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Abstract-In this paper, we present some conventional feedback controller design principles for chaos 
control, with mathematical controllability conditions derived via the Lyapunov function methods. The 
chaotic Chua’s circuit and Duffing oscillator are used as examples to illustrate the fundamental 
concepts and basic methodology employed by this unified Lyapunov approach, in both linear and 
non-linear controllers design, for the control of chaotic dynamics. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

Conventional feedback controllers are usually designed for non-chaotic systems. In 
particular, linear feedback controllers are often designed for linear systems. Adaptive 
feedback controllers are more sophisticated but also more powerful in controlling linear. 
non-linear and even uncertain systems. That a feedback system is resistant to chaotic signals 
is perhaps a statement that requires no justification to a dynamics analyst, but deriving a 
conventional control algorithm ensure the chaotic system trajectory to stay at its unstable 
periodic orbits (including equilibria and limit cycles) is non-traditional and is not trivial at 
all. Since conventional feedback control designers generally had no intention of dealing with 
the extreme sensitivity of chaotic system trajectories to their initial conditions [2, 13. 14, 16, 
241, it was reasonable to be sceptical about the possibility of applying conventional feedback 
controls to chaotic systems. However, recent progress has convinced that this is not only 
possible but, as a matter of fact, has turned out to be successful [l, 4, 181. 

Having observed that some applications of conventional feedback control techniques in 
chaos control and dynamics monitoring have not had enough theoretical backing to support 
their success, in this paper we discuss some mathematical controllability conditions for 
chaotic dynamics control that employ conventional feedback control methods, with the hope 
that this might stimulate further endeavor on mathematical analysis of chaos control. 

Briefly, one basic reason in supporting such success seems to be that chaotic systems, 
although non-linear, complex and sensitive with many strange behaviors, are deterministic 
by their very nature. Hence, they obey many deterministic rules that can be utilized in 
designing controllers for different purposes. Of course, nowadays even chaos itself is still a 
‘mystery’, the role that chaos plays and the role that feedback control plays in the task of 
controlling chaos have to be further understood and explored. The earlier attempts for using 
conventional feedback controllers to tackle chaos were motivated by many challenges, and 
were due to the fact that feedback controllers can be easily realized by circuitry, can perform 
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the jobs automatically after being designed and implemented, can stabilize the overall 
controlled system efficiently and usually have significant physical meanings that make them 
very useful in real-life applications. Equipped with rigorous mathematical theories, feedback 
control techniques are deemed to have great potential in chaos control and anti-control. and 
dynamics monitoring such as bifurcation control and chaos synchronization. 

2. FEEDBACK CONTROL OF CHAOTIC SYSTEMS 

A general approach to controlling a non-linear, complex and perhaps chaotic dynamical 
system can be formulated as the following control problem: consider a control system 

1 
i(r) :- f(X,U,l), 

y(r) 7 h(x.u.t). 
(1) 

where x(t) is the system state vector, y(f) the output vector and u(t) the control input vector. 
Here and throughout the paper, in a general discussion WC simply assume all the necessary 
conditions on the vector-valued functions f and h such that the system is well-posed and has 
a unique solution within a certain region of interest in the state-space for each given initial 
value x,, = x(t,,) for I z fl, 2 0. For a given reference signal r(r). which can be either a constant 
(set-point) or a function (target trajectorv). the problem is to design a controller in the 
state-feedback form 

U(f) = g(x*f). 

or. sometimes, in the output-feedback form 

U(f) = g&J ). 

where g is a linear or non-linear vector-valued function, such that the trajectory of the 
controlled system 

1 
i(r) = f(x.g(x.r).r) 

y(f) ~7 h(x,g(x,r). 

is driven bv the feedback controller g(x.f) to achieve a desired goal of tracking: 

where the terminal time. T 5: x, is predesired according to an application in mind, and 11. /I is 
the standard Euclidean norm of a vector. 

Since the second equation in system (I) is merely a mapping, which will not be the main 
focus of our discussion below. WC’ simply ignore it bv letting v = x without loss of any - _ 
generality. 

It is important to note that in the classical control theory, the target for tracking is usually 
;L constant vector in the state space, which is generally not a state of the given system, and 
the terminal time T is usually finite (e.g. the original concept of ‘controllability’ is defined 
using a fixed 7‘ ( x. at Last for linear systems [ 131 and for affine-non-linear systems [241). 
However, in chaos control, the target for tracking is usually an unstable periodic orbit (or an 
unstable equilibrium point) of the given system and the terminal time is T -- -K to bc 
meaningful and practical for the reason that basic non-linear dynamics such as chaos arc 
asymptotic behaviors. 

