
Yun S. Song

University of California, Berkeley

Lecture Notes on Computational and
Mathematical Population Genetics

May 5, 2021

c©Yun S. Song. DRAFT – May 5, 2021



c©Yun S. Song. DRAFT – May 5, 2021



Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Part I Genealogical Trees

1 Basic properties of the genealogy of a sample . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 A high-level description of the coalescent model . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Discrete-time ancestral process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A large-N limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Waiting time while there are k ancestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Tree height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Tree length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 The ancestral lineage of a particular leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Kingman’s coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 The n-coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Subtree leaf-set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Some properties of a subsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Forward-in-time jump chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Tree topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 The Yule-Harding process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Urn models with stochastic replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Sufficient conditions for weak convergence to the n-coalescent . . . . . . . . . . . . . 28
2.9 Moran models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10 Necessary and sufficient conditions for weak convergence . . . . . . . . . . . . . . . . . 33
2.11 Coming down from infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Part II Neutral Mutations on Trees at Equilibrium

3 Number of mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Mutations in a single lineage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Number of mutations in a coalescent tree with n leaves . . . . . . . . . . . . . . . . . . . 40
3.3 Waiting times conditioned on the number of mutations . . . . . . . . . . . . . . . . . . . 43

v

c©Yun S. Song. DRAFT – May 5, 2021



vi Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Infinite-alleles model and random combinatorial structures . . . . . . . . . . . . 47
4.1 θ-biased random permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The infinite-alleles model and the Ewens sampling formula . . . . . . . . . . . . . . . . 48
4.3 The coalescent with killing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Ancestral process under the coalescent with killing . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Hoppe’s urn model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Chinese Restaurant Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 The number of distinct allele types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 A sufficient statistic for θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Population-wide distribution of allele frequencies . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9.1 Size-biased representation, stick breaking process, and the GEM
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9.2 Poisson-Dirichlet point process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9.3 Probability generating functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9.4 Limit of a symmetric mutation model with K alleles . . . . . . . . . . . . . . . 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Infinite-sites model of mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Connections with the infinite-alleles model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Site frequency spectrum (SFS) under the infinite-sites model . . . . . . . . . . . . . . 71
5.4 A warning on conditioning on the number of segregating sites . . . . . . . . . . . . . 72
5.5 The age of a mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Unbiased moment estimators of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Tests of selective neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8 A direct method of computing the full likelihood . . . . . . . . . . . . . . . . . . . . . . . . 79
5.9 Perfect phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 Probability recursion for gene trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 Root unknown case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Finite-alleles model of mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Sampling probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Parent-independent mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 A simple Monte Carlo method for approximating the likelihood . . . . . . . . . . . 90
6.4 Sequential importance sampling (SIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 The coalescent prior distribution of histories . . . . . . . . . . . . . . . . . . . . . . 93
6.4.2 Reverse transition probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Approximate conditional sampling distribution (CSD) . . . . . . . . . . . . . . . . . . . . 96
6.5.1 A single site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.2 Generalization to multiple sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 The infinite-sites model revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7 Posterior probability of the first event back in time . . . . . . . . . . . . . . . . . . . . . . 100
6.8 Closed-form asymptotic sampling formulae for small θ . . . . . . . . . . . . . . . . . . . . 102
6.9 How many triallic sites do we expect to see in a sample of n genomes? . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

c©Yun S. Song. DRAFT – May 5, 2021



Contents vii

Part III Demography

7 Variable population size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.1 Discrete-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Inter-coalescence times and the ancestral process . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 The expected SFS under variable population size . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Inter-coalescence times in terms of first-coalescence times . . . . . . . . . . . 112
7.3.2 Monotonicity and convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 SFS-based likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.1 Completely linked case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.2 Completely unlinked case: Poisson Random Field . . . . . . . . . . . . . . . . . . 116

7.5 A recursion for efficiently computing P(Am(t) = k) . . . . . . . . . . . . . . . . . . . . . . 118
7.6 Identifiability of population size histories from the SFS . . . . . . . . . . . . . . . . . . . 119

7.6.1 An analogy: Can you hear the shape of a drum? . . . . . . . . . . . . . . . . . . . 119
7.6.2 Non-identifiability and an explicit counterexample . . . . . . . . . . . . . . . . . 120
7.6.3 Rule of signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6.4 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.7 Minimax error for population size estimation based on the SFS . . . . . . . . . . . . 125
7.8 Geometry of the SFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Multiple populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.1 The structured coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Coalescence time for a pair of lineages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Symmetric Island Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.2 Identity-by-descent (IBD) in the symmetric island model . . . . . . . . . . . 131
8.2.3 Wright’s FST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Conservative migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Further extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.5 Multi-population SFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Part IV Recombination

9 The coalescent with recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.1 Wright-Fisher model with recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2 Geneaological ancestral process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.1 Grand MRCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2.2 The width of a genealogical ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3 Unreduced and reduced ancestral processes for ARGs . . . . . . . . . . . . . . . . . . . . 144
9.4 Covariance of marginal TMRCAs at a pair of loci. . . . . . . . . . . . . . . . . . . . . . . . 147
9.5 Estimation of pairwise coalescence times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.5.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.5.3 Mean squared error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

c©Yun S. Song. DRAFT – May 5, 2021



viii Contents

10 Exact and approximate likelihoods under the coalescent with
recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.1 Two-locus sampling distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.1.1 Probability recursion for an arbitrary finite-alleles model . . . . . . . . . . . 156
10.1.2 Probability recursion for the infinite-alleles model . . . . . . . . . . . . . . . . . 157

