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Abstract

Advances in empirical population genetics have made apparent the need for models that simultane-

ously account for selection and demography. To address this need, we here study the Wright-Fisher

diffusion under selection and variable effective population size. In the case of genic selection

and piecewise-constant effective population sizes, we obtain the transition density by extending a

recently developed method for computing an accurate spectral representation for a constant pop-

ulation size. Utilizing this extension, we show how to compute the sample frequency spectrum

in the presence of genic selection and an arbitrary number of instantaneous changes in the effec-

tive population size. We also develop an alternate, efficient algorithm for computing the sample

frequency spectrum using a moment-based approach. We apply these methods to answer the fol-

lowing questions: If neutrality is incorrectly assumed when there is selection, what effects does it

have on demographic parameter estimation? Can the impact of negative selection be observed in

populations that undergo strong exponential growth?
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Introduction1

Advances in empirical population genetics have pointed out the need for models that simultane-2

ously account for selection and demography. Studies on samples from various species including3

humans (e.g., Williamson et al. 2005; Tennessen et al. 2012) and Drosophila melanogaster (Glinka4

et al. 2003; Duchen et al. 2013) have shown that demographic processes such as population size5

changes shape in large part the patterns of polymorphism among genomes and estimated the im-6

pact of selection on top of such underlying neutral conditions. Thus far, most theoretical papers7

considered selective and demographic forces independently of each other for the sake of simplicity8

(e.g., Stephan and Li 2007).9

Theoretical studies of neutral models of time-varying population size have been accomplished10

within the diffusion and the coalescent frameworks. Kimura (1955a) derived the transition density11

of the Wright-Fisher (WF) diffusion with a constant population size that characterizes the neutral12

evolution of allele frequencies over time. Shortly thereafter, Kimura (1955b) noted how to rescale13

time to generalize this result to a deterministically changing population size. Nei et al. (1975)14

derived the average heterozygosity under this general condition by applying a differential equation15

method, before studies on time-varying population size started to utilize the coalescent. Watter-16

son (1984) derived the probability distribution and the moments of the total number of alleles17

in a sample using models of one or two sudden changes in population size. Slatkin and Hudson18

(1991) considered the distribution of pairwise differences in exponentially growing populations,19

before Griffiths and Tavaré (1994) provided the coalescent for arbitrary deterministic changes in20

population size. The allele frequency spectrum, which is the distribution of the number of times21

a mutant allele is observed in a sample of DNA sequences, has been utilized in many theoretical22

and empirical studies. It can be further distinguished into the allelic spectrum and the sample fre-23

quency spectrum (SFS) according to whether absolute or relative frequencies are meant. Fu (1995)24

derived the first- and second-order moments of the allelic spectrum for a constant population size,25

which has been generalized to time-varying population size by Griffiths and Tavaré (1998) and26

Živković and Wiehe (2008). Although deterministic fluctuations in population size are commonly27

considered for the interpretation of biological data, studies have also examined stochastic changes28

in population size (e.g., Kaj and Krone 2003).29

The mathematical modeling of natural selection is mostly carried out within the diffusion frame-30

work, whereas coalescent approaches have proved to be analytically challenging (e.g., Krone and31
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Neuhauser 1997). Fisher (1930) derived the equilibrium solution for the allelic spectrum of a pop-32

ulation, which became particularly useful when Sawyer and Hartl (1992) modeled the frequencies33

of mutant sites via a Poisson random field approach. Kimura (1955c) employed a perturbation34

approach to obtain a series representation of the transition density that is accurate for scaled selec-35

tion coefficients smaller than one. However, as noted in Williamson et al. (2005), an appropriate36

use of this result with respect to the analysis of whole-genome data is even difficult for a constant37

population size. In a recent paper, Song and Steinrücken (2012) devised an efficient method to ac-38

curately compute the transition density of the WF diffusion with recurrent mutations and general39

diploid selection. This nonperturbative approach that can be applied to scaled selection coefficients40

substantially greater than one finds the eigenvalues and the eigenfunctions of the diffusion gener-41

ator and leads to an explicit spectral representation of the transition density. The results for this42

biallelic case have been extended to an arbitrary number of alleles by Steinrücken et al. (2013).43

The process dual to this multi-allelic diffusion has been analyzed earlier by Barbour et al. (2000).44

While providing theoretical insight, their approach does not straightforwardly allow computation45

of the transition density.46

In recent years, several researchers have started to investigate the combined effect of natural47

selection and demography. The majority of these studies have utilized finite difference schemes48

to enable tractable computation. Williamson et al. (2005) employed such a scheme to obtain a49

numerical solution of the SFS for a model with genic selection and one instantaneous population50

size change. The authors applied this result within a likelihood-based method to infer popula-51

tion growth and purifying selection at non-synonymous sites across the human genome. Evans52

et al. (2007) investigated the forward diffusion equation with genic selection and deterministically53

varying population size and incorporated the effect of point mutations via a suitable boundary54

condition. They derived a system of ODEs for the moments of the allelic spectrum, but had to55

resort to a numerical scheme to make their results applicable. Gutenkunst et al. (2009) considered56

population substructure and selection to obtain the joint allele frequency spectrum of up to three57

populations by approximating the associated diffusion equation by a finite difference scheme as58

well. Lukić and Hey (2012) applied spectral methods that even account for a fourth population59

in the otherwise same setting as Gutenkunst et al. (2009). Recently, and again with respect to a60

single population, Zhao et al. (2013) provided a numerical method to solve the diffusion equation61

for random genetic drift that can incorporate the forces of mutation and selection. The authors62

illustrated the accuracy of their discretization approach by determining the probability of fixation63
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in the presence of selection for both an instantaneous population size change and a linear increase64

in population size. In general, such methods require an appropriate discretization of grid points,65

which may depend strongly on the parameters. This makes it difficult, however, to predict if a66

particular discretization will produce accurate results.67

In this study, we use the polynomial approach by Song and Steinrücken (2012) to obtain the68

transition density for genic selection and instantaneous changes in population size. First, we focus69

on a single time period during which the population has a different size relative to a fixed reference70

population size. We compute the eigenvalues and the eigenfunctions of the diffusion operator with71

respect to the modified drift term of the underlying diffusion equation. Similarly to a constant pop-72

ulation size, the eigenfunctions are given as a series of orthogonal functions. The eigenvalues and73

eigenfunctions facilitate a spectral representation of the transition density describing the change74

in allele frequencies across this time period. Such transition densities for single time periods can75

then be folded over various instantaneous population size changes to obtain the overall transition76

density for such a multi-epoch model with genic selection. After illustrating the applicability of77

this approach, we derive the SFS by means of the transition density. While the transition density78

proves useful for the analysis of time-series data that are mostly gathered from species with short79

generation times as bacteria (e.g., Lenski 2011) but also from species with long generation times80

(Steinrücken et al. 2014), the SFS can also be applied to whole-genome data collected at a single81

time point. As an alternative approach to employing the transition density for the SFS, we modify82

the moment-based approach by Evans et al. (2007) to efficiently compute allele frequency spectra83

for genic selection, point mutations and piecewise changes in population size.84

We then employ a maximum likelihood method to estimate the demographic and selective85

parameters of a given bottleneck model. After examining the accuracy of parameter estimation,86

we discuss how the estimates change when selection is ignored or a simpler demographic model87

is assumed. We investigate the demography of an African population of Drosophila melanogaster88

(Duchen et al. 2013), allowing for selection coefficients that are either constant or vary according89

to a given distribution of fitness effects. Furthermore, we answer an other, important question90

arising in human population genetics (Tennessen et al. 2012): Can the impact of negative selection91

be observed in populations that undergo strong exponential growth? We investigate, how strong92

selection would have to be to leave a signature in the SFS.93
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The transition density for genic selection and piecewise-constant94

population sizes with K epochs95

Model and notation96

We assume that the diploid effective population size changes deterministically, with N(t) denoting97

the size at time t. Here, time is measured in units of 2Nref generations, where Nref is a fixed98

reference population size. Unless stated otherwise, the initial population size will be used as the99

reference population size in the various numerical examples. In the diffusion limit, the relative100

population size N(t)/Nref converges to a scaling function which we denote by ρ(t).101

