, & = 6.5 and p2 = 10.5 represent one (out of many) 
HI-[51* 

3) Mees and Chapman [15] have also carefully analyzed 
valid choice. n the dynamics of the double scroll system (l.l)-(1.3) and 

Remarks: confirmed the existence also of heteroclinic orbits. 
1) By computer simulation, we have found the ap- 4) Additional insights and conditions for the appearance 

proximate value of PO = 8.6. The V, portrait of V, corre- of the double scroll attractor are given in [20]. 

Part II: Rigorous Analysis of Bifurcation 
Phenomena 

VI. BIFURCATION ANALYSIS 

By extensive and systematic computer simulations of the 
double scroll system (l.l)-(1.3) over a wide range of 
parameters ((Y, /3, m,, m,), which include those cited previ- 
ously in [l]-[6], we have observed two distinct types of 
chaotic attractors, in addition to various stable periodic 
orbits (both period-doubling types and periodic window 
types). The first type of chaotic attractor is sandwiched 
between the eigenspace through P+ and the eigenspace 
through 0, see Fig. 2(a), and is henceforth referred to as a 
Riissler screw-type attractor 3o because it bears a strong 
resemblance to a screw-like structure first reported by 
Rossler [21]. An odd-symmetric image of this attractor has 
also been observed between the eigenspaces through P- 
and 0, as expected. These two Rijssler screw-type attrac- 
tors are separated by the eigenspace through 0. The secbnd 
type of chaotic attractor is the double scroll, which has 
already been extensively reported [l]-[6] and which spans 
all three regions D- 1, Do, and D, in Fig. 2(a). As we 
increase the value of a for fixed /3, m,, and m,, we 
observe that the two disjoint Rossler screw-type attractors 
grow in size until eventually they collide and give birth to 
the double scroll [6]. As we increase (Y further, the double 
scroll grows while the co-existing unstable saddle-type peri- 
odic orbit shrinks in size until eventually they too collide 
with each other and the double scroll disappears thereafter 
[6]. This evolution scenario-henceforth called the birth 
and death of the double scroll-has been found to be quite 
typical over wide ranges of /3, m,, and m,. 

Our objective in this section is to use the analytical tools 
we have developed in the previous sections to carry out a 
rigorous analysis of the above bifurcation phenomena. 
Among other things, we will give a rigorous derivation of 

30For simplicity, we will refer to both “spiral” and “screw” attractors 
reported in [6] as a Rijssler screw-type attractor. 

the locations of the Rossler screw-type attractor and the 
double scroll attractor. This in-depth analysis in turn leads 
to an algorithm for actually calculating the bifurcation 
boundaries (see Fig. 17(a) and the frontispiece)-hence- 
forth called the birth and death boundaries-in the LX-~ 
plane which separate the double scroll attractors and their 
periodic windows from the other attractors (both chaotic 
and periodic). 

Before getting into the formal details, examine the typi- 
cal trajectories I’, and I, in Fig. 2(a) again. Note that Ii 
and I2 originate from a point on U, to the right, and the 
Zeft, respectiuely, of the boundary line Lo passing through A 
and E. This line therefore bifurcates the set of all trajecto- 
ries which return to D, from those which continue down- 
ward to De,. Recall next that all trajectories originating 
from U, to the left of L, (passing through E and B) must 
move down while those on the right of L, must move up. 
Finally, note that if ]yi] is large, as is the case when the 
Riissler screw-type attractor and the double scroll have 
been observed, all trajectories originating on either side of 
the top eigenspace E’(P) get sucked in rapidly toward 
E’(P) and eventually cross Vi along an infinitesimally 
thin “slit” centered at the line L, passing through A 
and B. 

We will show shortly that the triangle AABE bounded 
by the three lines Lo, L,, and L, is crucial in predicting 
the asymptotic behavior of the trajectories. As before, we 
will switch back and forth into the new reference frames 
corresponding to the D, unit and Do unit in Fig. 2(b) in 
order to take advantage of the analytical equations char- 
acterizing the Poincare map m in (4.46) and its associated 
half-return maps rro in (4.9) and ri in (4.27). Moreover, 
since it is essential to follow the dynamics originating from 
aAoBoEo A \k,(aABE), and taking place in the Do unit 
but viewed from the reference frame in the D, unit, the 
“vi portrait of vo” defined in Section 4.5 (recall Fig. 8) 
will play a crucial role in our analysis. In particular, the 
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dynamics taking place within the Do unit can be “trans- 
lated” into the D, unit via the “pull-up map” 

vr2 e &ro@-‘:~A,B,E, + V,. (6.1) 

6. I. Trapping Region 
The Vi portrait of V, corresponding to the parameters 

(cy, p, mot ml) = (4.0,4.53, -l/7,2/7), which corresponds 
to (uo,yo,ul,yl, k) =(-0.721,1.075,0.074, -1.600,0.530), 
is shown in Fig. 12. Note that in terms of the local 
coordinates (u, u), u =l along A,E, and u =1.53 along 
AluE1,, respectively. Recalling Fig. 8, we can identify the 
following images under the above pull-up map ~~‘2: 

B,CI=7r2(B,AI),~=7r2(qq) (6.2) 

C,A;:= rz( AA,), a= 772( -WI,) (6.3) 

A;:E;:= v2( AI”E1,), Fml= q( FIB,). (6.4) 

Recall that C, = r2(A1) = r2(E1) and any point on B,F, is 
defined to be a fixed point of rz. Let S,, denote the we - 
“snake-like” area bounded by B,C,, F&, and B,Fl and let -- 
S, denote the area bounded by CIA;:, C,E&, and A;:E;:. 
We will often refer to S, and S, as “snakes” and call 

S, p S, U S, = v~(AA,,B,E,,) (6.5) 
as the double-snake area. 

Let q lA;,B,E,, denote the fan-like region bounded by 
4,B1,B1E1,, and 

Gz= T( J%4, >. (6.6) 
Note that the double-snake area S, is bounded within 
q A;,B,E,,. Had we chosen E,,A,, nearer to EIA,, where 
u is closer to 1, the corresponding fan-like region 
q A;,B,E,, could actually cross the double-snake area S,. 
Since a key assumption in our following analysis is that 
S, = W,B,E,,, we must choose u to be sufficiently 
large. However, as we will see in Section 6.3, u should not 

‘be chosen too large either. For the parameters associated 
with Fig. 12, u = 1.53 is a satisfactory choice. 

Translating the above definitions back into U, in Fig. 
2(a), we can interpret the corresponding snake-like area 
S 4 \k; l( S,) as the set of all points q; ‘( S,) where retum- 
ing trajectories of the type I, originating from AABE 
intersect the l-7, plane, and the set \k;‘(S,) represent- 
ing the odd-symmetric image of the set of all points 
where returning trajectories of the type I, originating 
from LABE \A ABE intersect the U-, plane. Since 
?r,‘(OA;,B,E,,) = AA~,,B~E~,, and since S, c OA;,B,E,,, 
it follows that s;‘(S,) c AA~~B~E~,,. Consequently, if we 
restrict our Poincark map n: Vi + Vi to the region 

9-k AA~~B~E~,, (6.7) 

henceforth called the trapping region, then a(Y) C Y. 
Hence, we have isolated a small area on Vi’ where the 
Poincare map 7~ maps into itself. 

Since the double-snake area S, does not intersect with 
the spiral Fml = I~,(F,B,) except Fl, it can be proved 

to Al, 

Fig. 12. VI portrait of V. with trapping region .T A AA,,B,E,,. 

(see Appendix V) that L 

(1) B : 9 + Y is a continuous map 

(2) a(Y) is a compact (i.e., bounded and closed) subset 
of .7. (6.9) 

It follows from (6.9) that31 

AA n 7r”(.9-) 
II>0 

(6.10) 

is a-invariant in the sense that 
+)=A 

because 

(6.11) 

IT ( n n”(Y)) =77(.Tn7?(.7)n7r2(.F)n ..-) 
?I>0 

c~(.T)n~~(~)n~~(.F)n ... 

= n 7?(F) =.Tn( n 1r”(.9-)) 
nbl n>l 

= n Irn(.9-) (6.12) 
n>O 

and because a(A) 1 A is proved in Appendix V. 
If we define 

AikAulr,(A) (6.13a) 

and 

dPclosureof( u ‘p’[\k;‘(A~)“(-~;‘(A~))]} 
t>o 

(6.13b) 

where q’(x) is the flow associated with (l.l)-(1.3), then A 
can be interpreted as the cZosure32 of the Rbssler screw-type 
attractors, or the double scroll, depending on the parame- 
ters. We will henceforth call A an attractor of the double 
scroll system (l.l)-(1.3). 

31We denote the nth iterate of B by T”, e.g., n’(5) 2 .T, a’(Y) d 
a(F); 7?(F) P a(fl(Y)), etc. 

321t is traditional to define an attractor as a closed set. Zf we do not take 
the closure, ii would exclude the origin and, hence, would not be closed. 
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Since 7r”(Y) C interior Y for all n > 2, it follows (see 
Appendix V) that there exists an open neighborhood N(i) 
of ii which satisfies 

d= n r&v(A)). (6.14) 
t,o 

Hence, ii possesses the properties of an attractor defined 
by several researchers including Hurley [22]. 