10.2 Asymptotic sampling distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2.1 Two loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2.2 Multiple loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.3 Two-locus likelihoods under variable population size . . . . . . . . . . . . . . . . . . . . . 162
10.4 Application of two-locus likelihoods: fine-scale recombination rate estimation 162
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Part V Further Extensions: Multiple and Simultaneous Mergers

11 Accuracy of the coalescent when the sample is very large . . . . . . . . . . . . . . 167
11.1 Computing the expected number of multiple- and simultaneous-mergers . . . . 167
11.2 Computing the expected SFS in a discrete-time model . . . . . . . . . . . . . . . . . . . 168
11.3 Comparison between the discrete-time WF model and the coalescent . . . . . . . 169

11.3.1 Multiple and simultaneous mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.3.2 Ancestral process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.3.3 Expected SFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11.4 A two-phase hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

12 Λ-coalescents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.1 Characterizing a consistent collection of multiple-merger rates . . . . . . . . . . . . . 171
12.2 Poisson point process construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.3 Interpretation of the measure Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.4 When can we apply a Λ-coalescent to biology? . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12.4.1 Coming down from infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.4.2 Convergence to the coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13 The site frequency spectrum for general coalescent models . . . . . . . . . . . . 179
13.1 A brief introduction to Ξ-coalescents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.2 Previous work on the expected SFS for Ξ-coalescents . . . . . . . . . . . . . . . . . . . . 180
13.3 Relating the SFS to the TMRCAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.4 Relating the TMRCAs to the first coalescence times . . . . . . . . . . . . . . . . . . . . . 183
13.5 Identifiability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Part VI Diffusion Processes

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

c©Yun S. Song. DRAFT – May 5, 2021



Preface ix

Preface

These lecture notes are from a graduate-level statistics course I taught at the University of
California, Berkeley in 2008, 2011, and 2015. The first six chapters are in decent shape, but
the later chapters are somewhat unpolished and have incomplete sections. I have taken a
long hiatus from writing and it is unclear when I will be able to get back to it. Hence, I
have decided to release this draft version in the hope that some students may find it useful.

There already exist several excellent books (e.g., Durrett (2008); Ewens (2004); Hein
et al (2004); Tavaré (2004); Wakeley (2008)) on mathematical population genetics, and I
myself have learned from studying them. The reader is strongly encouraged to look into
these other resources to get a more complete view of the topic. You will notice that many
important topics and references (apologies for not citing your work) are left out from this
monograph, as it is NOT meant to be a comprehensive exposition of population genetics.
Rather, the primary goal of these notes is to introduce mathematically-inclined students
to the basic concepts underpinning the subject, so that they can get started on population
genetics research.

The word “computational” is in the title of this work because efficient algorithms are
indispensable in empirical population genetics and I try to highlight this aspect when I can.
The special topics covered in these notes are mainly from my own research, simply because
they reflect my own interest and expertise. Apologies for the personal bias.

Special thanks goes to Paul Jenkins for writing parts of Chapters 8 and 12 while he was
a postdoc in my lab. I am also grateful to many students who scribed notes for my lectures
and to my lab members for their contributions to research.

Berkeley, CA Yun S. Song
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Chapter 1

Basic properties of the genealogy of a sample

At any given position in the genome, the genealogy of a sample of chromosomes is described
by a tree. In this chapter, we will discuss some basic properties of the genealogy of a sample
randomly drawn from a very large population. In particular, we will study the distribution
of the number of ancestors to the sample as a function of time. We will also characterize
other useful genealogical quantities such as the time to the most recent common ancestor
and the total tree length.

1.1 A high-level description of the coalescent model

Before we go into the mathematical details, we here provide a high-level description of
the underlying model. Consider a population of N chromosomes evolving forward in time.
Illustrated in Figure 1.1a is an evolving population of size N = 5 with non-overlapping
generations, where all individuals are equally likely to reproduce for each birth event. Take
a random sample of size n from the present population and follow their ancestry backwards
in time; n = 4 in Figure 1.1a. Now, as shown in Figure 1.1b, double the population size and
rescale time by a factor of two so that one unit of time contains twice as many generations
as in the previous case. Again take a sample of size n (the same n as before) and trace
their ancestry backwards in time. Double the population size again (Figure 1.1c), rescale
time by a factor of two, take a sample of size n, and trace their ancestry backwards in
time. As N → ∞ while time is rescaled as described, the distribution of the genealogy of
a sample of size n converges to that of a stochastic process called Kingman’s n-coalescent
(Figure 1.1d), in which at most two lineages may merge at any given time. This kind of
weak convergence result holds for a large class of random mating models, and necessary and
sufficient conditions for convergence are known (discussed in Chapter 2). In general, how
time should be rescaled as N →∞ depends on the underlying random mating model.