We assume the infinitely-many-sites model (Kimura 1969) with A0 and A1 denoting the ances-102

tral and derived allelic types, respectively. The relative fitnesses of A1/A1 and A1/A0 genotypes103

over the A0/A0 genotype are respectively given by 1+2s and 1+s. The population-scaled selection104

coefficient is denoted by σ = 2Nref · s. The frequency of the derived allele A1 at time t is denoted105

by Xt. Let f be a twice continuously differentiable, bounded function over [0, 1]. The backward106

generator of a time-inhomogeneous one-dimensional WF diffusion process on [0, 1] is denoted by107

L , which acts on f as108

L f(x) =
1

2
b(x; t)

∂2

∂x2
{f(x)}+ a(x)

∂

∂x
{f(x)}, (1)

where the diffusion and drift terms are given by b(x; t) = x(1 − x)/ρ(t) and a(x) = σx(1 − x),109

respectively. While selection operates on a natural time scale as represented by the drift term,110

changes in population size require an appropriate rescaling of time within the diffusion term. Thus,111

the relative strength of natural selection and genetic drift is time-inhomogeneous. This prohibits112

classical time-rescaling approaches and introduces considerable challenges in obtaining analytic113

results. To gain insights, we here focus on the case where ρ is piecewise constant. In this case, the114

diffusion and drift terms differ by a constant factor within each piece, thus simplifying the analysis.115

Throughout, we assume that ρ has K constant pieces (or epochs) in the time interval [τ0, τ).116

The change points are denoted by t1, . . . , tK−1, and for convenience we define t0 = τ0 and tK = τ .117

Then, for ti ≤ t < ti+1, with 0 ≤ i ≤ K − 1, we assume ρ(t) = ci, where ci is some positive118

constant. For the epoch ti ≤ t < ti+1, the diffusion term is thus given by bi(x) = x(1−x)/ci and the119

corresponding generator is denoted by L i. The scale density ξi (Karlin and Taylor 1981, Ch. 15)120
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for the epoch is given by121

ξi(x) = exp

[

−
∫ x

0

2a(z)

bi(z)
dz

]

= exp(−2ciσx),

while the speed density πi is given (up to a constant) by122

πi(x) = [bi(x)ξi(x)]
−1 =

ci exp(2ciσx)

x(1− x)
. (2)

Given real-valued functions f and g on [0, 1] that satisfy appropriate boundary conditions and123

are square integrable with respect to some real positive density h, we use 〈f, g〉h to denote124

〈f, g〉h =

∫ 1

0
f(x)g(x)h(x)dx.

The transition density within each epoch [ti, ti+1)125

For the epoch [ti, ti+1), let the transition density be denoted by pi(t;x, y), where t ∈ [ti, ti+1),126

Xti = x and Xt = y. Under the initial condition pi(ti;x, y) = δ(x − y), the spectral representation127

of pi(t;x, y) is given by128

pi(t;x, y) =

∞
∑

n=0

exp[−Λi
n(t− ti)]πi(y)Φ

i
n(x)Φ

i
n(y)

1

〈Φi
n,Φ

i
n〉πi

, (3)

where −Λi
n and Φi

n are the eigenvalues and eigenfunctions of L i, respectively. That is,129

L
iΦi

n(x) = −Λi
nΦ

i
n(x).

It can be shown that the eigenvalues are all real and non-positive. Furthermore,130

0 ≤ Λi
0 < Λi

1 < Λi
2 < · · · ,

with Λi
n → ∞ as n → ∞. The associated eigenfunctions {Φi

n(x)}∞n=0 form an orthogonal basis of131

L2([0, 1], πi), the space of real-valued functions on [0, 1] that are square integrable with respect to132

the speed density πi, defined in (2).133

Song and Steinrücken (2012) recently developed a method for finding Λi
n and Φi

n in the case134

of ci = 1. We will give a brief description of their method and modify it accordingly to incorporate135
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an arbitrary ci > 0. Let L i
0 denote the diffusion generator under neutrality (i.e., σ = 0). The136

eigenfunctions of L i
0 are modified Gegenbauer polynomials {Gn(x)}∞n=0 (cf. Appendix), and the137

corresponding eigenvalues are −λi
n, with138

λi
n =

(

n+ 2

2

)

1

ci
. (4)

Similar to Song and Steinrücken (2012), define H i
n(x) as139

H i
n(x) =

exp(−ciσx)√
ci

Gn(x). (5)

Then, {H i
n(x)}∞n=0 form an orthogonal system with respect to the weight function πi(x). By directly140

applying the full generator L i to H i
n(x), we observe that H i

n(x) are not eigenfunctions of L i.141

Instead, we obtain142

LiH
i
n(x) = −[λi

n + ci Q(x;σ)]H i
n(x), (6)

where Q(x;σ) = 1/2 ·σ2x(1−x). However, since both {H i
n(x)}∞n=0 and {Φi

n(x)}∞n=0 are orthogonal143

with respect to the same weight function πi(x), and {H i
n(x)}∞n=0 form a basis of L2([0, 1], πi), we144

can represent Φi
n(x) as a linear combination of H i

m(x):145

Φi
n(x) =

∞
∑

m=0
uin,mH i

m(x). (7)

Furthermore, the fact that Φi
n(x) is an eigenfunction of L i with eigenvalue −Λi

n implies that146

{uin,m}∞m=0 and Λi
n satisfy the following equation:147































λi
0 + cia

(0)
0 0 cia

(−2)
2 0 0 · · ·

0 λi
1 + cia

(0)
1 0 cia

(−2)
3 0 · · ·

cia
(+2)
0 0 λi

2 + cia
(0)
2 0 cia

(−2)
4 · · ·

0 cia
(+2)
1 0 λi

3 + cia
(0)
3 0 · · ·

0 0 cia
(+2)
2 0 λi

4 + cia
(0)
4 · · ·

...
...

...
...

...
. . .
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uin,4
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= Λi
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uin,0

uin,1

uin,2

uin,3

uin,4
...































,

(8)

where λi
n is as defined in (4) and a

(−2)
m , a

(0)
m , a

(+2)
m are known constants that depend on σ and m148
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(cf. Song and Steinrücken 2012 for details).149

The transition density expansion (3) can be obtained by numerically solving the eigensys-150

tem (8). Denote the infinite-dimensional matrix on the left hand side of (8) by Wi. The eigenval-151

ues Λi
n of Wi correspond (up to a sign) to the eigenvalues of L i, and the associated eigenvectors152

ui
n =

(

uin,0, u
i
n,1, u

i
n,2, . . .

)T
of Wi determine the eigenfunctions of L i via (7). Let W

[D]
i denote153

the D × D matrix obtained by taking the first D rows and D columns of Wi, and let Λ
i,[D]
n and154

u
i,[D]
n =

(

u
i,[D]
n,0 , u

i,[D]
n,1 , u

i,[D]
n,2 , . . .

