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Effects of Square-Wave Modulation on CNN Patterns

Alexander A. Alexeyev, Grigory V. Osipov, and Vladimir D. Shalfeev

Abstract—By driving each cell (Chua’s circuit) of a CNN with
a nonuniform square-wave current source, different patterns are
observed and reported in this paper. The dynamics of such a
modulation signal could find useful applications in controlling
certain features in the patterns.

I. INTRODUCTION

N THIS paper, we consider cellular nonlinear network

(CNN) [1], [2] in which Chua’s circuits are used as cells.
Both an individual Chua’s circuit [3] and a CNN of Chua’s
circuits [4]-[6] exhibit complicated dynamics. We restrict our
consideration here only to structure formation that is highly
interesting for theory and applications. We will focus on the
effect of the modulation. current source connected across the
Chua’s diode of each cell, as well as the coupling coefficients,
on the structures of the resulting patterns.

II. BASIC MODEL

The CNN of Chua’s circuits to be studied in this paper is
described by the equations [4], [5]

T; =a(y; — h(z;)) = v + dizj-1 + dazjp1
Yi =2 -y +2
‘éj = _ﬂyja
2cox
B 1+ (Co.’L‘)2,

with boundary conditions z¢(t) = zny41(t) = 0. The pa-
rameter -y; is a dimensionless current corresponding to the
additional current source at the jth cell [3]. The other notations
are defined in [4] and [5].

The dynamics of a single cell of (1) (phase portraits and
the corresponding partitioning of the (a, 3) parameter plane)
in the absence of coupling (d; = dz = 0) and current sources
(v; = 0) are summarized in [4). We will here consider the
simplest dynamics of Chua’s circuits, i.e., the case when only
two stable equilibrium states O~ (z = —a,y = 0,2z = +a)
and O*(z = 44,y = 0,2 = —a) (a = \/(2c0 — c1)/(cfc1))
exist in the phase space. To this end, we introduce into (1)
a =1 and B = 20, i.e., the values inside the parameter region
on the (a, 3) plane for which there exist two stable equilibrium
states {4]. Then, for the coupling coefficients dy,ds; # 0, the
corresponding CNN is a typical discrete bistable medium in
which different structures may be formed. These structures
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Fig. 1. The plane of coupling coefficients between the cells. The distribu-
tions of the parameter v along the chain for which numerical experiments
were performed.

consist of cells having states close to Ot (they will further be
referred to as “4” states) or close to O~ (further referred to
as “—” states). We will focus attention on the formation and
control of such structures by varying the parameters v, d; and
d>. We will present and analyze the results of our computer
experiments on (1).

ITII. THE FORMATION OF STRUCTURES

Consider first a 1-D CNN. Fig. 1 presents the plane of
coupling coefficients (d1,d2) between the cells. The -solid
points mark the values of the parameters (on the lines 4, B and
C) for which numerical experiments were performed on (1).

Uniform chain (v; = 0): In this case, (1) is symmetric rel-
ative to the coordinate origin. Therefore, the initial conditions
in our computer experiments are chosen to be slightly different
from zero, namely z;(0) = 0.1,y;(0) = 0 and 2;(0) = 0.1.
The space—time diagrams of z;(t) depicting the dynamical
processes in the chain (1) are given in Fig. 2(a) and (b) for
the values of coupling d;,ds >0 (point By in Fig. 1) and
d1,ds <0 (point Bj in Fig. 1), respectively. Time ¢ is labeled
along the horizontal scale, and the number of the cell in the
chain (spatial coordinate j) is labeled along the vertical scale.
The color black corresponds to the maximal value of z;(t)
and white to its minimal value. It follows from Fig. 2(a) that
for dy, d2 > 0 nearly all of the cells in the chain (except a few
cells at the beginning and at the end of the chain) tend to the
“4+” state with z;, y; and z; being approximately identical and
equal to z; = z*,y; = y*, and 2z; = 2", where z*,y*, and
z* are found from the equations

a(y* — h(z*)) +2dz* =0
z* _y* +Z* =0
y* =0. @)
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Fig. 2. (a) Uniform chain (v; = 0). Space-time diagram of z;(t): dy = d2 = 0.5. (Point Bz.) (b) Uniform chain (v; = 0).
Space-time diagram of x;(t): di = d2 = —0.1. (Point Bg3.)