We now say a few words about the limiting model, the n-coalescent. Let [n] denote the
n-set {1, 2, . . . , n} and P[n] the set of all partitions of [n]. As detailed in Chapter 2, the
n-coalescent {Cn(t), t ≥ 0} (Kingman, 1982a,b,c) is a P[n]-valued continuous-time Markov
process satisfying certain properties. As discussed above, this stochastic process is useful for
evolutionary biology because it describes the law of the genealogy of a set of chromosomes
randomly drawn from a population. More precisely, associated with each sample path in the
n-coalescent is a unique n-leaved tree that is edge-weighted, rooted, binary, and ultrametric,

3
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4 1 Basic properties of the genealogy of a sample

(a) (b) (c) (d)

Present

Past

Fig. 1.1: A schematic depiction of convergence to the n-coalescent. Time runs vertically,
with the present at the bottom and the past at the top. As N → ∞ while time is rescaled
suitably, the distribution of the genealogy of a sample of size n converges to that of a
stochastic process called Kingman’s n-coalescent. (a) N = 5, n = 4. (b) N = 10, n = 4 (c).
N = 20, n = 4. (d) A tree with 4 leaves in the coalescent limit.

and the leaves are bijectively labeled by [n]. (Given two leaves a, b of a tree T , let d(a, b)
denote the path length between a and b. Then, T is said to be an ultrametric tree if d(a, b) ≤
max{d(a, c), d(b, c)} for all distinct leaves a, b, c.) A realization of the n-coalescent for n = 5
is illustrated in Figure 1.2. (Note that horizontal edges do not carry any meaning in this
representation.) Over the next couple of chapters, we will study some key properties of such
trees. Later in the course we will encounter more complicated graphical structures when we
incorporate recombination into the coalescent framework.

In Chapter 2, we will derive an explicit expression for P(Cn(t) = α), where α ∈ P[n]. In
this chapter, we focus on finding P(|Cn(t)| = j), where |Cn(t)| denotes the number of blocks
(non-empty subsets) in Cn(t) and j ∈ [n]. This work will be prove useful when we derive
P(Cn(t) = α).

1.2 Discrete-time ancestral process

Many exchangeable random mating models converge to the n-coalescent. Here, we will con-
sider a well-known random mating model and consider its limiting behavior. The so-called
Wright-Fisher model has the following properties:

1. Discrete time (measured in generations) with population size Ng at generation g.
2. Non-overlapping generations. Every individual survives for exactly one generation.
3. All individuals are equally likely to reproduce for each birth event.
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1.2 Discrete-time ancestral process 5

2

MRCA

T5,5

T5,4

T5,3

T5,2

A5(t) = 3

A5(t) = 2

Backward in time

t = 0
1 34 5

Fig. 1.2: A coalescent tree for a sample of size n = 5. The sample is taken at time 0, and
t runs backwards in time. Random variable Tn,k denotes the time spent while there are k
lineages, while An(t) denotes the number of ancestral lineages at time t. In the case of a
constant population size, Tn,n, . . . , Tn,2 are mutually independent and Tn,k is exponentially

distributed with rate
(
k
2

)
, for k = 2, . . . , n.

Going backwards in time, each child chooses a parent uniformly at random from the popu-

lation in the previous generation. Define p
(g)
kj as

p
(g)
kj := P(k particular labeled individuals in generation g have j distinct parents). (1.1)

We use g ∈ {0, 1, . . .} to denote the number of generations back in time, with g = 0 corre-
sponding to the generation in which a sample is taken. Then, for j = k,

p
(g)
22 =

Ng+1 − 1

Ng+1
,

p
(g)
33 =

(Ng+1 − 1)(Ng+1 − 2)

(Ng+1)2
,

p
(g)
kk =

(Ng+1 − 1)(Ng+1 − 2) · · · (Ng+1 − k + 1)

(Ng+1)k−1
.

Before we consider general values of j, we first define some notation which will be used
time and again:

Definition 1.1 (The jth falling and rising factorials).

• The jth falling factorial of x: (x)j↓ = x(x− 1) · · · (x− j + 1), with (x)0↓ = 1.
• The jth rising factorial of x: (x)j↑ = x(x+ 1) · · · (x+ j − 1), with (x)0↑ = 1.

In the literature there are several different notations for falling and rising factorials. The
above notation follows Pitman (2006), which is an interesting read. Employing this notation,
it is simple to show that
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6 1 Basic properties of the genealogy of a sample

p
(g)
kj =

(Ng+1)j↓
(Ng+1)k

S(k, j), (1.2)

where S(k, j) = 1
j!

∑j
l=0(−1)j−l

(
j
l

)
lk are Stirling numbers of the second kind (the number

of partitions of [k] = {1, . . . , k} into j non-empty subsets). Note that
∑k
j=1 p

(g)
kj = 1, for all

g, follows from the combinatorial identity

xk =

k∑
j=1

S(k, j)(x)j↓.

Directly evaluating (1.2) warrants caution, since S(k, j), (Ng+1)j↓, and (Ng+1)k can each

be very large. A more efficient and numerically stable way to compute p
(g)
kj is to use the

following result (Bhaskar et al, 2014):

Proposition 1.2. For 1 ≤ j ≤ k, p
(g)
kj satisfies the recursion

p
(g)
kj =

(
j

Ng+1

)
p

(g)
k−1,j +

(
Ng+1 − j + 1

Ng+1

)
p

(g)
k−1,j−1,

with boundary conditions p
(g)
1,1 = 1 and p

(g)
k,j = 0 if k < j.