)T

denote the eigenvalues and eigenvectors of W
[D]
i , respectively.155

The truncated eigensystem156

W
[D]
i u

i,[D]
n = Λi,[D]

n u
i,[D]
n (9)

can then be used to approximate (8). This finite-dimensional linear system can be easily solved157

numerically. Since the truncated versions of the eigenvalues and eigenvectors converge rapidly as158

D increases, an accurate approximation of the transition density (3) can be efficiently obtained. The159

truncation level D required for convergence is higher when modeling a large population compared160

to the basic selection model, and lower when the population size is small. The reason for this is161

that the necessary truncation level depends on the effective strength of selection, which is higher162

in large populations and lower in small populations. Therefore, for a fixed selection coefficient s,163

large populations are computationally more demanding than small populations. Furthermore, we164

observed that positive selection coefficients require higher values for D than negative ones.165

The transition density for the entire period [τ0, τ) with K epochs166

Suppose Xτ0 = x and Xτ = y. The transition density p(τ0, τ ;x, y) for the entire period [τ0, τ) is167

obtained by combining the transition densities for the K epochs as follows:168

p(τ0, τ ;x, y) =

∫

[0,1]K−1

p0(t1;x, x1)

[

K−2
∏

i=1

pi(ti+1;xi, xi+1)

]

pK−1(τ ;xK−1, y) dx1 . . . dxK−1, (10)

where xi denotes the allele frequency at the change point ti. Using (3), we can write (10) as169

p(τ0, τ ;x, y) = Φ0(x)
T
E0S0E1S1 · · ·EK−2SK−2EK−1ΦK−1(y)πK−1(y), (11)
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where Φi(x) =
(

Φi
0(x),Φ

i
1(x),Φ

i
2(x), . . .

)T
is an infinite-dimensional column vector, while Ei and170

Si are infinite-dimensional matrices defined as171

Ei = diag

(

e−Λi
0
(ti+1−ti)

〈Φi
0,Φ

i
0〉πi

,
e−Λi

1
(ti+1−ti)

〈Φi
1,Φ

i
1〉πi

, . . .

)

and172

Si =

∫ 1

0
πi(z)Φi(z)Φi+1(z)

T dz.

In general, Si is not a diagonal matrix since Φi
n(z) and Φi+1

m (z) are not orthogonal with respect to173

πi(z) if ci 6= ci+1. In Appendix, we show that the entry (n,m) of Si is given by174

∫ 1

0
πi(z)Φ

i
n(z)Φ

i+1
m (z)dz =

√

ci
ci+1

∞
∑

k=0

∞
∑

l=0

uin,ku
i+1
m,l

k+l+2
∑

j=1

(−1)j+1 e
σ(ci−ci+1) − (−1)k+l+j

[σ(ci − ci+1)]j+1

×(k + 1)(l + 1)j!

(k + 2)(l + 2)

j−1
∑

r=0

(

k + 2

j − r

)(

k + j − r

j − r − 1

)(

l + r + 2

r + 1

)(

l

r

)

. (12)

Note that the last line of (12) does not depend on n or m, so it needs to be computed only once.175

The overall computational time for evaluating p(τ0, τ ;x, y) scales linearly with the number K of176

epochs.177

To better understand the joint impact of selection and demography on the transition density, we178

consider two scenarios, where p(0, τ ;x, y) is simply denoted as p(τ ;x, y). Figure 1 illustrates the179

density in a scenario in which the selection coefficient is fixed and various K-epoch demographic180

models are considered. In comparison to the case of a constant population size (cf. Figure 1a),181

an instantaneous expansion (cf. Figure 1b) narrows the distribution around the mean, whereas an182

additional phase of a reduced population size (cf. Figure 1c) increases the variance relative to a183

population of a constant size. Figure 2 illustrates the same scenarios with a fixed transition time and184

varying selection coefficients. Note that all theoretical results and the corresponding applications185

in this paper were implemented in Mathematica. The implementation is available from the authors186

upon request.187

9



The sample frequency spectrum188

The transition density approach189

The transition density derived in the previous section can be employed to obtain the sample fre-190

quency spectrum (SFS) of a sample. Consider a sample of size n obtained at time t = τ . The191

probability that the A1 allele with frequency x at time t = τ0 is observed b times in the sample is192

(Griffiths 2003)193

pn,b(x; τ0, τ) =

1
∫

0

(

n

b

)

yb(1− y)n−bp(τ0, τ ;x, y)dy. (13)

For piecewise-constant population size models with K epochs, a spectral representation of194

p(τ0, τ ;x, y) can be found via (11) and evaluating (13) involves computing the integral195

∫ 1
0 yb(1− y)n−bπK−1(y)ΦK−1(y)dy. For l ≥ 0, using (2), (5), and (7), we obtain196

∫ 1

0
yb(1− y)n−bπK−1(y)Φ

K−1
l (y)dy

=
∞
∑

m=0

√
cK−1u

K−1
l,m

∫ 1

0
yb−1(1− y)n−b−1ecK−1·σyGm(y)dy

=

∞
∑

m=0

√
cK−1u

K−1
l,m

1

b+ 1

m
∑

h=0

(−1)h+1

(

m+1
h+1

)(

h+m+2
h

)

(

n+h+1
b+1

) · 1F1(b+ 1;n + h+ 2; cK−1 · σ), (14)

where 1F1(a; b; z) =
∑

j≥0
a(j)/b(j)z

j/j! is the confluent hypergeometric function of the first kind. The197

descending factorials d(j) are defined in Appendix.198

The SFS qn,b(τ) is the probability distribution on the number b of mutant alleles in a sample of199

size n taken at time τ , conditioned on segregation. For 1 ≤ b ≤ n− 1, qn,b(τ) is given by200

qn,b(τ) = lim
x→0

∫ τ

−∞
pn,b(x; τ0, τ)dτ0

∫ τ

−∞

∑n−1
a=1 pn,a(x; τ0, τ)dτ0

. (15)

In (15), the SFS at a single site is obtained by averaging over sample paths. This is equivalent201

to the frequency spectrum distribution over a large number of independent mutant sites in the202

Poisson random field model of Sawyer and Hartl (1992). Using (11), (12), (13) , and (14), we can203

approximate (15) numerically. If it is unknown which allele is derived, a folded version of (15) can204

be obtained as [qn,b + qn,n−b]/(1 + δb,n−b), where δb,n−b denotes the Kronecker delta.205
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A moment-based approach206

As detailed above, the transition density can be employed to obtain the SFS. However, the specific207

solution for the transition density is not required to obtain the less complex and thus computation-208

ally less demanding SFS. Here, we utilize the work of Evans et al. (2007) to develop an efficient209

algorithm for computing the allele frequency spectrum in the case of genic selection and piecewise-210

constant population sizes.211

Suppose mutations arise at rate θ/2 (per sequence per 2Nref generations) and according to the212

infinitely-many-sites model (Kimura 1969). Evans et al. (2007) use the forward diffusion equation213

to describe population allele frequency changes and introduce mutations by an appropriate bound-214

ary condition. Slightly modifying their notation, we use f(y, t)dy to denote the expected number of215

sites where the mutant allele has a frequency in (y, y + dy), with 0 < y < 1, at time t. The forward216

equation is217

∂

∂t
f(y, t) =

1

2

∂2

∂y2
{b(y; t)f(y, t)} − ∂

∂y
{a(y)f(y, t)}, (16)

where the diffusion term b(y; t) = y(1−y)/ρ(t), the drift term a(y) = σy(1−y), the scaled selection218

coefficient σ, and the population size function ρ(t) are defined as before. The influx of mutations219

is incorporated into this process via the boundary conditions220

lim
y↓0

yf(y, t) = θρ(t) and lim
y↑1

f(y, t) finite. (17)

The resulting polymorphic sites follow the dynamics of (16) thereafter. Note that this differs from221

the diffusion process studied in the previous section, as the influx of mutations is now explicitly222

modeled.223

Again, it is analytically more practical to consider the corresponding backward equation, which224

is obtained by setting g(y, t) := y(1 − y)f(y, t). This substitution transforms the forward equation225

for f(y, t) into a backward equation for g(y, t), which is essentially given by (1) up to the sign of the226

drift term. Evans et al. (2007) derived a coupled system of ordinary differential equations (ODEs)227

for the moments µj(t) =
∫∞

0 yjg(y, t)dy:228

µ′
0(t) =

θ

2
− 1

ρ(t)
µ0(t) + σ[µ0(t)− 2µ1(t)], (18)
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µ′
j(t) =

1

ρ(t)

[

(

j + 1

2

)