Observe that the region 7 in (6.7) is called a trapping 
region of A because Y is a neighborhood of A and every 
trajectory originating from Y tends to A under the Poin- 
care map IT. Although there exists some attractor ii in the 
literature which contains no dense orbits,33 our computer 
simulations strongly suggest that both the Rijssler screw- 
type and the double scroll attractors contain at least one 
dense orbit. 

The macroscopic structure of ii associated with 
(l.l)-(1.3) has been carefully analyzed by computer simu- 
lations in [3], where we have discovered that each x = 
constant cross section of d consists of two tightly-wound 
spirals-hence, the name double scroll-for some parame- 
ter values. For example, the double-snake area S, u S, 

defined in (6.5) and shown in Fig. 12 (see also the upper 
snakes S, and S, in Fig. 14(b)) corresponds to the x = 1 
cross section. 

The microscopic (local) structure of A, however, is much 
more complicated. Indeed since li contains infinitely many 
horseshoes at least for some parameters (recall Theorem 
5.2), we can expect that the local structure of ii consists of 
a product between a manifold and a Cantor set similar to 
that described in [23]. 

Observe, however, that if the magnitude of the real 
eigenvalue j$ at P+ ($ < 0) is very large compared to the 
real part of the other eigenvalues, then the set A, must be 
tightly squeezed near the curve34 

- - 
As A ( A,B, u A,&, ) u (Ku C,A;,). (6.15) 

The reason responsible for this important property is due 
. to the strong rate of contraction of the trajectory compo- 

nent along the real eigenvector E’(P) in Fig. 2(a) on the 
one hand, and the fact that trajectories passing through 
points on A, represent the, asymptotic behavior, i.e., long 
after the trajectory component along E’(P) has shrunk to 
an infinitesimal value,.*thereby ensuring that the trajecto- 
ries through A, are literally coasting on the surface of 
E’(P) in Fig. 2(a). This mechanism explains why the 
double scroll in [3] must cross the Vi and U-r plane along 
a very thin contour. 

The above analysis shows that, in so far as computer 
simulation is concerned, all trajectories originating from 
the attractor A can enter Do from D, only through the 
infinitesimally-thin gate centered at 9;l(A1B1) c L,, 

33“A has a dense orbit” means that so-me trajectory originating from k 
visits a neighborhood of every point of A. Roughly speaking, this implies 
that numerical errors in computer simulation are sufficient to 
guarantee that the entire attractor A will be observed by integrating from 
a single initial point. 

34For the parameter assumed in Fig. 12, we can replace A,, by A,,. 

henceforth called the upper entrance gate, or at 
\k;l(A,A,,) c L,, henceforth called the lower entrance 
gate. Likewise, returning trajectories exiting from D, to D, 
can do so only through the infinitesimally-thin gate centered 
at \ki-l(&?& henceforth called the upper exit gate, and 
(by symmetry of the vectorfield 5) returning trajectories 
exiting from Do to D- 1 can do so only through the 
infinitesimally-thin gate - *k; l(m), henceforth called 
the lower exit gate. 

We will often abuse our terminology by also calling A,B,, 
A,A,,,-- B,C,, and C,A;, the, upper entrance gate, lower 
entrance gate, upper exit gate, and lower exist gate, respec- 
tively. Their union As will henceforth be called i-gates. 
These gates will play a crucial role in our following bifur- 
cation analysis. 

6.2. Birth of the Double Scroll 
Our computer simulations in [6] consistently show that 

as cy increases (for fixed /3, m,, and m,), the two Rijssler 
screw-type attractors eventually collide with each other, 
and that the double scroll suddenly emerges after any 
further infinitesimal increase in (Y. We will henceforth refer 
to this collision process as the ‘birth of the double scroll. Our 
objective in this section is to derive the bifurcation value (Y 
which heralds this event. 

A qualitative picture of the structure of a RGssler 
screw-type attractor corresponding to the value of (Y at the 
collision point is shown in Fig. 13(a). Note that the attrac- 
tor “funnels through” the upper entrance gate AB where its 
extreme left point on U, coincides with A in Fig. 13(a). 
Any further increase in (Y would cause this attractor to 
expand with its extreme left point on U, appearing to the 
left of A, thereby causing this trajectory to move down- 
ward and eventually link up with its twin from the D-, 
region. 

Translating this picture into the Vr-plane, we obtain the 
Vi portrait of V, in Fig. 13(b), where we have assumed35 
that m= ?r,(A,E,) intersects the line \k,(L,) = {(x, y)jx 
=l} at A; as shown in Fig. 13(b). The snake area S, -- 
bounded by B,C,, FJ,, and B,F, is tangent to EIQIA;= 
T~(E,A,) at Q,. Since the Rijssler screw-type attractor 
above the eigenspace E ‘(0) is not connected to its twin 
below E’(O), only one snake S, is shown in Fig. 13(b)36 

The ~1~ image of the upper snake S, gives rise to 
another snake-like region S:, A r;‘(S,) in Fig. 13(b). Since 
S, = T;%~(AA,B,E,) = a(aA,B,E,), the lower snake Sa 
is the image of the triangular region aA,B,E, under the 
PoincarC map 7. Consequently, Sl, must be tangent to E,A, 
at Qi = n;r( Q,). 

It follows from the above analysis that the birth of the 
double scroll must occur at such a parameter value that the 
upper snake S, is tangent to rl(E,A,). A computer-calcu- 

35For some parameter values, vrl(AIE1) may clear the x =l line and 
spiral toward F, as in z in Fig. 6. 

36Recall two snakes S, and S, are present in Fig. 12 and (6.5). 
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(b) 

Fig. 13. Geometrical structure at the birth of the double SC x011. (a) Macrosconic nicture of the oriainal svstem. (b) En- .-. 
largement of the VI portrait of 5. Ggvr2(B,Al) is tangent to GAiI(m) at Q,. “$ kic’(S,)‘ is an 
“infinitesimally” thin set (infinitely many layers compressed into a sheet) whose actual location is very close to A,B,. (c) VI 
portrait of b for (a,/~?, q, ml) = (8.8,14.3, -l/7,2/7). GA n2(B,A,) is tangent to Gg q(AIE1) at Q,. 

lated example of such a situation is shown in Fig. 13(c), 
which corresponds to the parameter values (a, p, m,, m,) 
= (8,8,14.3, - l/7,2/7). 

6.3. Death of the Double Scroll 
Using a “shooting method” [24], we have discovered [3] 

an unstable (saddle-type) periodic orbit actually co-exists 
with the double scroll. As we increase CI while fixing /?, 
m,, and m,, we observe the periodic orbit shrinks while 
the double scroll grows in size. At the parameter a0 (or 
just below to be precise) where they collide with each 
other, the double scroll suddenly disappears while the, 
unstable periodic orbit continues to exist. We refer to this 

collision event as the death of the double scroll and our goal 
is to derive’the parameter (Y when this occurs. 

Fig. 14(a) shows the double scroll at the verge of collid- 
ing with the periodic orbit r* (shown dotted). Let I?* 
intersect U, at point H - in its downward swing and at 
point H+ in its return upward swing. Note that H- must 
lie to the right of the line L, because as r* moves down 
through H- in Fig. 14(a), it will first hit U-, and turn 
around without hitting E ‘( P- ), and eventually hit U- 1 in 
its upward swing at a point & A - H- to the left of e, 
(odd symmetric image of L,). Hence, H- E LABE. 

Let H; k \k,(H-‘) and Hc k qI,(H+). Since Hc and 
H; are fixed points of g, we have 

H; = q(H,-) = n2(H;) (6.16) 
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Snake Sa 

Fig. 14. Geometrical structure at the death of the double scroll. (a) Macroscopic picture of the orii system.(b) 
Enlargement of the Vt portrait of V,. H: and H; denote the position of the saddle-type periodic orbit. BrCr d q(BIA1) is 
tangent to Exe wl(Elu,Alu,) at Q,. $a U $ is an “infinitesimally” thin set (infinitely many layers compressed into a 

sheet) whose actual location is very close to Aluo B,. (c) Vt portrait of V, for (a,/?, ma, ml) = (10.73,14.3, -l/7,2/7). 

as shown in the Vi portrait of V, in Fig. 14(b). Note that a 
double-snake area S, g S, U S, now appears in Fig. 14(b) 
because the double scroll in Fig. 14(a) intersects U, on 
both sides of the line Lo. The ~1~ image of S, and SJ is 
shown in Fig. 14(b) by another double-snake area S, d 
ai ‘( So) and-$;, e k;- l<s,). 

Now, given the cqordinates of H- as obtained by the 
shooting method, we can identify the corresponding local 
coordinates ( uo, vo) of H;, namely 

H; = xl(uo, v,). (6.17) 

From this, we can define the local coordinates of AIuO and 

EIuO as follows: 

Al,O=uoAl+(l-uo)B,, E,,O=uoE,+(l-uo)FI. 
(6.18) 

Since El,OA1,O p asses through the point H<, q(EluOAluJ 
passes through the point H[ as shown in Fig. 14(b). In 
Appendix VI, we will show that EluOAluO is an excellent 
approximation of the stable manifold 

W”( H;) = {x e LA,B,E,(T”(x) + H; as n + 00) 
(6.19) 

that is, W’( H; ) = EluOAIuO. 
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Now let A,,,, denote the intersection of the double scroll 
attractor with U, and define A, = *,(A,). By definition, 
the death of the double scroll occurs when A, intersects 
the points Hc (and H;). This condition is equivalent to 
the condition that A, touches the stable manifolds W”( H: ) 
because x E W’( H: ) n A, implies H: = lim, + mv “( x) 
belongs to W”(H:)n A1 c A,. Since the upper exit gate 
G approximates a portion of A, as stated in Section 
6.1, the parameter value where m touches fix,= 
7ri(Alu,EluJ = W’( H[ ) gives an excellent approximation 
of the value at which the double scroll disappears. 