Proof. This result follows from (1.2) and the well-known recursion

S(k, j) = j · S(k − 1, j) + S(k − 1, j − 1)

satisfied by S(k, j) for 0 < j ≤ k. ut

Generalizing the above discussion, we define the following stochastic process:

Definition 1.3 (Discrete-time ancestral process). Suppose a sample of size n is taken
at g = 0. Let AD

n (g) denote the number of distinct ancestors of the sample at time g. The
process {AD

n (g), g = 0, 1, 2, ...}, called the discrete-time ancestral process, has the following
properties:

1. AD
n (0) = n.

2. It is a discrete-time Markov chain with state space [n]. Specifically, for all g = 0, 1, 2, . . . ,
and j, k ∈ [n],

P(AD
n (g + 1) = j | AD

n (g) = k) = p
(g)
kj ,

where p
(g)
kj is defined in (1.2).

3. It is a pure death process.

Note that {AD
n (g), g ≥ 0} is a homogeneous Markov process if and only if the population

size is constant; i.e., Ng = N for all g. How can one compute P(AD
n (g) = j)? Define P(g) :=

(p
(g)
kj )k,j∈[n]. Then,

P(AD
n (g) = j) = [P(0) · · ·P(g−1)]nj , (1.3)

which takes O(n3g)-time to evaluate using naive matrix multiplication, if p
(g)
kj are known. A

more efficient method is to use the following recursion (Bhaskar et al, 2014), which is left
as a simple exercise for the reader to prove:
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1.3 A large-N limit 7

Proposition 1.4. For g > 0, P(AD
n (g) = j) satisfies the recursion

P(AD
n (g) = j) =

n∑
k=j

p
(g−1)
kj P(AD

n (g − 1) = k), (1.4)

with P(AD
n (0) = j) = δnj.

This recursion takes O(n2g)-time to evaluate, if p
(g)
kj are known. Note that Proposition 1.4

also holds for other random mating models, with appropriate one-generation transition

probability p
(g)
kj .

The discrete-time process {AD
n (g), g ≥ 0} is rather cumbersome to work with, and neither

(1.3) nor (1.4) provides much intuition about the dynamics of the ancestral process; e.g.,
how P(AD

n (g) = j) changes over time. We hence turn to a continuous-time approximation
to the discrete-time process.

1.3 A large-N limit

In what follows, we assume that Ng = N > 0 for all g and use {AD
N,n(g), g = 0, 1, 2, . . .}

to denote the corresponding discrete-time ancestral process, with pkj as the one-generation

transition probability. Using the fact that S(k, k) = 1 and S(k, k − 1) =
(
k
2

)
, it is simple to

show that the transition probability pkj takes the following form:

pkj =
(N)j↓
(N)k

S(k, j) =



1−
(
k

2

)
1

N
+O

(
1

N2

)
, if j = k,(

k

2

)
1

N
+O

(
1

N2

)
, if j = k − 1,

O

(
1

Nk−j

)
, if j < k − 1.

Define an n-by-n matrix of transition probabilities as follows:

PN = (pkj) = In×n +Q
1

N
+O

(
1

N2

)
, (1.5)

where

Q =


λ1 0 · · · 0 0

−λ2 λ2 · · · 0 0

...
...

...
...

...

0 0 · · · −λn λn

 ,

with λk = −
(
k
2

)
. (Note that λ1 = 0.) Now, for a given sample size n and a given real number

t ∈ R≥0,

lim
N→∞

(PN )bNtc = eQt,
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8 1 Basic properties of the genealogy of a sample

where b·c denotes the floor function. This shows the following weak convergence:

Theorem 1.5. Suppose Ng = N for all g. Then, for every fixed sample size n and fixed
positive number t, AD

N,n(bNtc) converges weakly to An(t) as N →∞, where {An(t), t ∈ R≥0}
is a continuous-time homogeneous Markov process with state space [n] and infinitesimal
generator Q.

Remark 1.6. Note that An(0) = n, and, instantaneously, only jumps of size one are allowed
in {An(t), t ∈ R≥0}.

Using the above result, one can approximate AD
n (bNtc) by An(t), where 1 unit of time in

{An(t), t ∈ R≥0} roughly corresponds to N generations in {AD
n (g), g = 0, 1, 2, . . .}. When is

this a good approximation? To answer this question, let us examine the higher order terms
that were ignored in (1.5). In particular,

pm,m−2 = Θ

(
m4

N2

)
+O

(
1

N3

)
.

So, if m = Θ(
√
N), then pm,m−2 = Θ(1), which is not negligible. Hence, An(t) provides a

good approximation to the discrete-time ancestral process only if the population size N is
sufficiently large compared to the sample size n. This is an important point to note, since
the sample size is rapidly increasing in modern population genetics. See Chapter 11 and
Bhaskar et al (2014) for a more detailed comparison of the discrete- and continuous-time
ancestral processes.

The continuous-time ancestral process is useful because it facilitates computation, as
illustrated in the following theorem:

Theorem 1.7 (Tavaré 1984). For the continuous-time ancestral process {An(t), t ≥ 0},

P(An(t) = j) =

n∑
k=j

e−(k2)t

[
(−1)k−j(2k − 1)(j)(k−1)↑(n)k↓

j!(k − j)!(n)k↑

]
, (1.6)

which corresponds to the probability of there being j ancestors at time t of a sample of size
n taken at time 0.