µj−1(t)−
(

j + 2

2

)

µj(t)

]

+

σ
[

(j + 1)µj(t)− (j + 2)µj+1(t)
]

, j ≥ 1, (19)

where µ′
j(t) = dµj(t)/dt. A similar system of ODEs was derived and solved by Kimura (1955a) for229

a neutral scenario with a constant population size and without mutations. For σ = 0, the above230

system is finite and can be solved explicitly (Živković and Stephan 2011). In the case of selection231

(σ 6= 0), on the other hand, the system is infinite and obtaining an explicit solution for an arbitrary232

ρ is a challenging problem, even if the system is truncated by setting µj(t) = 0 for j ≥ D.233

From now on, assume µj(t) ≡ 0 for j ≥ D and rewrite the truncated system of ODEs in matrix234

form as235

M
′(t) =

[

1

ρ(t)
B + σA

]

M(t) +Θ, (20)

where M(t) =
(

µ
[D]
0 (t), µ

[D]
1 (t), . . . , µ

[D]
D−1(t)

)T

, M ′(t) = dM(t)/dt, Θ = (θ/2, 0, . . . , 0)T are D-236

dimensional column vectors, and B = (bkl) and A = (akl) are D ×D matrices with entries237

bkl =



























−
(

k+2
2

)

, if l = k,

(

k+1
2

)

, if l = k − 1,

0, otherwise,

and akl =



























k + 1, if l = k,

−(k + 2), if l = k + 1,

0, otherwise,

for 0 ≤ k, l ≤ D−1. The formal solution of (20) cannot be written in terms of a matrix exponential238

but only as a Peano-Baker series (Baake and Schlägel 2011) for arbitrary ρ, which can be numer-239

ically quite demanding. Therefore, we focus on the case of piecewise constant ρ and develop an240

efficient method to solve the truncated system of ODEs.241

We first consider ρ(t) ≡ c0 (i.e., a constant population size), for which the solution of (20) takes242

the form of a matrix exponential given by243

M(t) = exp

[ t
∫

0

(

B

c0
+ σA

)

ds

]

M(0) +

{ t
∫

0

exp

[ t
∫

s

(

B

c0
+ σA

)

du

]

ds

}

Θ

= exp

[(

B

c0
+ σA

)

t

]

M(0) +

{

exp

[(

B

c0
+ σA

)

t

]

− I

}(

B

c0
+ σA

)−1

Θ. (21)

12



Let −λk, (lk,0, . . . , lk,D−1), and (r0,k, . . . , rD−1,k)
T respectively denote the eigenvalues, row eigen-244

vectors, and column eigenvectors of B/c0 + σA. Then, (21) implies245

µ
[D]
j (t) =

D−1
∑

i=0

µ
[D]
i (0)

D−1
∑

k=0

rjklkie
−λkt +

θ

2

D−1
∑

k=0

rjklk0
1− e−λkt

λk

. (22)

It is intractable to find closed-form expressions of −λk, lki, and rjk, but, for a given truncation level246

D, they can be computed numerically. Depending on the details of the model under consideration,247

it might be more efficient to solve (21) numerically rather than applying the more analytic form248

given in (22).249

We now investigate the equilibrium solution of (22), since it can be applied as an initial condi-250

tion in a model in which the population size remains constant over a longer period of time before251

instantaneous population size changes occur. Assuming that all alleles are monomorphic at time252

zero, i.e. µ
[D]
i (0) ≡ 0, and letting t → ∞, we obtain the moments at equilibrium as253

µ̂
[D]
j =

θ

2

D−1
∑

k=0

rjklk0
λk

.

For D sufficiently large, this result is numerically close to the exact solution µ̂j . The latter can also254

be obtained as follows. The equilibrium population frequency spectrum is given by (Fisher 1930)255

f̂(y) =
θc0
[

1− e−2c0σ(1−y)
]

y(1− y)(1− e−2c0σ)
. (23)

The sampled version can be easily found via binomial sampling as in (13):256

f̂n,b = θc0
n

b(n− b)

1− 1F1(b;n; 2c0σ)e
−2c0σ

1− e−2c0σ
. (24)

For σ 6= 0, the moments µ̂j of ĝ(y) = y(1− y)f̂(y) are given by257

µ̂j = θc0
1

1− e−2c0σ

{

e−2c0σ[Γ(j + 1,−2c0σ)− j!]

(−2c0σ)j+1
+

1

j + 1

}

,

where Γ(a, z) =
∫∞

z
ta−1e−tdt is the incomplete gamma function.258
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Now, consider the piecewise-constant model with K epochs in the time interval [τ0, τ ] defined259

earlier. For ti ≤ t < ti+1,260

M
′(t) =

(

B

ci
+ σA

)

M(t) +Θ, (25)

which can be solved as in (21). For τ > tK−1,261

M(τ) = exp

[

(

B

cK−1
+ σA

)

(τ − tK−1)

]

M(tK−1) +

{

exp

[

(

B

cK−1
+ σA

)

(τ − tK−1)

]

− I

}

(

B

cK−1
+ σA

)−1
Θ, (26)

where M(ti), for 1 ≤ i ≤ K − 1, is recursively given by262

M(ti) = exp

[(

B

ci−1
+ σA

)

(ti − ti−1)

]

M(ti−1) +

{

exp

[(

B

ci−1
+ σA

)

(ti − ti−1)

]

− I

}(

B

ci−1
+ σA

)−1

Θ.

The initial condition M(t0) is either chosen as the equilibrium solution described above or the zero263

vector, which corresponds to the case of all loci being monomorphic at time t0 = τ0.264

The accuracy of the above framework depends on how fast the truncated moments µ
[D]
j (τ) con-265

verge to zero as D increases. Similar to the transition density approach, the truncated moments266

converge faster for negative than for positive σ, and for instantaneous declines compared to instan-267

taneous expansions. For a large positive σ, a higher truncation level D may be required to achieve268

the desired accuracy. Finally, the allelic spectrum fn,b(τ), for 1 ≤ b ≤ n − 1, of a sample of size n269

taken at time τ can be obtained from the moments µj(τ) by using the relationship270

fn,b(τ) =

(

n

b

) n−b−1
∑

l=0

(−1)l
(

n− b− 1

l

)

µl+b−1(τ). (27)

The SFS qn,b(τ) at time τ is then given by271

qn,b(τ) =
fn,b(τ)

∑n−1
a=1 fn,a(τ)

. (28)

Substituting the truncated moments obtained from (26) into (27) provides numerical approxima-272

tions of (27) and (28).273
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The joint impact of a population bottleneck and selection on the SFS is illustrated in Figure 3274

for various points in time. As expected, negative and positive selection result in a skew of the SFS275

towards low- and high-frequency derived variants, respectively, when compared to a model without276

selection, across all sampling times. Moreover, this skew varies in intensity at different points in277

time. In the neutral demographic model (cf. Figure 3b), the relative frequency of singletons at time278

τ3 is higher than at time τ4, whereas under the same demographic model with negative selection279

(cf. Figure 3c) this relation is inverted. This is because the amount of singletons that is caused280

by demographic forces decreases after the expansion from τ3 to τ4, while negative selection is still281

increasing the low-frequency derived classes in this time interval.282

Applications283

Here, we discuss biologically relevant questions that can be addressed using our theoretical frame-284

work. This section consists of the following parts:285

1. We first consider models with negative selection and bottlenecks of medium strength at differ-286

ent time points. We examine the SFS under such models and try to estimate the demographic287

parameters while taking selection into account. We also carry out demographic inference288

ignoring selection. Whereas the former demonstrates how well the demographic and selec-289

tive parameters can be estimated jointly, the latter mimics the common practice of assuming290

genome-wide polymorphic sites as putatively neutral (due to the difficulty of jointly estimat-291

ing the impact of selection and demography using existing tools). We finally examine the292

consequences of assuming a too simple underlying demography on parameter estimation.293