LX) jsa0 K t=0
? Xy(t
) 180 200 30 e 4@ <o w0 160 130 akxj(t) 4290 | 20 ) %=s
1 Xj(t) 1220 1 x;(t) 12100 ‘a 200 300 e 0 60 a0 100 130
xj(t) 3=400 | 2 xj(t) =100
2 160 200 300 ¢ 20 40 68 80 100 130 %5 160 260 30 Y35 46 €0 66 166 180
(a) (b)

2 X =20 . Xi(t) t=0 : 5 Xi(t) 3220 s Xt t=0 i
2= | - _ -

] 100 200 300 30 40 60 80 100 130 o 100 200 300 20 40 60 80 100 180
.10 =40 l . Xi(t) r=a . Xi(t) =40 - ,‘XJ(t) =3 1

! |- - sl A —" |
_20 100 200 300 2 20 40 60 €0 100 120 s0 100 200 300 s 20 40 60 80 100 120
2 Xj(t) 3=100 2 X-(t +=200 s Xj(t) J=100 | s X](t)

| AL ¢d 1111441 J
-z}: 100 200 aén -® 20 40 60 @0 100 120 -5 100 200 300 2D - 60 an 100 120
(c) (d)

Fig. 3. (a) Nonuniform flow chain (7} # 0.d2 = 0). Space-time diagram of x;(t): d; = 0.1. (Point A;.) (b) Nonuniform flow
chain (v, # 0.d2 = 0). Space-time diagram of x;(t): d; = 0.6. (Point A2.) (¢) Nonuniform flow chain (v; # 0.d2 = 0).
Space-time diagram of z;(t): d; = —0.4. (Point A3.) (d) Nonuniform flow chain (v; # 0,d2 = 0). Space-time diagram
of rj(t): di = —0.9. (Point A4.)
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Fig. 4. (a) Nonuniform isotropic chain (7; # 0.dy = d2 # 0). Space-time diagram of «,(t): dy = d2 = 0.1. (Point By.) (b)
Nonuniform isotropic chain (v; # 0.d1 = d2 # 0). Space-time diagram of x;(t): di = dz = 0.5. (Point B,.) (c) Nonuniform
isotropic chain (y; # 0.d1 = d2 # 0). Space-time diagram of r;(t): d = d» = —0.1. (Point Bs.) (d) Nonuniform isotropic

chain (v; # 0,d1 = d2 # 0). Space-time diagram of x;(t): d1 = d2

—0.3. (Point By4.) (e) Nonuniform isotropic chain

(v; # 0,d1 = do # 0). Space-time diagram of x;(t): di = d2 = —0.5. (Point B5.)
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Fig. 5. (a) Nonuniform anisotropic chain (v; # 0,d1 # d2). Space-time diagram of x;(t): di = —0.3,d2 = —0.1. (Point

C1.) (b) Nonuniform anisotropic chain (v; # 0,d1 # d2). Space-time diagram of x;(¢): dy = —0.3.d2 = 0.1. (Point C2.) (c)
Nonuniform anisotropic chain (v; # 0, d1 # d2). Space~time diagram of x;(t): d; = —0.3, d2 = 0.2. (Point C'3.) (d) Nonuniform
anisotropic chain (v; # 0,d; # d2). Space-time diagram of « ;(t): d1 = —0.3,d2 = 0.3. (Point Cy.) (e) Nonuniform anisotropic
chain (v; # 0,dy # d2). Space-time diagram of z;(¢): dy = —0.3.d2 = 0.4. (Point C.)
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Fig. 6. 2-D CNN. Space diagram of r;;. (@) d1 = da = d3 = d4 = 0. (b) dy = dy = d3 = dqy = 0.1. (c)
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For d;. d2 <0, an oscillation in space between “4” and “—’
states typically appear in the spatiotemporal dynamics. The
transition fronts traveling from the ends of the chain towards
its center where a stable spatially periodic distribution with
alternating “+” and “—" states is established in the chain for
t > 250, as shown in Fig. 2(b).