The preceding analysis shows that the V, portrait of V, 
corresponding to the death of the double scroll must be as 
shown in Fig. 14(b). Observe that the upper snake S, must 
be tangent to Q, and, correspondingly, the lower snake $ 
must be tangent to Q;. 

To show that the double scroll would disappear if the 
oarameter is further tuned so that 0: crosses the stable 
manifold W”(H;) = E,, A,, and m%es below E,, A,, , 
we note that in this caie 370the iterates of 0: under i 
would eventually leave the trapping region k-and fail to 
converge to an attractor within Y. 

A computer-calculated Vi portrait of V, corresponding 
to the death of the double scroll is shown in Fig. 14(c), 
where (a, /3, m,, m,) = (10.73,14.3, -l/7,2/7). The point 
Hc is not identified in Fig. 14(c) because it is located very 
close to the point AiuO. 

6.4. Hole-Filling and Heteroclinic Orbits 
All the double scrolls given in [llr[5], have a hole 

centered at P+ and P- because the parameters were such 
that no trajectory in i passes through the point D in 
Fig. 2(a), where the real eigenvector E’(P+) hits U,. It 
is possible, however, to choose parameters such that D 
lies on A. For example, when ((Y, p, m,, m,) = 
(9.85,14.3, - l/7,2/7), the corresponding Vi portrait of 
V, is as shown in Fig. 15(a). Note that D, = 9,(D) lies on 
the lower exit gate a= I~,(A,A,,). Now, assuming38 
that the set A has a dense orbit under the “discrete” 
Poincart map 8: .? + Y defined in (6.7), then, since 
C,A;, converges (under a) rapidly to a point in A, p A u 

rz( A), it follows that we can make an infinitesimally-small 
perturbation on p so that D, lies on A, A A U rz(A). 
Under this condition, there exists a trajectory originating 
from D, in Fig. 2(a) which exits U, at exactly the point D. 
Such a trajectory would then follow the real eigenvector 
E’(P+) and converges rapidly toward P+. Since P+ is an 
“ unstable focus” when restricted to the eigenspace E “( P+ ), 
it follows that the resulting double scroll will not have a 

37The unstable manifold W’(H; ) in this case must be a subset of $ 
because W”(H; ) is an invariant set and the only i_nvariant set in Fig. 
14(b) other than W’(H; ) which contains H- is S,,. A more detailed 
discussion of the stable and unstable manifol d s of H; and H: is given 
in Appendix VI. 

38This assumption is consistent with all computer simulations of the 
double scroll observed so far. Note that the dense orbit here differs from 
that associated with A in (6.14): the dense orbit in x pertains to a 
“continuous flow,” whereas the dense orbit in A refers to a “discrete 
map.” 

(b) 
Fig. 15. A hole-filling double scroll appears when (a,/?, mc, mt) = 

(9.85,14.3, -l/7,2/7). (a) Vt portrait of Ve. (b) The double scroll 
with hole-filling orbits. 

hole and is henceforth called a hole-filling orbit. The dou- 
ble scroll in Fig. 15(b) is a case in point. 

Clearly, another hole-filling orbit exists when D, lies on 
the upper exit gate G= vi(A,B,). 

Suppose, in addition to D, E C,A;, in Fig. 15(a), the 
point B; p m;‘(B1) lies on the lower entrance gate A,A,, 
in Fig. 15(a).39 This implies that B;’ 2 q(Bi) lies on the 
lower exit gate C,A;,. Now assuming D, lies between B; 
and C, on a, then the hole-filling orbit starting from 
P+ would, after entering D, from above, continue to move 
downward and eventually hit U-i at D- = - \k;‘( Dl), 
where the lower eigenvector E’( P- ) intersects U-i. By the 
odd symmetry of [, the return orbit would be a symmetric 
image and, hence, must exit U, at D. Such a hole-filling 
orbit is called a heteroclinic orbit. 

39Note that B; corresponds to the point a2 in Fig. 6 (except that, for 
the parameter used in Fig. 6, a2 lies on the upper entrance gate). 
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Since Shilnikov’s theorem also applies when the “homo- 
clinic orbit” in the hypotheses is replaced by a “hetero- 
clinic” orbit [15], [25], any rigorous demonstration of the 
existence of a heteroclinic orbit would also prove the 
existence of chaos in the double scroll system (l.l)-(1.3) in 
the sense of Shilnikov. Such a demonstration has been 
given recently in [15], where a computer-calculated hole- 
filling heteroclinic orbit is shown. 

6.5. Homoclinic Orbits [26] 
We have already proved the existence of at least one 

homoclinic orbit through the equilibrium point 0 in Sec- 
tion IV. To complete our bifurcation analysis, Fig. 16 
shows the Vi portrait on V, associated with such a homo- 
clinic orbit, where ((u, j?, m,, ml) = (4.1,4.7,-l/7,2/7). 
Note that the point C, lies on E,A; as required by 
hypothesis (i) of Theorem 5.1. 

Homoclinic orbits through the other two equilibrium 
points Pi and P- can also occur under appropriate 
parameter values. In particular, they occur when one of the 
following two conditions is satisfied: 

1. (a) e~Ir;l(B,) lies on the upper entrance gate 
A,B,, as shown in Fig. 15(a). 

(b) D, lies between 3;’ A ~r,(fi;) and B, on the 
upper exit gate B,C,. 

2. (a) 8’; k rIT-’ B ( 1) lies on the lower entrance gate 
AlAW 

(b) D, lies on the upper exit gate G (between 
B, and C,). 

6.6. Bifurcation Diagram 
Using the conditions derived in Sections 6.4 and 6.5 for 

the birth and death of the double scroll, we carry out a 
detailed (double-precision) computer bifurcation analysis 
of the a-j? parameter plane (with m, = -l/7 and ml = 
2/7). First, we derive the set of all (cy, p) for which the 
eigenvalue at P + is pure imaginary, i.e., when a”, = 0. It 
turns out that by 
explicitly, namely, 

fixing m, = l/7, this set can be derived 

P=(l-m,)a(m,a+l). (6.20) 
Substituting m, = 2/7 into (6.21) we obtain curve 0 in 
Fig. 17(a). It follows from the Hopf bifurcation theorem 
that any parameter (OL, fi) where P+ and P- are sinks (i.e., 
4 < 0 and & < 0) lie above curve 0, henceforth called 
the Hopf bifurcation curve, and that for (cy, p) in a small 
band to the right of this Hopf bifurcation curve, we can 
expect nearly sinusoidal oscillations. 

The sets of (a, @) which give rise to the birth and the 
death of the double scroll are given by curve @ and curve 
0, respectively. It is natural to call curves 0 and @ the 
birth boundary and the death boundary, respectively. 

It follows from our preceding analysis that those param- 
eters (a, p) associated with the period-doubling and the 
Rossler screw-type attractor must all lie between the Hopf 
bifurcation, curve 0 and the birth boundary curve 0. All 
parameters associated with the double scroll must lie be- 

Fig. 16. The Vt portrait of Va which give rise to two odd-symmetric 
homoclinic orbits through the origin when (a, p, m,,, ml) = 
(4.1,4.7, -l/7,2/7). 

Hopf blfurcatlon occurs @ 
along this curve, ,/ 

Y birth 
,/f’ 

P 
boundary -$,.’ 

(a) 

(b) 
Fig. 17. (a) The exact bifurcation diagram on the n-p plane (drawn 

with (m , m,) = (-l/7 2/7)). (b) Detailed a-8 bifurcation diagram 
derived Prom the 1-D .Po!mcarC map from Section VII shows a self-simi- 
lar structure, where the same pattern (see enlargement in Fig. 18(f)) 
appears repeatedly in increasingly smaller clones arbitrarily close to the 
origin. The isolated thin color streak represents an artifact of the 
graphics software and is not therefore a part of this figure. 
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(b) 

(4 

Fig. 18. The a-/3 bifurcation diagram based on 1-D Poincare map with (ma, m,) = (- l/7,2/7). Each region with the 
same color has identical qualitative behavior: 

equilibrium point = light blue or black; 
period-l = red; 
period-2 = orange; 
period-4 = yellow; 
period-8 = green; 
period-16 = blue; 
chaos or period greater than 32 = purple; 
periodic window with period # 2” = white. 

Due to printing imperfection, the “printed” colors may differ from those specified in the above le end. For example, “red” 
may appear to be “crimson” and “orange” may appear to be somewhat “yellowish.” (a) a: 0 - 18, ,8: 0-35.(b) a: 6-18, /I: 
7-35. (c) a: 9-18, p: 14-35. (d) a: 12-18,/3: 21-35. (e) a: 12-18,/3: 28-35. (f) a: 15-18,p: 28.-35. 
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tween this birth and death boundary. Of course, there exist 
numerous periodic windows within the region bounded by 
these two boundaries. 

Fig. 17(b) shows the a-p bifurcation diagram derived 
from an “approximate” one-dimensional Poincare map to 
be derived in Section VII. Such a one-dimensional map 
yields results virtually indistinguishable from those derived 
using the preceding exact but much more time-consuming 
analysis. By “zooming” in various regions of Fig. 17(b), we 
obtain the five magnified pictures in Fig. 18(b)-(f). The 
colors in these pictures correspond to parameter regions 
having identical qualitative behaviors, as defined in the 
figure caption. 