2. We then analyze an African sample of Drosophila melanogaster to investigate its demographic294

history and possible selective effects.295

3. Lastly, we examine a model of strong exponential population growth (mimicking human evo-296

lution) and superimpose negative selection of various strengths to understand if and when297

selection can be inferred for such a model.298

Throughout, the first population size change will occur after the allele frequencies have reached an299

equilibrium according to (24).300
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Joint inference of population bottleneck and purifying selection301

A maximum likelihood approach302

Under the assumption that the considered sites are independent, the log-likelihood of a model303

M given data D is log[L(D;M)] =
∑n−1

i=1 di log(qi) + constant, where di is the observed number304

of sites at which the derived allele occurs i times in the sample, and qi is the probability that the305

derived allele occurs i times in the sample at a segregating site under model M (e.g., Wooding and306

Rogers 2002). Recall that qi can be either obtained via the transition density or the moment-based307

approach. The latter is preferable here, since the transition density is not explicitly required.308

Consider the bottleneck model illustrated in Figure 4. Note that the present relative size cS is309

fixed to 1, i.e., here the present population size is used as the reference population size Nref. First,310

we consider the scenario where the ancestral population size c0 prior to the bottleneck is allowed311

to vary. In this case, the model has five free parameters: c0, the initial population size; cB , the312

population size during the bottleneck; tB , the duration of the bottleneck; tS = τ − tB, the time313

since recovery from the bottleneck; and σ, the scaled selection coefficient. We then also consider314

the scenario where the ancestral population size is the same as the present population size, i.e.,315

c0 = cS , resulting in a model with four free parameters.316

We adopted a grid search in our estimation procedure, with σ ∈ [−10, 0] and cB , tB , tS ∈317

[0.001, 1]. For the 5-parameter model, c0 was chosen from the range [0.01, 10]. In total, 110,000318

grid points were chosen in the selected case and 10,000 in the neutral case. Note that the grid319

search also accounts for models of one or two successive instantaneous population expansions. For320

the 4-parameter model, 11,000 grid points were chosen in the selected case and 1000 in the neutral321

case. The grid points are summarized in Table 1.322

Estimation of bottleneck and selection parameters323

We first evaluated the SFS for a sample of size n = 50 in the following twelve scenarios, all with324

cS = 1 and σ ∈ {0,−1/2,−2}:325

1. Constant population size (i.e., c0 = cB = cS = 1).326

2. Bottleneck models with c0 = 1/2, cB = 1/10, tB = 1/10, and tS ∈ {1/200, 1/20, 1/2}.327

First, to test how well the demographic and selective parameters can be estimated jointly from328

sampled data, we focused on the bottleneck demography with tS = 1/20 and considered two329

scenarios: The neutral case (σ = 0) and the selected case with σ = −2. To mimic the limited avail-330

ability of independent polymorphic sites across the genome, we sampled 10,000 sites according to331
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the SFS for the two chosen scenarios, and repeated this procedure 200 times. For each of these332

200 datasets, we maximized the log-likelihood over the grid of parameter values described earlier,333

assuming (A1) neutrality when the true model has σ = 0, (A2) neutrality when the true model334

has σ = −2, (A3) presence of selection when the true model has σ = −2, and (A4) presence of335

selection when the true model has σ = 0.336

The estimated parameters are shown in Table 2. For inference under correct model assumptions337

(A1 and A3), the median estimates are equal to the true parameters. When selection is ignored338

although present in the dataset (A2), the ancestral population size (c0) and the duration of the bot-339

tleneck (tB) are underestimated, whereas the bottleneck size (cB) and the time since the bottleneck340

(tS) are accurately estimated. When the true model is neutral but the inference procedure allows341

for selection (A4), a neutral demographic model is accurately inferred. We calculated likelihood-342

ratio statistics for each of the 200 datasets to compare the two nested models of selection and343

neutrality. The null hypothesis of neutrality can be rejected at the 5% significance level with a344

power of 55%.345

We further analyzed all twelve scenarios using the expected SFS directly, assuming that the346

amount of data is sufficiently large such that the observed SFS closely approximates the expected347

value. Our goal in this case is to study the effect of model misspecification on parameter estimation;348

specifically, assuming selection when the true model is neutral or assuming neutrality when there is349

selection. In the former case, the maximum likelihood estimates (MLEs) always coincided with the350

true parameters. Therefore, it is useful to allow for selection in an analysis even when putatively351

neutral regions are considered. In the latter case, our results are summarized in Table 3. For a352

constant population size, two rather old instantaneous expansions are estimated. For the bottleneck353

models, ignoring selection leads to the largest errors for the most recent bottleneck and σ = −1/2354

and the least recent bottleneck and σ = −2, for which an instantaneous expansion is estimated.355

The time since the bottleneck was robustly estimated in many cases.356

To assess the impact of assuming a slightly simplified model for parameter estimation, we car-357

ried out an analogous study where the ancestral population size c0 was incorrectly assumed to358

equal the current size cS = 1, while the true model had c0 = 1/2 and cS = 1. For the resampling359

analysis, we considered the same bottleneck scenarios as before with σ = 0 or −2, and maximized360

the log-likelihood values over a grid in the parameter space (as described earlier) for each of the361

200 simulated datasets each containing 10,000 polymorphic sites. The parameter estimates are362

shown in Table 4. The time since the bottleneck (tS) is accurately estimated irrespective of correct363
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or wrong assumptions regarding selection. Incorrectly assuming c0 = cS results in either an over-364

estimation of the duration of the bottleneck (tB) in most of the cases (A1–A3) or an inference of365

selection when σ = 0 (A4). Selection was poorly estimated even under (A3).366

Again, we also analyzed all twelve scenarios under the assumption that the observed SFS is a367

close approximation to the expected value, to study the effect of model misspecification on parame-368

ter estimation. The results are shown in Table 5. The biases caused by incorrectly assuming c0 = cS369

are largest for the scenario that captures the youngest bottleneck (tS = 1/200). Here, not only the370

selection coefficients are strongly misestimated but also the time since the bottleneck (tS) is largely371

underestimated. In all the other scenarios, at least the time since the bottleneck (tS) is accurately372

estimated. The estimation accuracy of the other demographic parameters and selection coefficients373

increases with bottleneck age and the concomitant decreasing impact of the ancestral population374

size on the SFS. In summary, we note that assuming a too simplistic demographic model can lead375

to large errors in parameter estimation.376

Testing a dataset of Drosophila melanogaster377

Here, we apply our method to analyze a dataset which has been recently used to estimate the378

joint demographic history of several populations of Drosophila melanogaster (Duchen et al. 2013).379

The dataset consists of 12 sequences from a Zimbabwe population comprising 197 non-coding loci;380

and within each locus there are between 1 and 41 segregating sites (3234 polymorphic sites in381

total). We focused on the effects of weak selection and used all segregating sites in our analysis,382

treating them as independent. We note that whereas the 197 loci are scattered over the genome,383

at least tens of thousands of bases apart, the sites within each locus are tightly linked and hence384

not independent. We have tried a bootstrap resampling procedure to study the effect of assuming385

independence, but the strong stochasticity among the small subsets of presumably independent386

sites, which were generated by sampling one site from each locus, prevented a reliable inference.387

The empirical SFS of the data shows an uptick of high-frequency derived alleles (cf. Figure 5a).388

As explained in Discussion, this is likely to be caused by ancestral misidentification, not by positive389

selection. This effect is also unlikely to be caused by linkage, since the uptick is still observed in390

the previously mentioned subsamples of widely separated sites. To assess the effect of presumably391

misoriented sites on inference, we compare results for the unfolded SFS with those obtained from392

a partly folded version, where only singletons and doubletons are folded with their high-frequency393

counterparts, since these classes appear to be affected the most (cf. Baudry and Depaulis 2003).394
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We carried out our analysis based on the bottleneck model of the previous section allowing the395

current and the ancestral population size to differ. To account for varying selection pressures across396

the genome, sites are usually subdivided into various genomic categories (e.g., exons, introns,397