It is also important to point OUI that in a feedback controller’s design. particular& in 



Controllability conditions for chaotic dynamics control 1463 

finding a non-linear controller for a given non-linear system, we must bear in mind that the 
controller should be (much) simpler than the given system. For instance, if one would like to 
determine a non-linear controller, say uk in the discrete-time setting, to guide the state 
vector xk of a given non-linear control system in the form 

xk+l = fk(xk) + uk 

to a target trajectory that satisfies a prescribed dynamics x k+r = &(xk), then mathematically 
it is very easy to use 

uk = +ktXk) - fk(xk)t 

which will bring the original system state xk to the target trajectory in just one step! The 
problem with this ‘design’ is that the controller is even more complicated than the given 
system, and hence has no practical value: it uses the given system to control the given 
system! It is hard to imagine that one can accept a controller for a machine (such as an 
aeroplane or a car) that is even bigger than the machine itself. Hence, a successfully 
designed feedback controller should be as simple as possible: if a linear controller can be 
found to do the job, use a linear controller; otherwise, try to find a simple non-linear (such as 
quadratic) controller. Whether or not can one find a simple, easily implementable, low-cost 
and effective controller for a given task is really an art. 

Let us return to the central theme of feedback control for chaos. We first outline a basic 
idea for the general goal of chaos control that was initially formulated in [3, 5, 61. Let the 
target (unstable) periodic orbit of the non-linear dynamical system 

i = f(x,g(v),t) (2) 

be j?, which is itself a solution of the given (uncontrolled) system, that is, it satisfies 

i = f(Z,O,t). (3) 

A subtraction of equation (3) from equation (2) now gives 
h = F(X,t), 

where 
x:=x-s 

and 

(4) 

F(X,t) := f(x,g(x,t),t) - f(E,O,t). 

Thus, our design is to determine the controller u(t) = g(x,t) such that 

lim IlX(t)ll = 0, c-27 (5) 

which implies that the goal of tracking control will be achieved: 

lim I/x(t) - E(t)\1 = 0. (6) l-X 

It is then clear from equations (4) and (5) that if zero is an equilibrium point of the 
non-linear system (4) then the original controllability problem has been converted to the 
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asymptotic stability problem for this equilibrium. Hence, the Lyapunov second method may 
be applied or modified to obtain rigorous mathematical techniques for the controller’s 
design. This is further discussed in the rest of this paper. 

2. I. Linear feedback rontrollers fitr non-linear chrzotic vystetns 

It is possible to use a linear feedback controller to control a non-linear chaotic dynamical 
system in a very rigorous manner. 

Take the chaotic Chua’s circuit as an example. Chua’s circuit is a simple, yet very 
interesting, electronics system that displays rich and typical bifurcation and chaotic 
phenomena such as double scroll, dual double scroll and double hook [20, 22, 12, 27, II]. In 
the study of controlling the circuit. we first reformulate its equation in the following form: 

where p > 0. 17 > 0 and .f(r) is a non-linear function represented by 

f(.S) = tF7,,.S + !(Ftl, -. tFZ,,)(l.S +- Ii /.V ~ II). 

where m,, < 0 and tn, c:: 0. 
It is known that with p =- 9). (1 = 132/7. tn,, = - 5/7 and m, =T -S/7. the circuit displays a 

double scroll (strange attractor) and an unstable saddle-type periodic orbit, which is a large 
saddkz-type periodic orbit outside the non-periodic attractor and is due to the eventual 
passivity of the transistors (271. 

The following controllability result, using only a linear feedback controller to guide the 
chaotic trajectory of the strange attractor to the aforementioned unstable periodic orbit, has 
been established in [6] by using the second Lyapunov method: 

Theorem A. Let (.c,f,Z) beg the unstable periodic orbit of Chua’s circuit 
the chaotic trajectory (x.!,: ) of the circuit can he driven to reach this 
sintple linear feedback control of the form 

equation (7). Then. 
periodic orbit by a 

(8) 

with 

k:, 1 z> -pm,, ti ,, -r-!) and K;$ 2 0. 