Proof. Recall that P(An(t) = j) = [eQt]nj , where the infinitesimal generator Q is shown in
(1.3). The characteristic equation for Q is

det(Q− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) = 0,

which implies that Q has n distinct eigenvalues (namely, λ1, . . . , λn), and so Q is diagonal-
izable. Decompose Q as

Q = SΛS−1,

where S denotes the right eigenvector matrix. The matrices S and S−1 are both lower
triangular. The right eigenvector with eigenvalue λk is rk = (rk,1, . . . , rk,n), where

rk,m =

0, m < k,(
m

k

)
(k)k↑
(m)k↑

, m ≥ k.
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1.3 A large-N limit 9

The left eigenvector with eigenvalue λk is `k = (`k,1, . . . , `k,n), where

`k,m =

(−1)k−m
(
k

m

)
(m)(k−1)↑

(k)(k−1)↑
, m ≤ k,

0, m > k.

The kth column of S is rk, while the kth row of S−1 is `k. (You may convince yourself that∑n
m=1 ri,m`j,m = δij .) Therefore,

[eQt]nj =

n∑
k=1

e−(k2)trk,n`k,j =

n∑
k=j

e−(k2)trk,n`k,j ,

and (1.6) follows after some algebra. ut

The closed-form formula (1.6) is useful for gaining intuition about the process. For exam-
ple, it shows that the transition probability P(An(t) = j) for j > 1 decays exponentially with
time. However, (1.6) is numerically unstable even for moderate sample sizes (say, n ≥ 50),
because it involves an alternating sum suffering from catastrophic cancellation. A more nu-
merically stable way of evaluating P(An(t) = j) is via exponentiating the rate matrix Q.
See Moler and Van Loan (1978) for a useful review of matrix exponentiation.

It turns out that the moments of An(t) admits a closed-form formula which is numerically
stable to evaluate:

Theorem 1.8 (Tavaré 1984). The jth factorial moment of An(t) is given by

E[(An(t))j↓] =

n∑
k=j

e−(k2)t
[
(2k − 1)

(
k − 1

j − 1

)
(k)(j−1)↑

(n)k↓
(n)k↑

]
. (1.7)

Using the above formula, one can easily compute the mean and the variance of An(t):

E[An(t)] =

n∑
k=1

e−(k2)t(2k − 1)
(n)k↓
(n)k↑

,

Var (An(t)) =

n∑
k=1

e−(k2)t(2k − 1)(k2 − k + 1)
(n)k↓
(n)k↑

−

[
n∑
k=1

e−(k2)t(2k − 1)
(n)k↓
(n)k↑

]2

.

Since each summand is positive, there is no numerical problem in evaluating the sum.

Furthermore, note that the exponential factor e−(k2)t decays rapidly for large k, so, when the
sample size n is very large, one can obtain an accurate approximation of (1.7) by truncating
the summation appropriately (the number of terms required would depend to the value of
t).
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10 1 Basic properties of the genealogy of a sample

1.4 Waiting time while there are k ancestors

For k = n, n − 1, . . . , 2, let Tn,k denote the time spent in {An(t), t ≥ 0} while there are k

ancestral lineages. It follows from the infinitesimal generator (1.3) that Tn,k ∼ Exp[
(
k
2

)
]; i.e.,

the probability density function of Tn,k is

fTn,k(t) =

(
k

2

)
exp

[
−
(
k

2

)
t

]
.

Another way to see this is to note that Tn,k
d
= Tk,k and P(Tk,k ≥ t) = P(Ak(t) = k) = e−(k2)t,

where the last equality follows from Theorem 1.7.
For the constant population size case considered above, Tn,n, Tn,n−1, . . . , Tn,2 are in-

dependent random variables, which is a very useful property. For example, noting that
P(An(t) ≤ j) = P(Tn,n + · · · + Tn,j+1 ≤ t) and that Tn,n, . . . , Tn,j+1 are independent ran-
dom variables, Griffiths (1984) applied the Lyapunov central limit theorem (Billingsley,
2008, Chapter 27) to show that An(t) is asymptotically normally distributed in the limit
t → 0 and n → ∞ such that nt → a > 0. This is a useful result since one can encounter
numerical problems in computing P(An(t) = j) for small values of t.

Later we will study the continuous-time ancestral process for a population with variable
size, in which case, the waiting times Tn,n, Tn,n−1, . . . , Tn,2 are no longer independent and
the distribution of Tn,k is in general different from that of Tk,k.

1.5 Tree height

Under constant population size, since Tn,k
d
= Tk,k, people often omit the dependence on the

sample size and simply write Tk to denote Tn,k. Henceforth we will employ this convention.

Definition 1.9 (Time to the MRCA). We use Wn to denote the waiting time to the
most recent common ancestor (MRCA):

Wn = inf{t ≥ 0 | An(t) = 1}.