Whereas the a-/I bifurcation diagram in the fron- 
tispiece gives only boundaries separating regions where 
certain qualitative behavior could (but need not) occur, 
those in Fig. 18 give a much finer structure showing the 
chaotic region (in purple) is not a contiguous area, but 
rather is interspersed by countless periodic windows, as 
predicted in Section VII. This picture also reveals a re- 
markable “self-similar” structure at different scales in the 
a-P plane. 

VII. ONE-DIMENSIONAL-P• INCAI& MAP 

Our analysis in Section VI shows that the qualitative 
behavior of the double scroll system (l.l)-(1.3) is de- 
termined essentially by the two-dimensional Poincare map 
7~ of points on an infinitesimally-narrow “corridor” 
centered along the two entrance gates A,& and A,A,, 
which correspond to the semi-infinite line L: c L, defined 
in Fig. 1 to be that part of L, to the left of point B. Since 
this “corridor” is “numerically” indistinguishable from L; 
when Iv11 is relatively large compared to the other eigen- 
values, it is natural therefore to define a one-dimensional 
approximation r* of the Poincare map r by restricting its 
domain to L;, and compare its qualitative behavior with 
those of 7~. By brute-force computer integration of the 
system (l.l)-(1.3), we have constructed such a 1-D Poin- 
care map for many parameter values. Our “numerical” 
results show that inspite of the inevitable local truncation 
and round-off errors, this 1-D PoincarC map predicted all 
of the qualitative behavior that we have so far observed by 
computer simulation (including period-doubling, periodic 
windows) and by rigorous analysis in the preceding sec- 
tions (e.g., Rijssler screw-type attractors and the double 
scroll). 

This remarkable observation motivates a more rigorous 
analysis of this 1-D discrete map. In order to do this, it is 
necessary to describe this 1-D map in analytic form. Our 
main objective in this final section is to derive this 1-D 
map r* and analyze its qualitative behavior. It turns out 
that a much simpler analytical expression for YT* is possi- 
ble if we choose the domain of the function v* to be 
another semi-infinite line segment -P+N and its extension 
beyond N to N, at infinity as shown in Fig. 1. This line is 
constructed by connecting the point A4 2 \k;‘(l, 0,O) and 
point P+ by a straight line and extending it beyond N to 
oq and deleting the portion P+M in Fig. 1. In other words, 

lo N,,- 

/ 
/ ‘v=l 

(4 
A-7 

-X 

Fig. 19. Geometrical interpretation of the definition of the 1-D 
Poincare map T*. (a) WI plane in the D, unit. (b) Graph of Q* for 
(u,,,y,,,aIryI, k) = (-0.42,0.5,0.15, -l&0.2). 

we will define the 1-D Poincart map 

T*: P+N, + p+N,: (7.1) 

In order for r* to be well defined, we must make the 
following two assumptions: 

(1) The spiraL= (i.e., the ‘kc1 image of the lower 
exit gate CIA;,) on Vi of Fig. 1 does not intersect 
the line L, through points E, F, and B. 

(2) The point D (where the real eigenvector hits Vi) on 
Vi in Fig. 1 is located on the left-hand side of CA’,. 

To prove that r* in (7.1) is well defined under the 
above assumptions, it is more convenient to translate our 
analysis into the D, unit in Fig. 2(b) via the coordinate 
transformation qk,, which we redraw in Fig. 19(a). Con- 
sider the rectangular region 

w,fi {(x, y,z) ER31X<0, y=o} (7.2) 
- 

passing through the line segments ON, and G,. Since 
0 = \k,(P+ ), D, = qk,( D), and Ni = q,(N), it follows that 
W, corresponds to the plane W in Fig. 1 passing through 
the two line segments p+D and ND. 

Now, in terms of the local coordinates (u, v), points 
along the line B,A,, are uniquely identified by a single 
coordinate u since v = 1 on this line. In particular, any 
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point x(u) on this line is described by 

x(u) =q(u,l), O,<u<lifr(u)E B,A, 

l<u<ccifx(u)EAiAi,. 

(7.3) 
Since B,A,, lies on the eigenspace \k,(E’(P+ )), all trajec- 
tories originating from B,A,, must remain on the x-y 
plane in Fig. 19(a) while spiraling inwards (in backward 
time), and must eventually hit ON, (on the negative x-axis) 
at some point a distance4 X(u) from 0 after a time 
interval v - 6, where 19 A - arg x( u) = -tan-’ [x,(u)/ 
x,.(u)]. Here, x,(u) and x,(u) denote the x and y compo- 
nent of n(u), respectively. Clearly 

X(u)=lx(u)lexp[-a,(m+argx(u))] 20. (7.4) 

Now, if ITi1 is relatively large, which is the case in the 
double scroll, then the double spiral on W, in reality is 
squeezed into a thin line sitting infinitesimally close to 
N,,O. Consequently, for all computation purposes, we can 
approximate Y’(u) as the point Y(u) on N,,O. Note that 
Y(u) is a positive real number given by 

Y(u)=Iy(u)lexp[a,(v-argy(u)], 09~~00. 

0.7) 

Since u = u + (1, t ) for 0 < u < 1 is given explicitly by 
(4.14) and since u = u- (1, t) for 1~ u < 00 is given ex- 
plicitly by (4.22), we can specify the graph of the Poincare 
map ?T* for X(u) > X(0) by the following explicit para- 
metric equations: 

(X(u+(l,t)), Y(u+(l,t))), O<t<oo forOdu<l 
(x(u)“(u))={ (X(24-(l,t)), Y(u-(l,t))), O<t<ocforl<u<cc . 1 _I 

(7.8) 

Now, Assumption 1 is equivalent to the condition that the 
lower exit gate C,A;, does not touch or intersect the line 
through B,, I;;, E; in Fig. 19(a). It follows from our analy- 
sis of Figs. 4 and 5 that both inverse-return functions 
~‘(1, t) in (4.14) and u-(1, t) in (4.22) are strictly mono- 
tone functions and, hence, have a unique inverse. Hence, 
any point X(u) > 0 on Nix(O) maps uniquely into a point 
x(u) on B,A,, via the flow cpi, where X(0) is the limiting 
point which maps (under cpi) into B,. Note that any point 
d, between X(0) and 0 in Fig. 19(a) must map (under cp:) 
into a point d,, where 

Equation (7.8) defines the 1-D Poincare map ?T* for all 
X(u) between X(0) and N,,. For points X(u) between 
X(0) and 0, where u < 0,41 we simply make use of (7.5), 
namely, 

Y(u) = e2”“1-X(u), u<o. (7.9) 
We will henceforth call (7.1), (74, and (7.9) the 1-D double 
scroll PoincarP map. 

d, = e*nol. d, (7.5) 
because the expanding logarithmic spiral from dl cannot 
touch B,A,,. 

The upper exit gate G= T~(B,A,) and the lower exit 
gate C,A;,= ?r,(A,A,,) are shown in Fig. 19(a). Note that 
each point x(u) on B,A,, map under ITS uniquely into a 
point y(u) with coordinates (y,(u), I,, y,(u)). Now 
Assumption 2 is equivalent to the condition that the point 
D, in Fig. 19(a) is located below (relative to Vi plane) the 
lower exit gate C,A;,. It follows from this condition that 
the flow ‘pi from y(u) must intersect the W, rectangle at 
Y’(u). This translates into Fig.Lto meaet trajectories 
starting from the exit gates BC and CA’, will always 
intersect the plane W= qi-i( W,). Hence, the exit gates 
B,C, and CIA;, in Fig. 19(a) must map into another 
double spiral on W, as shown in Fig. 19(a), where each 
point y(u) maps into 

Y’(u) = (-- lu(u>lexp[a,(a-~gy(~))l, 

A typical graph of r* corresponding to the parameters 
(uo,yo,ul,yl, k) = (-0.42,0.50,0.15, -1.5,0.20) is shown 
in Fig. 19(b). Note that since ui is a constant, the graph 
from X= 0 to X= X(0) is always a straight line with a 
slope equal to e 2nol. Note also that to emphasize that the 
one-dimensional Poincare map rr* as defined by (7.1), 
(7.8), and (7.9) is valid not only for system (l.l)-(1.3), but 
also for the entire double-scroll family of vector fields 
< E PO, we use the normalized eigenvalue parameters in- 
stead of the usual (cy, /3, m,, m,) in Fig. 19(b). 

Translating the Vi portrait of V, in Fig. 19(a) back into 
Fig. 1, we can identify the above 1-D double scroll Poin- 
care map as 

VT*: P+N, -p+N,. (7.10) 

The point B’ on P+N is identified with the point X(0). 
For each point x EP+B’, n’* is a linear map from m 
onto P+77*( B’). For points x EB’N,, 77* is a continuous 
nonlinear map from B’N, into p+N,. 

We close this paper by exhibiting several different graphs 
of the 1-D double scroll Poincare map 7r*, which illustrate 
the various qualitative behavior analyzed in Section VI. 

0, yzbbw hb - arg y(u))]) (7.6) 
where arg y(u) 2 tar-i [ y,,( u)/y,( u)]. 