UTRs), often assuming a constant selection coefficient for each category. Alternatively, or even398

combined with such a categorization, selection coefficients are assumed to follow some distribution;399

a gamma distribution (Kimura 1979) is a popular choice due to its flexibility to fit empirical data.400

Since neutrality and purifying selection are considered to be prevalent in intronic and intergenic401

regions of African Drosophila, we focused on negative selection coefficients in our analysis. A non-402

coding dataset can be classified as a single functional category. Therefore, we analyzed the dataset403

first by either assuming constant selection or neutrality, followed by an analysis where the selection404

coefficients were allowed to vary according to a given distribution.405

We initially computed an MLE for the unfolded and the partly folded SFS under the constant406

selection and the neutral bottleneck model on the coarse parameter grid given in Table 1. For each407

model, we investigated the accuracy of the parameter estimates via parametric bootstrap, using408

200 bootstrap samples each consisting of 3234 polymorphic sites. We obtained rather narrow409

confidence intervals for the selection coefficient and the time since the bottleneck, whereas the410

other details of the bottleneck were less confidently estimated. To improve the parameter estimates,411

we further refined the grid as follows: Nine values for c0 were chosen from the range [0.5, 10], 20412

values for σ from [−2, 0], 10 values for cB from [0.001, 0.1], 25 values for tB/cB from [0.84, 3.31], and413

25 values for tS from [0.05, 0.22]. This gives in total 1,125,000 parameter combinations for selection414

and 56,250 for neutrality. As before, the ratio of two consecutive values in each parameter range415

was kept roughly constant. Focusing on rescaled time tB/cB instead of tB relies on the observation416

that tB and cB correlate strongly and has the advantage that unlikely combinations of tB and cB417

can be omitted. More values were chosen for time parameters, since these are more sensitive than418

the population size parameters.419

The MLEs are given in Table 6 and both versions of the SFS are illustrated in Figure 5. The420

analysis based on the partly folded SFS shows a better fit than the unfolded version, since negative421

selection combined with any demographic model is incompatible with the uptick of high-frequency422

derived variants in the empirical SFS. Interestingly, a neutral model was inferred for the unfolded423

SFS, while the model with selection fits better for the partly folded version. Since an excess of high-424

frequency derived variants favors demographic models that capture a strong population decline, a425

much smaller estimate of the bottleneck population size (cB) was obtained for the unfolded SFS.426
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In accordance with the previous section, the time since the bottleneck (tS) was robustly estimated427

in both cases, as illustrated by the 10 and 100 most likely parameter estimates. However, partially428

folding the SFS led to a smaller estimate t̂S . A further refinement of the grid barely changed the429

estimates t̂S and ĉB . The estimates of bottleneck duration (tB) and ancestral population size (c0)430

appeared to be strongly correlated.431

We now relax the assumption of a fixed σ for all sites, and allow a distribution of fitness432

effects by introducing gamma distributed selection coefficients. For σ > 0, the probability433

density of the gamma distribution with shape and rate parameters α and β is given by434

γ(σ) = β(βσ)α−1e−βσ/Γ(α), where Γ(·) denotes the gamma function. The allelic spectrum435

for gamma distributed selection coefficients is then obtained by integrating the allelic spectrum for436

constant selection coefficients given by (27) against a gamma distribution, i.e.,437

f̃n,b(τ) =

∫ 0

−∞

fn,b(τ, σ)γ(−σ)dσ. (29)

The SFS for gamma distributed selection coefficients is then given by q̃n,b(τ) =
f̃n,b(τ)∑n−1

a=1
f̃n,a(τ)

.438

Even when the allelic spectrum is in equilibrium and the population size is constant, the integral439

in (29) cannot be solved explicitly, so we needed to employ numerical integration. Previous studies440

(e.g., Boyko et al. 2008, Racimo and Schraiber 2014) on the distribution of fitness effects in the441

presence of population size changes first inferred a demographic history using putatively neutral442

sites, and then estimated the parameters α and β based on that fixed demography. Since we do443

not have a separately inferred demographic model here, we considered several σ values along444

a variety of demographic parameter combinations. We used a coarser grid for the demographic445

parameters due to the larger number of σ values needed for the numerical integration step, which446

adds additional computational burden. While the evaluation of the allelic spectrum takes less than447

half a second for a given σ value with high numerical precision, the numerical integration over the448

range of σ values according to (29) takes a few seconds. Thus, to further reduce computational449

cost, we restricted the analysis to exponentially distributed selection coefficients by setting α = 1450

and compared the MLEs for various values of β. See Table 7 for results. The MLE was found451

for β = 1, so the average σ equals −α/β = −1. This finding and the associated demographic452

estimates are consistent with the result found for a fixed selection coefficient. However, this result453

may change if one allows for more general shape and rate parameters.454
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A model of human exponential population growth455

We now demonstrate the utility of our method to investigate population size histories containing456

epochs of exponential growth in combination with selection. To this end, we adopted the following457

demographic history of a sample of African human exomes that had been estimated by Tennessen458

et al. (2012) as a modification of a model by Gravel et al. (2011). The population had an ancestral459

size of 7310 individuals until 5920 generations ago (assuming a generation time of 25 years),460

when it increased instantaneously in size to 14,474 individuals. After this increase, the population461

remained constant in size until 205 generations ago, when it started to grow exponentially until462

reaching 424,000 individuals at present. The relative population size function for this model can463

be described by464

ρ(t) =



























1, t < 0,

c, 0 ≤ t < te,

c exp[R(t− te)], te ≤ t ≤ τ,

(30)

where c is the ratio of population sizes after and before the instantaneous expansion, which can465

be dated arbitrarily, so we set the time of this expansion to zero. R is the scaled exponential466

growth rate, te is the time at which the expansion started, and τ is the time of sampling (the467

present). Times are given in units of 2Nref, where the reference population size Nref is the initial468

size before time zero (the ancestral size). Since the theoretical framework presented above assumes469

a history of piecewise constant population sizes, the phase of exponential growth in this model470

had to be adequately discretized to obtain a suitable piecewise approximation. The following471

piecewise function can be chosen to approximate the exponential growth phase via a geometric472

growth function:473

q(t) =



























1, t < 0,

c, 0 ≤ t < t1,

c(1 + δ)i, ti ≤ t < ti+1,

(31)

with times ti = te + log
[

(1 + δ)i−1(2 + δ)/2
]

/R, i = 1, . . . , iτ . Here, the number of population size474

changes during the phase of exponential growth is given by475

iτ :=

⌊

R(τ − te)− log (δ/2 + 1)

log(δ + 1)

⌋

+ 1.

21



Varying the growth rate δ determines the number of discretization intervals used.476

The SFS (28) of the discretized version is obtained straightforwardly from (26) and (27). For477

the demographic parameters given above, we computed the SFS for various sample sizes up to478

200 and we used δ = 1/4, which was chosen large enough to provide reasonably fast computation479

times but sufficiently small to provide a good approximation of the exponential growth model. In480

the neutral case, the goodness of the approximation can be verified via the explicit solution of481

the SFS (Živković and Stephan 2011), which can be applied to the continuous and the discretized482

model. As shown in Figure 6a, where a sample size of n = 200 is chosen, the spectra of both483

continuous and piecewise-constant models agree very well with each other; the percentage error is484

0.57% based on the l2-norm, while the Kullback-Leibler divergence is about 1.76× 10−7.485

Using our method, selection can then be incorporated into the piecewise-constant population486

size model. The effect of various negative selection coefficients (scaled with respect to the ancestral487

population size) is illustrated again for sample size n = 200 in Figure 6b, and the same trend can488

be observed for smaller sample sizes as well. It is probably not surprising that the resolution in489

distinguishing the selective and the neutral model rises with σ. More interestingly, differences490

between the neutral and the selective models are apparently more pronounced among derived491

alleles in intermediate to high frequency. Therefore, for large datasets where intermediate- to high-492

frequency derived alleles are present in sufficient numbers, one may focus more strongly on these493

allelic classes than on low-frequency derived ones for the statistical analysis of purifying selection.494