Note that
Wn = Tn,n + Tn,n−1 + · · ·+ Tn,2. (1.8)

Using the results discussed in previous sections, one can show the following:

Theorem 1.10. Under a constant population size, the probability density function fWn
of

Wn is

fWn(t) =

n∑
k=2

(
k

2

)
e−(k2)t

[
(−1)k(2k − 1)(n)k↓

(n)k↑

]

=

n∑
k=2

(
k

2

)
e−(k2)t

n∏
j=2:j 6=k

(
j
2

)(
j
2

)
−
(
k
2

) (1.9)

Proof. The first equality in (1.9) follows from P(Wn ≤ t) = P(An(t) = 1), which implies
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1.5 Tree height 11

fWn
(t) =

d

dt
P(An(t) = 1),

where P(An(t) = 1) is defined in (1.6). The second equality in (1.9) can be shown using
(1.8). First, for independent X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2), where λ1 6= λ2, note that

fX1+X2(t) =

∫ t

0

fX1(y)fX2(t− y)dy = λ1e
−λ1t

λ2

λ2 − λ1
+ λ2e

−λ2t
λ1

λ1 − λ2
.

More generally, if Xi ∼ Exp(λi) are independent exponential random variables and λi are
all distinct for i = 1, . . . ,m, then one can derive the following convolution formula:

fX1+···+Xm(t) =

m∑
k=1

λke−λkt m∏
j=1,j 6=k

λj
λj − λk

 . (1.10)

This convolution formula and (1.8) together imply the desired result. ut

The expected waiting time E(Wn) to the MRCA can be computed using (1.9):

E(Wn) =

∫ ∞
0

tfWn
(t)dt.

There is a much simpler way to compute the expectation, however. Using (1.8), we imme-
diately obtain

E(Wn) = E(T2 + T3 + · · ·+ Tn) =

n∑
i=2

E(Ti) =

n∑
k=2

1(
k
2

) = 2

(
1− 1

n

)
. (1.11)

Note that (1.11) is bounded from above by 2, which corresponds to 4N discrete generations.
Furthermore, E[T2] = 1, suggesting that the dominant contribution to the expected waiting
time to the MRCA comes from T2 (the time spent while there are 2 lineages). The rate of
coalescence is very fast when there are many lineages, but it slows down as the number of
lineages decreases.

Similarly, using the independence of T2, . . . , Tn, we can compute Var(Wn) as

Var(Wn) =

n∑
k=2

Var (Tk) =

n∑
k=2

[
1(
k
2

)]2

= 8

n−1∑
k=1

1

k2
− 4

(
1− 1

n

)(
3 +

1

n

)
,

which implies

lim
n→∞

Var(Wn) = 8

∞∑
i=1

1

i2
− 12 = 8

π2

6
− 12 ≈ 1.16.

(The identity
∑∞
i=1

1
i2 = π2

6 was proved by Euler in the early 18th century, until when
providing a proof had remained an intriguing open problem for about 90 years.) Finally,
since

1 = Var(T2) ≤ Var(Wn) ≤ 1.16,

we see that T2 is the most variable part of Wn.
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12 1 Basic properties of the genealogy of a sample

1.6 Tree length

Definition 1.11 (Tree length). The length of a coalescent tree is defined as

Ln = 2Tn,2 + 3Tn,3 + · · ·+ nTn,n.

Theorem 1.12. Under a constant population size, the probability density function fLn of
Ln is given by

fLn(t) =

n∑
k=2

(−1)k
(
n− 1

k − 1

)
k − 1

2
e−

k−1
2 t =

n− 1

2
e−

t
2

(
1− e− t2

)n−2

. (1.12)

Proof. Using the convolution formula (1.10), one obtains

fLn(t) =

n∑
k=2

k − 1

2
e−

k−1
2 t

n∏
j=2,j 6=k

j − 1

j − k
.

The product of fractions can be written as

n∏
j=2,j 6=k

j − 1

j − k
=

(
1

2− k

)(
2

3− k

)
· · ·
(

k − 2

k − 1− k

)(
k

k + 1− k

)
· · ·
(
n− 1

n− k

)

=
(k − 2)!(−1)k−2

(k − 2)!
× (n− 1)!

(k − 1)!(n− k)!

= (−1)k
(
n− 1

k − 1

)
,

from which the first equality of (1.12) follows. Showing the second equality of (1.12) is left
as an exercise. ut

The expected tree length is

E(Ln) =

n∑
k=2

E(kTk) =

n∑
k=2

kE(Tk) =

n∑
k=2

2

k − 1
.

For large n, this is approximately equal to 2[log(n − 1) + γE ], where γE is the Euler-
Mascheroni constant. Again, using the independence of T2, . . . , Tn, the variance of Ln can
be computed as

Var(Ln) =

n∑
k=2

Var(kTk) =

n∑
k=2

k2 Var(Tk) =

n∑
k=2

4

(k − 1)2
≤ 2π2

3
.

Hence, although E(Ln) blows up as n→∞, Var(Ln) stays finite.
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1.7 The ancestral lineage of a particular leaf 13

1.7 The ancestral lineage of a particular leaf

Consider a sample of size n and a particular leaf ` ∈ [n]. Follow the ancestral lineage of `
until it is involved in a coalescence event, denoted E`. Let Xn denote the total number of
surviving lineages (including the ancestral lineage of `) when the event E` occurs, and let
Ωn denote the waiting time until event E` occurs.