7.1. 1 -D PoincarP Map T* for Birth of the Double Scroll 
The graph of 7r* for the parameter (a, p, m,, ml) = 

(8.8,14.3, - l/7,2/7) is shown in Fig. 20(a). Note that the 

a We define X(u) as the distance from 0 since we want the domain of 4’For convenience we extend our local coordinate u > 0 to include 
R* to be part of the positive real axis. negufive u in order d parametrize the points between X(0) and 0. 
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(4 

(b) 

(4 
Fig. 20. 1-D Poincark maps corresponding to (a) the birth of the double 

scroll when ((Y, /3, mO, m,) = (8.8,14.3, -l/7,2/7); (b) the death of the 
double scroll when (cu,B, m,, m,) = (10.73.14.3, -l/7,2/7); (c) a 
hole-filling double scroll ahen “(a, p, md, ml) = (9.85,14.3, 1 lj7, ij7); 
(d) the existence of two odd-symmetnc homochnic orbits when 
(a,/% mo, m,) = (4.1,4.7, -l/7,2/7). 

maximum value of Y on the interval [0, X(l)] is equal to 
X(l), i.e., the point Y( u,J = maxO G u <iY( u) coincides with 
the point X(1). Hence, rr*(X(u,)) = X(1) maps precisely 
through point A,, where u =l. All other trajectories have 
Y(U) < X(1) and, hence, can only enter D, through the 
upper gate B,A,. Hence, by definition, the graph in Fig. 
20(a) heralds the birth of the double scroll. 

7.2. 1 -D Poincart? Map v * for Death of the Double Scroll 
The graph of r * for the parameter (a, /3, m,, m,) = 

(10.73,14.3, - l/7,2/7) is shown in Fig. 20(b). Note that 
X, is an unstable fixed point of or* and the maximum 
value max Y(U) on the interval [0, X(l)] is equal to X,. 
Since X, > X(l), X, corresponds to u > 1. This situation 
corresponds to the case where the unstable (saddle-type) 
periodic orbit through X, collides with the double scroll. It 
follows that the graph in Fig. 20(b) heralds the death of 
the double scroll. 

7.3. 1 -D Poincar6 Map T* for a Hole-Filling Orbit 
The graph of rr* for the parameter (OL, p, mO, ml) = 

(9.85,14.3, - l/7,2/7) is shown in Fig. 20(c). Note that on 
the interval [X(l), ao], the minimum value of Y(u) is zero, 
namely, tin, c u < m Y(u) = 0. Since maxgGUGl Y(u) > 
X(l), the attractor A is a double scroll. Now min Y(u) = 0 
implies that the spiral through Y’(u) associated with this 
point is tangent to the z-axis. This situation corresponds to 
the case where CA’, in Fig. 1 passes through D. Hence, the 
graph in Fig. 20(c) is associated with a hole-filling orbit.. 

. 

7.4. 1 -D Poincart? Map T * for a Homoclinic Orbit 
The graph of n’ for the parameter ((u, p, m,, mi) = 

(4.1,4.7, - l/7,2/7) is shown in Fig. 20(d). Note that X(1) 
is a fixed point and, hence, Y(1) = rr*( X(1)) = X(1). Since 
u = 1 at point A,, this implies that the trajectory originat- 
ing from X(1) would enter D, through A, on the stable 
eigenspace through 0 and, hence, converges to 0. This 
trajectory continues along the unstable eigenvector through 
0 until it hits U, at C, which is identified with C, in Fig. 
19(a). Since Y(1) = X(l), the trajectory continuing from C, 
must intersect II’, at a point Y’(1) whose projection Y(1) is 
precisely equal to X(1). Hence, this trajectory is a homo- 
clinic orbit of the origin, and the graph in Fig. 20(d) 
therefore predicts the existence of the homoclinic orbit 
proved earlier in Section V. 

7.5. Periodic Points of the 1 -D PoincarJ Map ?T* 
In this section, we will describe the correspondence 

between the periodic points of the 1-D Poincare map r* 
and the periodic orbits in the double scroll system. The 
1-D PoincarC map IT* gives an excellent approximation 
under the condition that ]yJ is relatively large compared to 
the other eigenvalues, and that A is infinitesimally thin. 
This condition implies that each periodic orbit of the 
double scroll system has at least one stable direction (i.e., 
the magnitude of at least one characteristic exponent is 
less than one). In particular, a stable periodic point of rr* 
corresponds to a stable periodic orbit and an unstable 
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Do 

D-I 

(b) 

P- 

? 

X;--X, 

d--x(1) 

n- 

Cc) 
Fig. 21. Fixed point X1 of B* with 0 < X, < a. (a) Graphof 1-D Poincari map r*. (b) Corresponding periodic orbits in the 

original double-scroll system. (c) Abstraction of the main features of (b). 

periodic point of rr* corresponds to a saddle-type periodic 
orbit of the double scroll. Since Y,, A maxa ( u .,Y( u) 
corresponds to the outermost orbit of A, if the period-n 
points {X=(a*)“(X),n*(X),...,(a*)n-l(X)} satisfy 

(~r*)‘(x)gY,,, O<i<n-1 (7.11) 

then the periodic orbit of the double scroll system corre- 
sponding to X is located in the attractor A. Define 

a P X(1). c7.g 

As shown later, the type of periodic orbit of the double 
scroll system is determined by the position of the point a, 
relative to the periodic points of rr*. 

(1) Fixed Point XI = T*(X,) 
Case (i): 0 < XI < a. 

Fig. 21(a) shows a fixed point XI of rr * with XI = X(u) 
for some 0 < u < 1. The corresponding period-l orbit in 
the double scroll system is depicted in Fig. 21(b). The 
trajectory originating from X, would enter D, through a 
point on the upper entrance gate AB, return to D, and hit 
X,. By symmetry, we have a pair of periodic orbits as 
shown in Fig. 21(b). The essential features of this situation 

are summarized in the “abstract sketch” shown in Fig. 
21(c), where N- = - N, a’ = - X(1) and Xr’ = - X,. 

Case (ii): a < X, < 00. 
Fig. 22(a) shows a fixed point X, and X, = X(u) for 

some u > 1. The trajectory originating from X, would 
enter D, through a point on the lower entrance gate AA,, 
continue its downward motion until it hits X; = - X,. 
Therefore, we have a period-l orbit as shown in the 
abstract sketch in Fig. 22(b). 

(2) Period-2 Point {X, = B *(XI), X, = ?T *(X1)} 
Case (i): 0 -c X, < X, < a. 

Two period-2 points XI and X, satisfying (i) are shown 
in Fig. 23(a). The trajectory originating from X, would 
enter D, through the upper entrance gate, return to D, and 
hit X,. The trajectory continuing from X, would enter D, 
again through the upper entrance gate, and eventually 
return to X,. Therefore, we have a pair of period-2 orbits 
as depicted in Fig. 23(b). 

Case (ii): a < X, < X,. 
Two period-2 points satisfying (ii) are shown in Fig. 

24(a). The trajectory originating from XI would enter D, 
through the lower entrance gate, continue its downward 
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X(l) 
(a) 

N 

Xl 

I 

m 

P+ 

u P- 

O’ 

Xl 

A 
N- 

(b) (b) 
Fig. 22. One period-l fixed point XI of n* with a < XI < co. (a) Graph 

of 1-D Poincari map r*. (b) Abstraction of the corresponding periodic 
orbits in the original double-scroll system. 

Fig. 23. Two period-2 points X, and X, with 0 < XI < X, < a. (a) 
Graph of 1-D Poincark map r*. (b) Abstraction of the corresponding 
periodic orbits in the original double-scroll system. 

motion through D,, and hit X,l= - X,. Note that X1 and 
Xi’ (resp. X, and Xi) of the double scroll system are 
“identified” as one point X, (resp., X,) in the graph of 
rr*. The trajectory continuing from Xi would enter and 
continue its upward motion through DO before returning 
to Xi. Therefore, we have a pair of period-l orbits as 
depicted in Fig. 24(b), even though V* in Fig. 24(a) seems 
to suggest that we have a period-2 orbit. It follows from 
this analysis that the period-doubling of a fixed point X of 
T* with a < X < co (as in Fig. 22(a)) & Fig. 24(a) corre- 
sponds to the splitting of the single “odd-symmetric” 
period-l orbit in Fig. 22(b) into two period-l orbits in Fig. 
24(b). Note that each of the orbits in Fig. 24(b) is not odd 
symmetric, but the two orbits are odd-symmetric images of 
each other in view of the symmetry of the vector field. The 
orbit in Fig. 22(b) exists by itself because it already 
exhibits odd symmetry. 

Case (iii): Xl < a < X2. 
Two period-2 points satisfying (iii) are shown in Fig. 

25(a). The trajectory originating from Xi would enter DO 

x(1) 

(a) 

n 

I I 
12 

x 

a,, 

P+ 

P- P x; 

l ’ 5 

6 
n- 

through the upper entrance gate, return to D, and hit X,. 
The trajectory continuing from X, would then enter D,, 
through the lower entrance gate, pass D,, and hit. Xi = 
- Xi. The portion of the trajectory from X; to Xi must be 
“symmetric” to the portion of the trajectory from Xi to 
Xi’ with respect to the origin. Therefore, this situation 
corresponds to a period-3 orbit in the double scroll system 
as depicted in Fig. 25(b). 