where the control can he applied to the trajectory at any lime. 
The basic idea for a mathematical proof of this controllability result is described as 

l’ollows. First. wt: observe that the controlled circuit i\ 
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so that a subtraction of equation (10) from equation (9), with the notation 

yields 
x = x - x, Y=y--y and Z=z-t, 

k=p(-x+y-7(x,?))-K,,X, 
p=X-Y+Z-K,,Y, 
i = -qY - Kj3Z, 

where 

7(x,X) = 

r mo(x - X) 
mox-m,.f+m, -m, 

mo(x -X) + 2(m, - mo) 

m,x-m&f-m, fm, 

m,(x -X) 

m,x -mo,C+m, -m, 

mo(x -X)-2(m, -mo) 

~ m,,x-m,Ix-mm+mm,, 

i 4,(x - 3 

x21,x21 

xrl,-l5x~l 

xrl,.c%-1 

-15x % l,X~ 1 

-15x51,--15x51 

-1 c’x % l,.C% -1 

x % -1,YI 1 

xr-1,-15.u51 

x 5 -1,x5 -1 

(11) 

in which m, <mo<O. 
Recall the general idea discussed in the last section that we want to design the controller 

by determining the tree constant control gains {K, ,, Kz2, Kj3} such that the zero equilibrium 
point of the tracking error system equation (11) is asymptotically stable. Observe that this 
tracking error system is non-autonomous. However, its time-varying and non-linear term is 
only in ,7(x,X) which is connected to the control term K,, X. Hence, if we can design a 
control gain K,, such that the gain uniformly dominates 7 with respect to t E [O,a), then the 
controlled circuit equation (11) will behave like an autonomous system. Based on this 
observation, we define a simple Lyapunov function for system (11) by 

v(x,Y,z)=;x2+p+ y2+p 

It is clear that V(0,O.O) = 0 and V(X, Y,Z) > 0 for all X, Y,Z, not simultaneously zero. On the 
other hand, since p,q > 0 and KZ2,Kj3 2 0, we have 

=qX( -pX +pY -pJ‘(x$) - K,,X) 

=pqY(X - Y + Z - Kz2Y) +pZ( -qY - Kj3Z) 

= -p[q(X - Y)’ + qK,zY’ + K33Z2] - q(pX’(x,X) + K,, X2) 

5 -p[q(X - Y)* + qK2zY’ + Kj3Z2] 

10 

for all X, Y and Z. if 

pXf(x,X) + K,, X2 2 0 

(12) 

(13) 
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for all x and Y, uniformly with respect to time. It is clear from both V and $’ [see equation 
(12)] that their uniform boundedness can be easily made rigorous by introducing three 
class-K functions [19,26]. 

To find the conditions under which equation (13) is true, by careful examination of the 
nine possible cases for the function f(x,Z) shown above, we obtain the final common 
condition 

KIT 2 maXi -pm,,, -P,) = -pm,, (14) 

in which we should note that m, < m,, < 0, as indicated above. This condition guarantees the 
inequality equation (13). Hence, if the conditions stated in Theorem A are satisfied, then the 
zero equilibrium point of the controlled circuit equation (11) is globally asymptotically 
stable, so that 

IXI-0, lYl+O, I-4-+0 as 1+x, 

simultaneously. That is, starting the feedback control at any time on the chaotic trajectory, 
we have 

lim /x(t) - Y(t)\ = 0, lim Iy(t) - r(t)1 = 0, lim /z(r) - Z(r)\ = 0. 
I&+X I-X I&+X 

We remark that this controllability result provides only some sufficient conditions, whereas 
the condition on K1, may not be necessary from our experience. Indeed, we have found that 
the control parameters in K can be further reduced. For example. we have experienced that 
{K,, = 0, Kzz = 2, KJ3 = 0} is perhaps the simplest yet best choice for the feedback control 
gain matrix K according to our computer simulations [7]. 

We also remark that perhaps due to the extreme sensitivity of chaos to numerical roundoff 
errors [23], sometimes in a certain range of the above sufficient conditions the control effect 
is not so satisfactory. This has been experienced to be true not only for Chua’s circuit but 
also for other chaotic systems. 

2.2. Non-linear feedback controllers ,for non-linear chaotic systems 
It is not always possible to use a linear controller to drive a non-linear, particularly 

chaotic, dynamical system [17]; so non-linear feedback controllers are often necessary. 
Let us now consider the well-known Duffing oscillator 

1 
i-y, 
j= -pg-x3-p,y +qcos(wt), (15) 

where p,, p2, q and w are systems parameters. It is well known that with the parameters set 
at p, = 0.4, p2 = -1.1, 4 = 2.1 (or 4 = 1.8) and w = 1.8, the Duffing oscillator has a chaotic 
response [5]. 