Discussion495

In this article, we extended the approach of Song and Steinrücken (2012) to develop a method496

for finding the transition density of a WF diffusion under genic selection and piecewise-constant497

effective population sizes. It can be used to obtain the SFS, but explicit knowledge of the transition498

density is actually not required for the computation of the SFS. To that end, we revisited and499

simplified the moment-based method by Evans et al. (2007) in the case of a constant population500

size, and utilized the result to obtain an efficient method for computing the SFS for a model with501

piecewise-constant population sizes.502

The transition density for a variable population size can be incorporated into a hidden Markov503

model framework to analyze time series genetic data, as done by Steinrücken et al. (2014) in the504

case of a constant population size. However, in this article we focused on biological questions that505
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can be investigated using the SFS and sampling at a single time point. The SFS has been employed506

into a maximum likelihood framework that can be applied to simultaneously infer selection coeffi-507

cients and the parameters of a multi-epoch demographic model. The importance of methods that508

enable the joint estimation of selective and demographic parameters becomes particularly apparent509

in large populations, for which the scaled selection coefficient can take considerable values across510

large regions of the genome, so that demography and selection cannot be estimated independently.511

We tested our inference method on simulated data, generated by sampling a large number512

of sites from the SFS of a bottleneck model for a range of selection strengths. In our parameter513

estimation procedure, we assumed the same model as the one used in simulations, as well as514

a slightly less complex model. We demonstrated that our method can accurately estimate the515

parameters in the majority of the bottleneck scenarios, but less so when the simpler model is516

assumed. The time since the bottleneck was retrieved in most of the cases even when assuming517

the simpler model or when the datasets simulated with selection were analyzed under neutrality.518

This result is encouraging for the many published demographic estimates that have been obtained519

assuming neutrality, but further investigation is warranted to consider more realistic models, e.g.,520

including phases of exponential growth. Our results encourage the application of not too simple521

demographic models anyway.522

In the African Drosophila sample, no or barely any negative selection was inferred when the523

possible impact of misoriented sites was ignored. To account for ancestral misidentification while524

maintaining sufficient information for inference, we applied a partly folded spectrum, where only525

the first two classes were folded with the corresponding last two classes. Using this partly folded526

spectrum, a negative selection coefficient of about σ = −1 was estimated, irrespective of assuming527

constant or exponentially distributed selection coefficients.528

Our analyses were performed based on the bottleneck model illustrated in Figure 4. The maxi-529

mum number of piecewise changes that can be incorporated into a demographic model is a function530

of sample size (cf. Bhaskar and Song 2014 for the neutral case), so more elaborate demographic531

models would have been barely accessible for this dataset, especially given the limited amount of532

segregating sites. It indeed turned out to be difficult to pinpoint the ancestral population size and533

the duration of the bottleneck, whereas the time since the bottleneck was again robustly estimated.534

Comparing both versions of the SFS obtained using our parameter estimates and the ones given in535

Duchen et al. (2013), we obtained an improved goodness-of-fit to the observed SFS from the data,536

and date the bottleneck as about half as old (in rescaled, but also in calendar time) based on the537
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partly folded SFS. This discrepancy is not surprising, since primarily summary statistics of the SFS538

were used in their study while accounting for linkage to some extent.539

We also applied a grid search to test if weak positive selection could explain the uptick of high-540

frequency derived variants in the unfolded empirical SFS. However, we did not obtain estimates541

being plausible from a biological point of view. When, as in this example, an excess of low- and542

high-frequency derived variants is simultaneously observed in comparison to a standard neutral543

model, unrealistically large estimates for σ are needed to explain the data. Positive selection on544

its own (and of some appreciable strength) causes a decline of low-frequency derived variants and545

an excess of high-frequency derived alleles, whereas an expansion (as embedded in the bottleneck546

model) acts in the opposite way. Therefore, both forces have to severely counteract each other so547

that the requirements of both ends of the SFS can be met.548

We analyzed an example of exponential human population growth (Tennessen et al. 2012) to549

see the effect of purifying selection in the context of this model. As illustrated in Figure 6b for550

a sample of size 200 and various selection coefficients, intermediate- and high-frequency derived551

variants are more affected by exponential growth and negative selection than the low-frequency de-552

rived ones. A plausible explanation is that both exponential growth and negative selection enforce553

an increase of low-frequency derived variants until these classes are saturated and their impact554

can be observed in the complimentary high-frequency allelic classes. In general, this example illus-555

trates nicely that even more elaborated models that include various phases of exponential growth556

and population declines can be computationally efficiently treated via an appropriate discretization557

of phases of continuous population size change, using the methods presented in this paper.558

Acknowledgments559

We thank the generous support of the Simons Institute for the Theory of Computing, where much560

of this work was carried out while we were participating in the 2014 program on “Evolutionary561

Biology and the Theory of Computing.” We thank valuable comments and suggestions from two562

reviewers. DZ thanks Anand Bhaskar, Steven N. Evans and Andreas Wollstein for helpful discus-563

sions. YSS thanks the Miller Institute for providing a Research Professorship while this paper was564

completed. This research is supported in part by DFG grant STE 325/14 from the Priority Program565

1590 (DZ, WS), the Volkswagen Foundation grant I/84232 (DZ), an NIH grant R01-GM094402566

(MS, YSS), and a Packard Fellowship for Science and Engineering (YSS).567

24



References568
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Appendix. Derivation of (12)658

Here, we derive the expression shown in (12). Using (2), (5), and (7), note that659

1
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Gk(z)Gl(z)dz. (A.1)

Without loss of generality, assume ci 6= ci+1. (If ci = ci+1, the integral in (A.1) is trivial to evaluate660

using orthogonality.) Since z−1(1 − z)−1Gk(z)Gl(z) is a polynomial of order k + l + 2, its jth661

derivative vanishes for j ≥ k + l + 3. Using integration by parts recursively k + l + 2 times, we662

obtain663

1
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0

.

Note that the summand for j = 0 in the previous equation is equal to zero and will be omitted in664

the remainder. Since Gk(1− z) = (−1)kGk(z), we have665
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so that666
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The modified Gegenbauer polynomials are defined as667

Gn(x) = −x(1− x)(n+ 1) · 2F1(−n, n+ 3; 2; 1 − x),

where 2F1(a, b; c; z) =
∑

j≥0
a(j)b(j)/c(j)z

j/j! is the Gauss hypergeometric function,668

d(0) = 1, and d(j) = d(d+ 1) · · · (d+ j − 1), j ≥ 1. Applying this definition, we obtain669
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Note that the sums are finite, since (−a)(b) = 0 for integers a < b. It is simple to show that670
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(−1)jj!, j = u+ v + 1,

(−1)j−1j!, j = u+ v + 2,

0, otherwise.