(3) Period-n Point {X = (n.*)“(X), s*(X); * *, 
c@Y-lN~~ 

Let the above period-n point be ordered as follows: 
0 < x, -c x, c * f * -c x, < 00 (7.13) 

where we assume X= Xi without loss of generality. Then 
the type of period-n orbit of ‘T* is uniquely characterized 
by a permutation of the indices {2,3,. * *, n } following the 
index 1. For example, the permutation (1,4,2,3,5) corre- 
sponds to the following periodic points: 

o< (7.14) 
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(a) (b) 
Fig. 24. Two period-2 points XI and X, with a < X, < X, < co. (a) Graph of 1-D Poincark map r*. (b) Abstraction of 

corresponding periodic orbits in the original double-scroll system. 

(a) (b) 
Fig. 25. Two period-2 points X, and X, with $, < a < X,. (a) Graph of 1-D Poincak map ?I*. (b) Abstraction of the 

corresponding periodic orbit in the original double-scroll system. 

The type of periodic orbit of the double scroll system is 
therefore determined by the position of the symbol a 
among the symbols (0, Xi, X,; . ., X,,, co} along the’half- 
line P+N, where P+ may be 0 and N may be 00. Hence, 
the total number NT of distinct types of periodic orbits of 
the double scroll system is equal to 

N,=.(n-l)!X(n+l)=(n+l)!/n. (7.15) 

For example, in the case of n = 3, we have eight different 
types of periodic orbits in the double scroll system. Figs. 
26(b) and 27(b) show two periodic orbits corresponding to 
the following two “dynamic routes”: 

6) 0 < x2-3 < cc (7.16) 

(ii) O<X~X~~<co. (7.17) 

7.6. Feigenbaum’s Number 
In Fig. 29, two “period-doubling” bifurcation trees are 

shown. One is derived by a “brute force” method (in- 
tegrating (1.1) numerically); the other is derived using the 
preceding 1-D map. Note that they agree qualitatively. 
Consequently, for computational efficiency, the 1-D map 
was used to compute the associated Feigenbaum number 
[8]. The result ‘was 4.6933. 

VIII. CONCLUDING REMARKS 

We have developed a novel ‘and rigorous method for 
analyzing a large family of third-order piecewise-linear 
ordinary differential equations. By an unfolding of the dou- 
ble scroll equation, we have derived an extremely general 
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(a) (b) 
Fig. 26. Three period-3 points XI, X,, and X, with 0 -C X, < X, < a < x3. (a) Graph of 1-D Poincark map T*. (b) 

Abstraction of the corresponding periodic orbit in the ongmal double-scroll system. 

normal form equation representing a 6-parameter family 9 
of continuous piecewise-linear differential equations. This 
normal form equation is given explicitly and characterizes 
completely the qualitative behaviors of a large class of 
equivalent piecewise-linear third-order circuits. 

This paper focuses on an in-depth bifurcation analysis of 
a large subclass ~3’~ c Y of piecewise-linear equations 
which includes the double scroll equation as a special case. 
In particular, a rigorous proof of chaos in this equation is 
given. The results of this analysis allows us to derive 
rigorously the various bifurcation boundaries in the 2- 
parameter a-P plane summarized in the frontispiece. These 
boundaries were drawn with m, = -l/7 and m, = 2/7, 
and partition the a--/3 plane into regions where different 
qualitative behavior could occur. A typical trajectory 
simulated at a point in each region (black dots along the 
horizontal line /3 = (14)(2/7)) is given in the insets. Each 
bifurcation curve is identified by the new phenomenon it is 
associated with. Hence, the curve labeled Hopf at P * 
means that at any point on this curve, the complex ei- 
genvalues at P+ and P- are purely imaginary. Similarly, 
as one crosses the bifurcation curve labeled “period 2,” 
one observes the onset of the familiar “period-doubling 
phenomenon.” The “spiral” curve heralds the onset of the 
chaotic Rossler attractor. The curve labeled “window” 
corresponds to the onset of one type of (out of infinitely 
many) “periodic windows.” Finally, the curves labeled 
birth, hetero, death, and homo correspond to the “birth of 
the double scroll;” the “birth of the heteroclinic orbit,” the 
“death of the double scroll,” and the birth of the “homo- 
clinic orbit,” respectively. Observe that the “death” and 
the “homo” curves intersect each other and there are 
points on the “homo” curve for which the double scroll 
attractor can be observed. 

0)) 
Fig. 27. Three period-3 points XI, X,, and X, with 0 < XI < n < X, < 

Perhaps the most important contribution of this paper is 
Xs. (a) Graph of 1-D Poincark map n*. (b) Abstraction of the corre- the new method given for studying piecewise-linear dy- 
sponding periodic orbits in the original double-scroll system. namic circuits. The same approach, for example, can be 
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used to systematically study other types of chaotic attrac- Note that the neti coordinate system x’ is related to x” by 
tors that could arise from other members of the piecewise- x’ = Q;‘x”, where Q, h [ei, e2, eJ]. In the x’-coordinate 
linear family 8 not covered in this paper. Two such system, the expression of 5 and U will assume the form 
attractors that have already been observed are a “ toroidal” given in (2.3) and (2.4). To see this, define 
attractor, and an attractor similar to the one observed by 
Sparrow [31]. 

APPENDIX I 
DERIVATION OF REAL JORDAN FORM 

Choose vectors e,, eb, and e, in R3 such that 

1) e, is the real part of the complex eigenvector corre- 
sponding to a” f jG?, 

2) eb is the negative imaginary part of the complex 
eigenvector corresponding to a” f j3, 

3) e, is the eigenvector corresponding to 7. 

If we choose Q p [e,, eb, e,], then J = Q-%fQ 
transforms an arbitrary 3 x 3 matrix with eigenvalues G k 
jG and 7 into its real Jordan form (see [16, theorem 3, p. 
681). Hence, under this new coordinate system x” = Q-lx, $ 

Q1 p [el~e2~e31 

-dm/(12+m2) 0 
dl/(12 + m2) 0 641.6) 

0 I d/n 1 
X’ x” [I [I Y’ &Q;l y,, 
Z’ Z 

,, 
l/d(12 + m2) m/d(12 + m2) 0 X” = - m/d(12 + m2) l/d(12+m2) 0 y” . 

0 0 I[ 1 n/d z” 

assumes the following real Jordan form: 

Then we have AZ 
(Al .l) 

where x” = (x”, y”, z”). Moreover, U is represented by 

lx” + my” + nz” = d (Al .2) 
where l2 + m 2 # 0, n # 0, and d + 0 because U is not 
parallel to either eigenspace and does not pass through the 
origin. and 

In the new x” coordinate system, the three vectors e,, rn 
eb, and e, are transformed into three orthonormal axes, 
the eigenspace spanned by e, and eb is transformed into 
the x”--y/l plane, and the real eigenvector e, is 
transformed into the z”-axis. 

The U-plane is of course transformed into another plane 
U” not passing through the origin and is not parallel to 
the x”- y” plane. Our next goal is to rotate U” so that it 
makes a 45” angle with the x”- y” plane, and intersecting 
it at x” = l.A1 This can be achieved by choosing yet 
another coordinate system x’= (x’, y’, z’) such that the 
three orthonormal vectors e:, A [l,O,O], ei A [0, LO], and 
e: A [O,O, l] in the x’-coordinate system are transformed 
from ei, e2, and e3 with the geometrical property which 
achieves the above transformation; namely, (i) make e2 
parallel to U”; (ii) make e, perpendicular to e2, and such 
that the tip of e, lies on U”; (iii) make e, and e2 lie on the 
x”- y” plane; (iv) make ]e,] = ]e,]; (v) make e3 = [O,O, d,], 
where d, is chosen so that the tip of e3 lies on U”. The 
above requirements define e,, e2, and e3 uniquely as 
follows: 

U:(l,m,n) Y: =d 
1 1 

X’ 

(l,m,n)Ql $ =d [ 1 

(Al .7) 

(A1.8) 

e, ~2 (d/(12 + m2))[l, m,O] (Al .3) 

e2 A (d/(12 + m2))[ - m, l,O] (Al .4) 

(Al .9) 

(Al .lO) 

I I 

(d,O,d) ;; =d [ 1 
x’+ z’=l. 

(Al.ll) 

(Al .12) 

APPENDIX II 
PROOF OF LEMMA 3.2 

To prove Lemma 3.2, we nes the following lemma. 
Lemma AZ. 1 :a, OB, and OE are linearly independent. 

Proof: 
Case (i): E # B. Assume that ok can be written as a 

linear combination of 88 and a. Then, since B, E E L,, 
we have A E L,, and so A, E ‘k,( L2). Since A, = (1, p,,,O), 
from the equation of sb(L,) in (2.16), it follows that 
p0 = uO. Therefore, A ,, = E,. Similarly, from A, E qI(L2), 

e3 A (d/n)[O,O,l]. (Al .5) 

A’The choice of 45” and x” = 1 is strictly for convenience. 

A2Note that Q;?IQ1 = J because by choosing lell = le 1 and el -( e2, 
the first two rows of Qi are a product of a scalar and a p anar rotation, ;i 
and since the first two rows of J define a planarrotation. 
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we have p1 = ul, and hence, A, = B,. Therefore, we obtain 
E = A = B, a contradiction. 
Casei): E = B. Choose a point K on Ul defined by 
OK= OE+ E(E). Since E E L, and t(E)]] L,, we have 
K E L,. Since E, = (l,u,,O) and B, = (l,ur,O), from the 
expression of ti (i = 0,l) in (2.9) and (2.12) it follows that 

&,A \k,(K) = \k,(E)+ ‘K&(E)) 

=E,+~,~0(E,)=(1,u0+9,(u;+1),0). 