Proposition 1.13. For k = 2, 3, . . . , n,

P(Xn = k) =
k − 1(
n
2

) .
Proof. While there are j lineages, the probability that a particular lineage is involved in a
coalescence event is

j − 1(
j
2

) =
2

j
,

which follows from exchangeability. Hence,

P(Xn = k) =

k+1∏
j=n

(
1− 2

j

) 2

k
=

[
k(k − 1)

n(n− 1)

]
2

k
=
k − 1(
n
2

) ,
as desired. ut

Proposition 1.14. The expected waiting time until leaf ` coalesces is given by

E(Ωn) =
2

n
.

Proof. Method 1: First decompose E(Ωn) as

E(Ωn) =

n∑
k=2

E(Ωn|Xn = k)P(Xn = k),

and then note that E(Ωn|Xn = k) = E[Sn,k], where

Sn,k = Tn,n + Tn,n−1 + · · ·+ Tn,k.

Plugging this in, we get

E(Ωn) =

n∑
k=2

E(Sn,k)
k − 1(
n
2

) =

n∑
k=2

k∑
j=n

E(Tn,j)
k − 1(
n
2

) .
If the population size is constant, this becomes

E(Ωn) =

n∑
k=2

k∑
j=n

1(
j
2

) k − 1(
n
2

) =
2

n
,

which is the desired result.
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14 1 Basic properties of the genealogy of a sample

Method 2: An alternative approach is to use a recursion (for constant population size).
Let F denote the event that the first coalescence events involves `. We know from Proposi-
tion 1.13 that P(F ) = 2/n. So,

E(Ωn) = E(Ωn|F )P(F ) + E(Ωn|F c)P(F c)

= E(Tn,n) · 2

n
+ E(Tn,n +Ωn−1)

(
1− 2

n

)
= E(Tn,n) +

(
1− 2

n

)
E(Ωn−1)

=
1(
n
2

) +

(
1− 2

n

)
E(Ωn−1)

where E(Ω2) = E(Tn,2) = 1. Now we have a recursion for E(Ωn) in terms of E(Ωn−1), and
solving this recursion gives E(Ωn) = 2

n . ut
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Chapter 2

Kingman’s coalescent

In the last chapter we focused on the number of ancestral lineages, but did not consider
who is related to whom. Here we study a more refined stochastic process which keeps track
of that information.

2.1 The n-coalescent

In this section we introduce Kingman’s coalescent and study its probability distribution.
First, we define some notation. Recall that [n] denotes the n-set {1, 2, . . . , n} and P[n] the
set of all partitions of [n]. Given a partition α = {B1, B2, . . . , Bk} ∈ P[n] — i.e., Bi ⊂ [n],
Bi 6= ∅ for all i = 1, . . . , k, and B1 ∪ · · · ∪Bk = [n] — we employ the following notation:

1. |α| := number of blocks (non-empty subsets of [n]) in α. (|α| = k in the above example.)
2. |Bi| := number of elements in Bi. We define bi := |Bi| in what follows.

The following partial order on P[n] will be of particular interest:

Definition 2.1. Given α, β ∈ P[n], we write α ≺ β if β is obtained from α by merging
exactly 2 blocks in α into a single block. For example, if α = {{1, 3}, {2, 5}, {4}} and
β = {{1, 3, 4}, {2, 5}}, then α ≺ β, and we say that “α precedes β”.

We can now provide a formal definition of Kingman’s n-coalescent:

Definition 2.2 (Kingman’s n-coalescent). The n-coalescent (Kingman, 1982a,b,c), de-
noted {Cn(t), t ≥ 0}, is a continuous-time Markov process on P[n] with the following prop-
erties:

1. Cn(0) = {{1}, {2}, . . . , {n}}.
2. For α, β ∈ P[n], the infinitesimal generator is given by

qαβ =


−
(|α|

2

)
, if α = β,

1, if α ≺ β,
0, otherwise.

(2.1)

3. limt→∞ Cn(t) = {{1, 2, . . . , n}} with probability 1.

15
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16 2 Kingman’s coalescent

B1 B2 B3 B4

Cn(t)

Fig. 2.1: A random partition of the leaf-set [n] induced by cutting a coalescent tree at time
t (dashed line). In this example, there are four ancestral lineages at time t, and the leaves
they subtend are partitioned into four blocks, {B1, . . . , B4} ∈ P[n].

1 2 3 4 5
ξ5 = {{1}, {2}, {3}, {4}, {5}}
ξ4 = {{1}, {2}, {3, 4}, {5}}

ξ2 = {{1, 2}, {3, 4, 5}}

ξ1 = {{1, 2, 3, 4, 5}}

ξ3 = {{1, 2}, {3, 4}, {5}}

Fig. 2.2: Illustration of the jump chain embedded in the n-coalescent.

As mentioned in Chapter 1 (cf., Figure 1.2), a sample path of the n-coalescent can be
represented by an n-leaved rooted binary ultrametric tree with its leaves bijectively labeled
by [n] = {1, . . . , n}. Suppose the tree is cut horizontally at a given time t when there are
k ancestral lineages, leading to a collection of k subtrees underneath t. As illustrated in
Figure 2.1, this induces a partition α = {B1, . . . , Bk} of [n] into k blocks, with the leaf-set
of each subtree corresponding to a unique block of α. Our goal is to obtain the probability
distribution of such a partition structure under the n-coalescent.