For this system, we are interested in controlling its chaotic trajectory to one of the 
inherent unstable periodic orbits (limit cycles) of the system by designing a conventional 
feedback controller. 

Let (X,y) = (T(t),y(t)) be the target trajectory: one of its unstable periodic orbits. We want 
to control the system trajectory, such that 

hm, Ix(t) - x(t)1 = 0 and mm- Iy(t) - y(t)1 = 0 (16) 

for a T 5 X. For this purpose, consider the conventional non-linear feedback controller of 
the general form 

u(t) = h(t;x,.?), 
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where h is a non-linear function to be determined. By adding this controller to the second 
equation of the given system, we obtain the following controlled Duffing system: 

I 
x =y, 
j= -pzpx’- p, y + q cos(wt) + h(t;x,.f). 

(17) 

Since the periodic orbit (X,y) is itself a solution of the original system, subtracting 
equation (15), with (x,y) being replaced by (x,y) therein, from equation (17), and using the 
notation 

X=x-X and Y=y-7, 
we arrive at 

i 
Z=Y-p,x, 
I’ = -pzX - (x’ - X’) + h(x). (18) 

The following sufficient condition has been established in [S] using the idea of the 
Lyapunov second method with a specially constructed Lyapunov function. 

Theorem B. For any (unstable) periodic solution X of the Duffing oscillator, let the 
feedback controller be 

u(t) = -K[x(t) -x(t)] + h(t;x,F), 

where K ?pr and h(t;x,.f) satisfies 

(i) h(t;x,.f) - 3xX(x -X) E L,([t, ,x) X S) and 
(4 1~ E L,([t, ,x)1, 

(19) 

in which S is the domain on which the system is defined. Then, starting from anywhere of 
the system trajectory at any time t = t, 2 to, the controlled trajectory of the Duffing 
system converges to the desired periodic orbit, X, in the sense that 

lim Ix-X] =0 and Jim ]I = XJ = 0. 
,,S,dX ,,c,+x 

A non-linear controller can be designed relatively easily. For example, if we pick [15] 
h(r;x,x) = K(x - X) + 3X2(x - X) + 3X(x - X)‘, 

then, using this particular non-linear controller, the tracking error system equation (18) 
reduces to 

{ 
%=Y-p,X, 
p= -(K+p2)X-X3. v-9 

Observe that this is an autonomous system, and so we can easily find the following Lyapunov 
function 

K+P~ V(X,Y) = 2 -x2+ $x4+ +r*, 

which satisfies 3 5 0, where equality holds if and only if both X = 0 and Y = 0. This means 
that the zero equilibrium point of the controlled Duffing system equation (20) is 
asymptotically stable, so that X -+O and Y+O as r-+ =, or the goal 

Ix -Xl+0 and /li-iI+0 (t-+x) 

is achieved. 
It has been experienced that, in general, a linear feedback controller is much harder 



(often, impossible) to design for the same purpose, where we genera& donot have a routine 
procedure to follow. Huwever, we would like to mention that for the Duffing system. a 
successful design of a linear feedback ~controller is still possible which, indeed, has been 
designed in [5], where the target orbit can even be multi-periodic. The strategy used in [.5] is 
to apply the Lyapunov first method to start the design. so as to allocate some approximate 
ranges for the controller’s gains, and then fine-tune the control gains to achieve the goal. 
This linear feedback controller has also been verified by other researchers [25]. using the 
same Lyapunov function argument but from a different approach. 

3. SOME GENERAL CONTROLLABiLITY CONDITlONS 

.4s mentioned above, a Iinear feedback controller alone is not always sufficient for the 
control of a non-linear chaotic system. It is hence important to find some new criteria for the 
design of (simple) non-linear feedback controhers used for guiding trajectories of general 
chaotic dynamical systems to target their unstable periodic orbits. A recent result derived in 
[Xl. is described in the foflowing. 