Hence 

~,(K,)=(-~,(a,Z+1),(u~+1)(1+~o~g),O). 
Since B = E 

K,%‘,(K)=\k,(B+5(B)) 

=B1+d1~,(B)=(1,u,+3,(u~+1),0). 

Hence 

Cl(&) = (-~,(~:+l),(u:+l)(l+u,~,),O). 
Defining the normal vector h k (LO, 1) of K (i = 0, l), we 
obtain 

Wo(Ko)>=-~o(d+l) <o (A2.1) 

(h, &(K,)) = - Gl( u: +1) < 0. (A2.2) 

Now (A2.1) implies that the vector &(K,) at the point 
K, E \k,(U,) must point towards the origin of the eigen- 
space \k,( E ‘(0)) in the I&, unit in Fig. 2(b), i.e., below V,. 
This implies that 5(K) at K E U, must point toward the 
interior of the D, region, i.e., downwards. However, (A2.2) 
implies that the vector tl( K,) at the point K, E \k,(U,) 
must point towards the origin of ‘the eigenspace ‘3!r( E ‘( P)) 
in the D, unit in Fig. 2(b), i.e., below V,. This implies that 
t(K) at K E U, must point towards the interior of the D, 
region, i.e., upwards. This is a contradiction and Lemma 
A2.1 is proved. 

We are now ready to prove Lemma 3.2. Given u = 
((I,,, y,,, ul,yl, k), choose any [E &.L]. Denote the ei- 
genvalue parameters of [ by (I& 3,, j$, &3,, yr). Let the 
vector from the origin to the fundamental points 
{A, B, E, P} be denoted by {A, B, E, P}, respectively. By 

1113 

q,(x) = @1(x - p), 

@l=[A,,B,,El][A-P,B-P,E-P]-‘, 
(T 

(x E Dl). (A2.4) 
By (2.9) and (2.12), since for i = 0,l 

;D9i([(qr,1(x))) = Jx ’ (A2.5) 
1 

where ‘i -1 0 
JAl ui 0 [ 1 O O Yi 

we obtain 

~I&> = ~o%‘Jo~ox (~2.6) 

&,(x) =cjl@;lJIQ;(x- P). (A2.7) 

The continuity of 5 is equivalent to the condition 

b,(4 = El&) (~2.8) 

for all x E U, = D, n D,. Since each x E U, is a linear 
combination of A, B, and E in view of Lemma A2.1, the 
continuity of t is equivalent to the condition that (A2.8) 
holds for x = A, B, and E. Substituting x = A, B, E in 
(A2.6)-(A2.8), we obtain 

@,,‘J@,[A, B, E] = M’,;‘J,Q,[A - P, B - P, E - P] 
(A2.9) 

where X 2 3,/G,. Defining 

w,& [A,,B,,E,]-‘J,[A,,B,,E,] 642.10) 
and 

W, A [A,, 4, El]-‘Jl [A,, B,, E,] 642.10 
and using (A2.3) and (A2.4), we can rewrite (A2.9) as 
[A, B, E]W, = X[A - P, B - P, E - P]W,, and hence 

[A,B,E](XW,-W,)=X[P,P,P]W,. (A2.12) 

Substituting the coordinate of Ai, B,, and E,(i = 0,l) in 
(2.20)-(2.24) and (2.26)-(2.31) into (A2.10) and (A2.11), 
we obtain, after some algebraic simplification, the follow- 
ingi 

i 

-l 

1 hl-Pcl)‘-(P,2+q -Yoh-PO) -(d+l) 
w, = - 0 YOGJO - PO) 0 

00 - PO 
Po2‘tl 0 u,2+1 I 

(A2.13) 

1 

a,-Pl 
i 

kPdZ-(P:+l) +1’+1> -Ylh-Pl) 
WI = - P:+l a;+1 0 

0 0 Ylbl- Pl) J 

(A2.14) 

Lemma A2.1, the matrices [A, B, E] and [A - P, B - P, 
E - P] are invertible. Since the affine maps ‘ki carry 

where pi = ui +(uf +i)ki/yi (i = 0,l). Note that y. is 
determined by only ui, yi, and ki (i = 0,l). Defmmg 

{A, B, E} into { Ai, Bi, Ei}, i = 0,1, respectively, ‘ki can ci % ui - pi (i = 0, l), we obtain (1, 1,l) Wi = ( ci, 0,O). Since 
be written as follows: [P, P, P] = P(l,l, l), by (A2.12) 

%,(x) = Qox, a0 = [A,, B,,, &][A, B, El-‘, [AB,E]@W,-W,) 
(x E D,) (A2.3) = XP(l,l,l) W,= XP(c,,O,O) = Xc,[P,O,O]. (A2.15) 
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The column vectors in (A2.15) can be written as follows: To prove the converse, let p = (a,,, y,,, q, yi, k) be given 

P=$+4,B,E](Awl-wo)(i,o,o)T (~2.16) 
such that y,,yi -C 0 and k > 0. Using (A2.21), define A, 
ci, W,, W,, (I, m, n) and s by (A2.20), (A2.24), (A2.13), 

1 (A2.14), (A2.22), and (A2.25), respectively. Define the 

0 = (XW,- W,)(O,l,O)T (A2.17) following four vectors: 

o= (AW,-W,)(O,O,1)r. (~2.18) 
A = (l,l,l), B = (1, -(I+ n)/m,l) 

E= (-(I+m)/n,l,l), P = (O,O, s). (A2.27) 
It follows from (A2.13), (A2.14), (A2.17), and (A2.18) that Using (A2.27), we obtain 

%-PI 
A=y,(I,= 

u;+1 
(A2.19) 

[A,B,E]W’&[&P,B-P,E-P]W,. (~2.28) 

1 Yl(“0 - PO) . This guarantees that the vector field 6 defined by 

++%[A-P,B-P,E-P]W,[A-P,B-P,E-PI-&P), z>l 

9 [A,B,E]w,[A,B,E]-‘x, (ZIG1 (A2.29) 

%[A-PJ-P,E-P]W,[A-P,B-P,E-PI-‘(x+P), zg-1 

Since k, p y,,( p0 - ~~)/(a~ + 1) in (2.21), (A2.19) implies for x = (x, y, z)‘, is continuou.s. Moreover, we can verify 

j+-yo (A2.20) 
that the piecewise-linear vector field 5 as defined in (A2.29) 

Go’ satisfies (P.l)-(P.6) in Definition 2.1. Therefore, 5 E 2. 
This proves statement (c). , 

Since h = d,/G,, and since k, =1/k, as stated in (2.34), 
we obtain APPENDIX III 

PROOF OF THEOREM 3.3 
1 -=ko=-??f!=?!=k. 
kl YA f1 

(A2.21) Let {&a, c&,,~~, d1,3i,y1} be given such that 3, > 0, 
3, > 0, and Topi -C 0. Put u = (q,, yo, ui, yl, k) A 

This proves statement (b) of Lemma 3.2. (60/Oo, To/G70, IF~/L&, ~,/Li,, - To/$). As shown in 
To prove statement (a), define (A2.22), I = Z(u), m = m(p), and n = n (cl) are given by 

(Z,m,n)T= &Vl - W,)(l,O,O)r. (A2.22) 
1 

This is determined by a,, yo, ui, yi, and k in view of 
(A2.13), (A2.14), (A2.20), and (A2.21). It follows from 
(A2.16) that 

P=[A,B,E](Z,m,n)T=lA+mB+nE. (A2.23) 
Hence, (3.10) holds. 

To prove statement (c) of Lemma 3.2, note that (2.21) 
and (2.27) imply 

Ci p lJi - pi = - 
k,(u,‘+l) Yi (i = OJ). (A2.24) 

Using (A2.13), (A2.14), (A2.20), and (A2.24), we obtain 

s.4 I+ m + n = $-(l,l,l)(yW,- W,)(l,O,O,)r 
1 

=l-$=‘l+k’y&,;+l),y,2(u;+l). (x42.25) 
1 

Since by (P.4) in Definition 2.1, P = P+ must be located in 
the interior of D,, it follows from (A2.23) that s = I + m + 
n > 1, that is 

s-1=k3yi+++1)/y;(u;+1) >o. (~2.26) 

Therefore, k > 0 holds. Since - yo/ylk =A = 3,/G. > 0, 
we have yoyl -C 0. This proves that [ E E[p] * yoyl < 0 and 
k > 0. 