By applying this result we obtain, after some algebra,671
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Finally, combining (A.3), (A.2), and (A.1) yields the desired result.672
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Figure 1 Transition densities for various transition times τ and a fixed selection coefficient σ = −1. In all
cases, we set x = 1/2 and D = 100. (a) A single-epoch model (K = 1), a constant population size with

c0 = 1 (b) A two-epoch model (K = 2), with an instantaneous expansion (c0 = 1, c1 = 10, t1 = τ/2). (c)

A three-epoch model (K = 3), with a population bottleneck followed by an expansion (c0 = 1, c1 = 1/10,
c2 = 10, t1 = τ/4, t2 = τ/2).
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Figure 2 Transition densities for various selection coefficients σ and a fixed transition time τ = 1/2. In all

cases, we set x = 1/3 and D = 100. (a) A single-epoch model (K = 1), a constant population size with

c0 = 1. (b) A two-epoch model (K = 2), with an instantaneous expansion (c0 = 1, c1 = 10, t1 = τ/2). (c)
A three-epoch model (K = 3), with a population bottleneck followed by an expansion (c0 = 1, c1 = 1/10,

c2 = 10, t1 = τ/4, t2 = τ/2).
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Figure 3 (a) The relative population size, ρ(t), is initially 1 and changes instantaneously to 1/10 and 5 at
times 6/10 and 9/10, respectively. The SFS of a sample of size 20 are plotted for this demography (b) without

selection, (c) negative selection of σ = −2 and (d) positive selection of σ = 10. The times of sampling are

illustrated in (a) and the bars are accordingly displayed from the left to the right. Truncation levels D=100
and D=500 were respectively applied for (c) negative and (d) positive selection, while the SFS was explicitly

calculated for (b) neutrality.
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Figure 4 The population is constant in size before being instantaneously changed to relative size cB at time

zero. Then, another jump to relative population size cS follows at time tB , before a sample is taken at time

τ = tB + tS .
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Figure 5 (a) SFS for the observed data and the most likely selective and neutral parameter estimates from

left to right. (b) The same as (a) except that the allelic classes 1 and 2 were respectively folded with 11 and
10.
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Figure 6 (a) Log-log plots for the SFS of the continuous and the discretized version of the estimated human
African demography and neutral evolution. (b) Log-log plots for the SFS of the discretized version under

various selection coefficients. The selection coefficients in the legend are ordered from top to bottom accord-

ing to the function values of the high-frequency derived alleles. The sample size is given by n = 200 in both
subfigures and a truncation level D=300 was applied in (b).
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Table 1 Grid values chosen for each parameter in our optimization procedure

c0 0.011 0.023 0.05 0.1 0.224 0.5 1 2.154 4.642 10

σ −10 −5.848 −3.420 −2 −1.260 −0.79 −0.5 −0.292 −0.171 −0.1 0

cB 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

tB 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

tS 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

The underlying bottleneck model is illustrated in Figure 4. Grid values c0 were considered for the 5-

parameter model, whereas c0 = cS in the 4-parameter model. The grid values for the remaining parameters
were applied in both scenarios. The ratio of two consecutive values remains constant between (and including

the) two subsequent bold entries.
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Table 2 Parameter estimation results based on 10,000 sampled sites

ĉ0 σ̂ ĉB t̂B t̂S

True parameters 0.5 0 or −2 0.1 0.1 0.05

5% 0.5 0.1 0.1 0.05
(A1) Median 0.5 0.1 0.1 0.05

95% 0.5 0.1 0.1 0.05

5% 0.22 0.02 0.005 0.05
(A2) Median 0.22 0.1 0.05 0.05

95% 0.22 0.1 0.05 0.05

5% 0.22 −2 0.05 0.01 0.05
(A3) Median 0.5 −2 0.1 0.1 0.05

95% 0.5 0 0.1 0.1 0.05

5% 0.5 −0.5 0.1 0.001 0.05
(A4) Median 0.5 0 0.1 0.1 0.05

95% 2.15 0 0.1 0.1 0.05

SFS were computed for the true parameters and the demography illustrated in Figure 4 (c0 = 1/2, cS = 1).

Then, 10,000 sites were sampled according to the SFS of the neutral and the selective scenario, and this
procedure was repeated 200 times each. The log-likelihood values were maximized over the parameter

spaces as specified in the main text, and the table reports the median, the 0.05 and the 0.95 quantiles. The
four cases correspond to assuming (A1) neutrality when σ = 0, (A2) neutrality when σ = −2, (A3) presence

of selection when σ = −2, and (A4) presence of selection when σ = 0.
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Table 3 Parameter estimation results based on the expected SFS assuming neutrality when the true model

is under selection

Selection coefficient σ = −1/2 σ = −2

Demographic model (ĉ0, ĉB, t̂B, t̂S) (ĉ0, ĉB, t̂B, t̂S)

Constant population size (0.500, 1.00, 1.10− t̂S , t̂S ) (0.100, 1.000, 0.523− t̂S , t̂S )

Bottleneck with tS = 1/200 (0.224, 0.05, 0.05 , 0.002) (0.224, 0.100, 0.050 , 0.005)

Bottleneck with tS = 1/20 (0.500, 0.10, 0.10 , 0.050) (0.224, 0.100, 0.050 , 0.050)

Bottleneck with tS = 1/2 (1.000, 0.05, 0.10 , 0.500) (0.100, 1.000, 0.324− t̂S , t̂S )

SFS were computed for the following demographic scenarios and selection coefficients. In terms of the

demography, either a constant population size was assumed, or a bottleneck model according to Figure 4
with parameters c0 = 1/2, cB = 1/10, cS = 1, tB = 1/10 and tS = 1/200, 1/20 or 1/2. The selection

coefficients are σ = −1/2 and −2. The parameter estimates were obtained according to the procedure and
the parameter spaces described in the main text and by assuming neutrality in each case. In the first row,

and in the forth row, second column, we obtained ĉB = 1, i.e. an instantaneous expansion occurs as the only

size change t̂B + t̂S before sampling.
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Table 4 Parameter estimation results based on 10,000 sampled sites when the ancestral population size c0
is incorrectly assumed to equal the current size cS , while the true model has c0 = 1/2 and cS = 1.

c0 σ̂ ĉB t̂B t̂S

True parameters 0.5 0 or −2 0.1 0.1 0.05

5% 0.1 0.22 0.02
(A1) Median 0.1 0.22 0.05

95% 0.22 0.5 0.05

5% 0.1 0.22 0.05
(A2) Median 0.1 0.22 0.05

95% 0.22 1 0.05

5% −0.79 0.1 0.22 0.05
(A3) Median −0.79 0.1 0.22 0.05

95% −0.5 0.1 0.22 0.05

5% −1.26 0.01 0.01 0.05
(A4) Median −1.26 0.05 0.05 0.05

95% −0.79 0.1 0.1 0.1

SFS were computed for the true parameters and the demography illustrated in Figure 4 (c0 = 1/2, cS = 1).
Then, 10,000 sites were sampled according to the SFS of the neutral and the selective scenario, and this

procedure was repeated 200 times each. The log-likelihood values were maximized over the 4-parameter

space (where c0 = cS is assumed), and the table reports the median, the 0.05 and the 0.95 quantiles. The
four cases correspond to assuming (A1) neutrality when σ = 0, (A2) neutrality when σ = −2, (A3) presence

of selection when σ = −2, and (A4) presence of selection when σ = 0.
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ĉ 0
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Table 7 Parameter estimation results for partly folded SFS and exponentially distributed selection
coefficients

β ĉ0 ĉB t̂B/ĉB t̂S L

0.1 2 0.01 0.631 0.126 -5101.36

0.2 2 0.05 1 0.158 -5098.59

0.5 1 0.1 1.584 0.1 -5098.50

1 0.5 0.1 1.259 0.1 -5098.43

2 2 0.1 2.508 0.126 -5098.69

5 0.5 0.1 1.259 0.126 -5098.67

10 0.5 0.1 1.259 0.126 -5098.73

20 0.5 0.1 1.259 0.126 -5098.79

50 0.5 0.1 1.259 0.126 -5098.84

100 0.5 0.1 1.259 0.126 -5098.86

The demographic histories were estimated based on exponentially distributed selection coefficients and for

the demographic model illustrated in Figure 4 for the entire dataset of 3234 polymorphic sites. First, allelic
spectra were evaluated for 12,600 different demographic parameter combinations and 100 σ values each.

Then, polynomial curves of degree three were fitted between successive σ values and for every single de-

mographic parameter combination, before a numerical integration against a gamma distribution with α = 1
and 10 different values of β was applied. From the allelic spectra, now being corrected for varying selection

coefficients, the SFS were obtained. The resultant MLEs are shown for the various choices of β.
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