Consider a non-linear and non-autonomous dynamical system 

i = f(W) (21) 

which is assumed to possess a periodic orbit Z of period T: %(I +- T) = %I) for all 0 5 I < 73. 
We want to design a feedback controller of the form 

u(t) = K(x -- C) + g(x - a), (22) 

where K is a constant matrix and g Is a non-linear vector-valued function, and then add it to 
the original system to obtain 

i = f(w) + u = f(x,r) + K(x - ?ij + g(x - %,t). (3) 

The controller is required to be able to drive the trajectory of the controlled system equation 
(2.1) to approach the target periodic orbit Fi, in the sense that 

lim Iii(t) -. G(r)\; = (1. (24) 
c +. 

where, again, 11. // is the Euclidean norm. 
Since the target periodic orbit 2 is itself a solution of the original system. it satisfies 

G = f(E,f j. (75) 

and since the feedback controlled system with the controller equation (22) is given by 

i = f(x.tb + K(x -. ii) + g(x - kr), i26i 

a subtraction of equation (25) from equation (26) give% 

% - F(X,t) + KX + g(X.c). (27) 

whcrc 
X =- x -- ii and F(X,f) = f(x,t) - f6.t). 

It is clear that F(0.f) = 0 for all t E [(I,~). 
Next. we Taylor-expand the right-hand side of the controlled system (27) at X y 0 
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(i.e. at x = Z) and suppose that the non-linear controller that we will design satisfies 
g(O,t) = 0. Then we obtain 

k = A(i,t)X + h(X,K,r), mu 
where 

and h(X,K,r) is the rest of the Taylor expansion, which is a function of t,K and O(X). 
To this end, our design is to determine both the constant control gain matrix K and the 

non-linear controller g(X,t), based on the linearized model equation (28), such that X-+0 
(i.e. x+= Z) as t+ m, so that when being applied to the original system as shown in equation 
(26), the goal equation (24) can be achieved. 

The following two controllability conditions have been established in [8]: 

Theorem CZ. Suppose that in system (28) h(O,K,t) = 0 and A(E,r) = A is a constant matrix 
whose eigenvalues all have negative real parts. Let P be a positive definite and symmetric 
solution (which is known to exist always) of the Lyapunov equation 

PA +ATP= -I, 

where I is the identity matrix, with the maximum eigenvalue h,,,(P) > 0. If 

IlWLK~)Il 5 cllXll 

for a constant c < 1/2&,(P) for all 0 I f < =, where (1. )I is the Euclidean norm, then the 
controller u(t) defined in equation (22) will drive the trajectory x of the controlled system 
equation (26) to the target orbit Z as t-+ =. 

To state the next theorem, we first recall a concept from linear algebra. For system 
equation (28), there is always a T-periodic non-singular matrix M(Z,t) and a constant matrix 
Q such that the fundamental solution matrix associated with the matrix A($) is given by 

@(Z,t) = M(~,t)e’e. 

Moreover, the eigenvalues of e7” are called the multipliers of the system matrix A&t), 

Theorem C2. In system (28), suppose that h(O,K,t) = 0, and that h(X,K,t) and 
dh(X,K,r)/dX are both continuous in a bounded region I(X]( < W. Assume moreover that 

(29) 

uniformly with respect to r E [O,=). Then the non-linear controller equation (22) designed 
under the condition that all the multipliers of the system equation (28) satisfy 

(h,l<l, i=l;.*,n,VtE[O,~), (30) 
will drive the orbit x of the original controlled system equation (26) to the target orbit Z as 
t-9 x. 

4. CONCLUSIONS 

In this paper, we have presented some conventional feedback controller design principles 
for chaos control, with mathematical controllability conditions derived from the Lyapunov 
function methods. The chaotic Chua’s circuit and Duffing oscillator were used as examples 
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to illustrate the fundamental concepts and ~basic methodology employed by this untied 
Lyapunov approach, in the control of chaos bye linear and non-linear feedback controls. 

S~ince even the nature of chaos itself is still under intensive investigation, the role that 
chaos plays and the role that feedback control plays in the task of controlling chaos are not 
so clear to us at this~stage.. In particular, how to utilize the very nature of chaos in its control 
is an open area that calls for more research. Recently, we have started to tackle the problem 
of directly motiitoring the Lyapunov exponents of a dynamical system via conventional 
feedback. control strategies, by applying some rigorous mathematical arguments [9, lo]. This 
has led to anti-control of chaos and has also brought in some new ideas and new techniques 
that employ fundamental cheracteristics of chaos throughout a control process. It is our hope 
that control and anti-control of chaos will not only lead to some unique theories that are 
distinguishable from conventional control concepts, but also lead to some special applica- 
tions of chaos control that are not conventional. 
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