(I, m, n) = &(hW,- Wo)(l,O,O)T. (A3 .l) 
1 

Using c1 = ui - p1 = - k,(u; + 1)/y, (by (A2.24)), X = 
- yo/yIko (by (A2.20)), and k, = k (by (A2.21)), and 
substituting (A2.13) and (A2.14) for Wi, we obtain after 
simplification 

I= - kyoy,{2(uoy,k + 01~0) 

+uoul(k+1)}/{y~(u:+l)} (A3.2) 

m= ((y,k+o,)2fl)/(u~+l) (A3.3) 

(A3.4) 

s=l+m+n=1+k3y-f (~;+l)/{~,f(u:+l)}~ (A3.5) 
Defining A i = (5; + 3?)yi and T = 2ti + Tit (i = 0, l), we 
can rewrite (A3.2)-(A3.5) as follows: 

l=?o%(T,-T,)/% (~3.6) 

m=-(~o~l(~l-(~o++l))-~~)/~~ 643.7) 

n = {~o~~(~-(~o+~~))-Ao}/A~ (~3.8) 

s =l-~,/a,. (A3,9) 

The vector field .$ defined by (A2.25) has eigenvalues 
a0 * jl, y. (in Do region) ad (&Po)(ul f jl), (4/Go)~l 
(in D, region), because matrix Wi is similar to 4 (i = 0,l) 
in (A2.5) and h = &/Go. Hence, the piecewise-linear vec- 
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tor field 

[(x)“cZ,[A-P,B-P,E-P]w,.[A-P,B-P,E-PI-’(X-P), z>l 

%,[A,B,E]W,[A,B,E]-‘x, ItI <l (A3.10) 

%30,[A-P,B-P,E-P]W,[A-P,B-P,E-P]-’(~+P), Z<-1 

where x = (x, y, z)r must have eigenvalues I& f jL$ and yi region near F,, it follows that 
in the Di region (i = 0,l). Substituting (A3.6)-(A3.9) into 
(A2.23), (A2.13) and (A2.14) into (A3.10), and expressing ~l-‘ls, : S, --f ~4AElu (A5 .l) 

A, B, E, and P in terms of ci, di, and yi (i = O,l), we can is a homeomorphism from the compact domain S, into 
recast t(x) in (A3.10) in terms of only the six eigenvalue AA~,,B~E~,,. Since .“iJ4A’,BLE,.:~A,.B,Elu --, S, is continu- 
parameters. Finally, we can verify, after some involved ous, we have 
algebraic manipulations, that (3.32) is equivalent to (A3.10). ~1~: 9- = A&B~&, --, .? (A5.2) 

APPENDIX IV 
is continuous. Since the image of a compact set under a 
continuous map is compact, a(Y) is a compact subset of 

T~(F~B~) is tangent to B,E, at Fl. Y. This proved (6.8) and (6.9). 
Proof: By Theorem 4.3, the spiral Fml= vl(FIB1) (2) Equation (6.9) implies r(h) c A. Hence, to prove 

is defined explicitly by (6.11), we only need to prove r(A) 1 A. Take x E A k 

x(t) = e-“I’ Ty:& 
[ 

Gn;](u(f)B1 + (1 _ u(t))Fl) ;;;;;;;;; ,y x E n”+‘v-‘)y and since T”(y) is 

(A4.1) Y, = 57-1(x)n7r~(s) (A5.3) 

where u(t) A ~(0, t), 0 Q t < 00 (U = 0, see Fig. 6) is non-empty and compact. Since 

B,= (Ld (A4.2) Y,+i = rr -yx)n7r”+‘(s) c Y, = T-‘(x)(IT”(q 

and 

1;1= (Y~(Y~-~~~)/Q,,Y,[~-~,(~,-Y,)~/Q~)=~ 644.3) ;;yr;. 
Note that 

\ , 

x’(t) = ix(t) = e-‘l’ - ul 
i [ 

cos t sint 
-.Sillt cost I 

+ 
[ 

-sint 

-cosr 
:zt I) (u(t)4 + (l- dt>)r;,) 

+ e-“l’ [ cost 

-sint ~~$‘(rm - 4). 

(A4.4) 

Substituting t = 0 and u(O) = 0 in (A4.4), and making use 
of (A4.2) and (A4.3), we obtain 

x’(O) = (ul+ u’(O))(B, - r;,>- (A4.5) 
Since y1 + u’(O) is a scalar, x’(0) is a vector in the direction 
of B, - Fi, i.e., along the line segment B,E,. Since x(O) = 
Fl, it follows that x(t) <is tangent to B,E, at Fl when 
t = 0. 

APPENDIX V 
PROPERTIES OF TRAPPING REGION 

(1) In Fig. 6, if x tends to Fl from the inside of the 
“curvilinear wedge” region bounded by m and I;,e,, 
n;l( x) tends to F,, and so lim n; ‘( x) = Fl # fi = R; ‘( I;;). 
However, if x tends to I;; from the outside of this “curvi- 
linear wedge” region, s;‘(x) tends to fi, and so 
Cm+(x) =fl = a;’ ( F J. Since the double-snake area S, 
4 S, U S, in Fig. 12 lies outside of this “curvilinear wedge” 

(A5.4) 

r=n n20Yn=n n .or”(Y) is non-empty and 
Therefore 

x=n(Y)~n( npo~n(Y)) =a(A) (A5.5) 

that is, A c r(A). 
(3) In Fig. 12, we can observe that ?r;’ maps S,\{ B,} 

into the interior of AA~~B~E~~. However, the point B, 
maps into the point a2 on B,A,, in Fig. 6. From this we 
have 

7r(.F) C { a2} Uinterior .T. 

Since a2 # B,, we have 

7r( a2) = 7rc17r2( a2) E interior Y. 

(~5.6) 

(A5.7) 

Therefore, it follows that 

7r2( T) C 7r( a2) U r(interior 7) (~5.8) 
c interior 7 (A5.9) 

because a(interior Y) c interior 7. It follows from.lr(Y) 
C 7 that, for n 2 2 

r”(T) C interior 9. (A5 .lO) 

To prove the existence of an open neighborhood N(A) 
which satisfies (6.14), take a small open ball B(C,) at Cl 
such that 

a;‘(B(C,)) c interior 7. (A5 .ll) 

Then the set 
IV1 p B (C,) U interior S, U interior 9 (A5.12) 
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R.” 

(4 

-+C bc) 

(b) 
Fig. 28. A general trapping region corresponding to (LX, /I, ma, ml) = 

(4,4.85, -l/7,2/7) and u = 2. (a) VI portrait of V,. The snake A$Z,E[; 
intersects the spiral mA q(m), which coincides with the set of 
discontinuous.points of rr;‘. (b) Illustration of n(AA,,B,Et,). The 
snake-like area a(hA,,B,E,,) is actually an “infinitesimal” thin set 
located very near a. 

is an open neighborhood of A, in the Vi plane which 
satisfies 

A,= n #(A$). 
Il>O 

Choose a small neighborhood N(A) of d in the double 
scroll system such that any trajectory originating in N(A) 
intersects Vi U K, only at points belonging to the set 
‘k,l( ZVi) u (- \k;‘(N,)), where iVi is defined in (A5.12). 
Then N(A) satisfies (6.14). 

In the more general situation, the double-snake area S, 
may intersect the spiral Fml= sl(FIB1). Fig. 28(a) 
shows the Vi portrait of V, with such a double-snake area 

(a) 

(b) 
Fig. 29. Bifurcation tree for /I = 15, and OL E [8.43, 8.81. (a) Using the 

“brute force” method. (b) Using the 1-D Poincare map. 

S,, where (cq p, mo, ml) = (4,4.85, -l/7,2/7) and u = 2. 
Note that the spiral Fml intersects the spiral AZ= e.. 
rr2(A,A,,) at two points a and b, and the-spiraIE$Y, = r2( 
E,E,,) at two points d and c. Since Fml is the set of 
discontinuous points of r;’ (see (6) in Example 4.3), it 
follows that the set r;l(Si) = m(aA,,B,E,,) must be as 
depicted in Fig. 28(b),A3 where Ci = or;‘, n( A,,) = 
q-‘(A;:), n(E,,) = q’(E[;), vr(F,) = +(Fl) =fi, and 
a(B,) = vrl~‘(B,) = a, (see Fig. 6), where C,, A;:, E.&‘, are 
indicated in Fig. 12(a). In this case, we expect that Y = 
A4444u to be a trapping region and that A = 
n n > or”(Y) is a a-invariant compact subset of Y. The 
proof of this statement, however, is complicated because 
we must consider the discontinuity of the map n;‘. 

A3The symbol q ( ) .m .Fig. 28(b) denotes a curvilinear region with 
boundary points listed inside the parentheses. 
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APPENDIX VI 
EluoAluo APPROXIMATES Ws( H; ) 

Suppose that the magnitude of the real eigenvque y1 at 
P+ (yl < 0) is very large compared to the real part of the 
other eigenvalue. This is equivalent to considering the limit 
as yl + - 00. Hence, upon substituting y1 = g,/O, and 
uI = I?~/& into the coordinates for Fl and E,, and then 
taking the limit as p1 + - co, we obtain 

[61 

[71 

PI 

[91 

WI 
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and 

E,=(~l(~,-~l-~l)/[(~,-~,)Zfl],y,[l-~,(~,-~~)l/[(yl-~~~~+1]) 

= (~;(R-~~-pl~l)/[(X-~l)2+~:]~~l~~l-p,(~l-9l)1/[(~l-~l~2+~:l) 

+ (1, pl) = A,, as j$ * - 00. 

(~6.1) 

(~6.2) 

It follows from (A6.1) and (A6.2)‘that 

Elt+, = @, + (1 - uo)F, + uoAl + (1- u,,)B, = AluO. 
(~6.3) 

Under this condition, the arc Emu, shrinks to one 
point Eluo = H< = AluO under 7r;l, and therefore also 
under 7~. Therefore, the arc l&A;, may be considered as 
the stable manifpld W”(H,+) as $ : - 00, i.e., Ex,= 
Ws( H: ). This implies that 

Eluo4uo = Tl -‘(ExJ ‘- a,l(W”(q+)) = W”(H,-). 

(~6.4) 
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