Nonuniform chain (y; # 0) : We specify a nonuniformity
in the chain along « and attempt to form in the chain “4” and
“— structures mimicking to a certain extent the nonuniformity
specified along ~.

Flow (Directional) Chain (d2 = 0): Fig. 3(a)~(d)  shows
the space—time diagrams for coupling coefficients d; >0
corresponding to points A;, A2, A3, and Ay in Fig. 1,
respectively. The parameter  is specified along the chain
as follows (Fig. 1): v; = 0 for j = 1,30,51 — 70,91 — 128;
and v; = 1 for j = 31 —50,71 —90. Our experimental
results show that for sufficiently small coupling coefficients
di >0, the stable “+” and “—" structures repeat rather well

the distribution specified for v (Fig. 3(a)). As d; is increased,
the structures (Fig. 3(b)) become less pronounced, the process
being nonsymmetric relative to the increase and decrease of
j because we consider a flow (directional) chain. Structure
formation occurs for small negative d; < 0 too, but instead of
“4” structures, spatially periodic oscillations of “+” and “-”
states are observed in Fig. 3(c). The structures become less
pronounced as the coupling is increased (Fig. 3(d)).

Isotropic chain (dy = dg # 0): The space-time diagrams
for coupling coefficients d; = do corresponding to points
B,.By. B3, By, and Bs in Fig. 1 are shown in Fig. 4(a)-(e).
The distribution of «y is given in Fig. 1. Our experimental
results confirm the regularity of formation of the structures
mimicking the distribution specified along v and, in this sense,
are analogous to the previous case. The only difference is, by
virtue of isotropy, that the structures become less pronounced
symmetrically towards decreasing and increasing j, as the
coupling coefficient is increased.
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Anisotropic chain (dq # ds # 0): The spatiotemporal dy-
namics in this case is illustrated in Fig. 5(a)—(e) (parameters
d1 and do corresponding to points C;—-C5 in Fig. 1). The
distribution of ~ is given in Fig. 1. Analogously to the previous
cases, we observe formation of structures close to the specified
distribution of ~ as the coupling is increased. A distinguishing
feature of the diagrams in Fig. 5(c)—(e) is that the processes at
fixed j are periodic in time (with respect to the “4” and *“—”
states) and a wave of transition regimes can be observed.

2-D CNN: 1In this case, the equation describing the CNN
has the form

Tik =(yjk — P(Tjn)) = Vik + d1Ti-1k
+dozjyrx + dasxjp—1 + daZj rta
Yik =ik = Yik T Zjk
Gk =—Byix  J=1,22 k=120, (3)
The distribution of the “+” and “—” states in the array for
zero coupling coefficients, i.e., the distribution corresponding
to the specified law «y;; is given in Fig. 6(a). Fig. 6(b)—(h)
present the structures established in the array for different
values of diy,ds,ds,ds. The structures formed in the array
from “4” and “-" states, like in a 1-D CNN, mimic the
original distribution v;; for small coupling (Fig. 6(b)-(f)).
This resemblance is eventually destroyed as coupling increases
(Fig. 6(g) and (h)).

IV. CONCLUSION

Numerical simulations of 1- and 2-D CNN of Chua’s
circuits have demonstrated that one can control rather effec-
tively structure formation process by applying an external field
through nonuniform square-wave current sources.
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