Definition 2.3 (Jump chain). The jump chain {ξn,k, k = n, n− 1, . . . , 2, 1} embedded in
the n-coalescent is the discrete-time Markov process on P[n] obtained by restricting to the
times when the state changes in {Cn(t), t ≥ 0}. See Figure 2.2 for an example with n = 5.

Several things can be said about this jump chain:

1. |ξn,k| = k.
2. ξn,n = Cn(0) = {{1}, {2}, . . . , {n}}.
3. The infinitesimal generator qαβ implies

P(ξn,k−1 = β | ξn,k = α) =

{
1

(k2)
, if α ≺ β and |α| = k,

0, otherwise.
(2.2)
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2.1 The n-coalescent 17

4. Cn(t) moves through ξn,n ≺ ξn,n−1 ≺ · · · ≺ ξn,1.

5. Time spent in state ξn,k is Tn,k ∼ Exp[
(
k
2

)
], where Tn,k = time spent while there are k

lineages.
6. Let An(t) = |Cn(t)|. The ancestral process {An(t), t ≥ 0} and the jump chain {ξn,k, k =
n, . . . , 1} are independent processes.

7. Cn(t) = ξn,An(t), for all t ≥ 0.

Using the above facts, the probability distribution of Cn(t) can be obtained as

P
(
Cn(t) = α

)
=

n∑
j=1

P(Cn(t) = α|An(t) = j)P(An(t) = j)

=

n∑
j=1

P(ξn,j = α)P(An(t) = j)

= P(ξn,|α| = α)P(An(t) = |α|),

where α ∈ P[n] and the second term P(An(t) = |α|) is given by (1.6). The following theorem
provides a closed-form expression for the first term, which describes how the leaf labels
{1, 2, . . . , n} are partitioned into |α| blocks:

Theorem 2.4. Suppose α = {B1, B2, . . . , Bk} ∈ P[n] and bi = |Bi| for i = 1, . . . , k. Then,

P(ξn,k = α) =
k!(
n

b1,b2,...,bk

) 1(
n−1
k−1

) , (2.3)

where
(

n
b1,b2,...,bk

)
denotes the multinomial coefficient.

Proof. This result can be proved using backward induction on k, which we sketch here.
For the base case of k = n, we have α = {{1}, {2}, . . . {n}} and P(ξn,n = α) = 1, which
agrees with the right hand side of (2.3). Now suppose (2.3) holds for k = n, . . . , j. Then, for
β ∈ P[n] with |β| = j − 1,

P(ξn,j−1 = β) =
∑

α∈P[n]

P(ξn,j−1 = β | ξn,j = α)P(ξn,j = α)

=
∑
α:α≺β

P(ξn,j−1 = β | ξn,j = α)P(ξn,j = α)

=
∑
α:α≺β

1(
j
2

)P(ξn,j = α).

To complete the proof, we need to use the inductive hypothesis and plug in the expression
for P(ξn,j = α) in the last equation. That the result is equivalent to (2.3) involves some
algebra, which we leave to the reader as an exercise. ut

Note that the expression for P(ξn,k = α) in (2.3) depends on the sizes of the blocks,
but not what they contain; i.e., the partition structure is exchangeable. Specifically, it is
proportional to b1! · · · bk!. Hence, as illustrated in Table 2.1, uneven partitions are more
likely than evenly balanced partitions.
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18 2 Kingman’s coalescent

Table 2.1: Comparison of the combinatorial factor in (2.3) that depends on block sizes.
This example is for n = 12 and k = 3. The probability distribution (2.3) is proportional
to b1! · · · bk!, which implies that uneven partitions are more likely than evenly balanced
partitions.

(b1, b2, b3) b1!b2!b3!
(4, 4, 4) 13824
(5, 3, 4) 17280
(9, 2, 1) 725760

(10, 1, 1) 3628800

2.2 Subtree leaf-set sizes

The intuitive interpretation of (2.3) is this: to sample ξn,k, we first sample the sizes of the
k subsets uniformly from vectors in Zk+ that sum to n, and then conditional on these sizes
choose a valid assignment of the sample to these subsets uniformly. More specifically, the
following result holds:

Theorem 2.5. Consider a time t when there are k lineages, label these edges as e1, e2, . . . , ek,
and define Zi to be the number of descendant leaves of ei, as illustrated in Figure 2.3. Then,

P(Z1 = z1, . . . , Zk = zk | An(t) = k) =
1(
n−1
k−1

) (2.4)

when the z1, . . . , zk are positive integers that sum to n.

In words, Z = (Z1, . . . , Zk) is sampled uniformly from all compositions of n into k parts
(i.e., all k-dimensional vectors of positive integers that sum to n). Below we present an
inductive proof. In Chapter 2.7, we will provide a more direct proof of (2.4) using an urn
model.

Proof. We use induction on n. For n = 2 and k = 2, the only possibility is z1 = z2 = 1,
so (2.4) is certainly true. Assume that (2.4) is true up to n = m − 1 and 2 ≤ k ≤ m − 1.
Consider n = m. If k = m, then zi = 1 for all i = 1, . . . , k, so (2.4) holds. If k < m, then
consider the bottommost coalescent vertex v (i.e., the interior vertex closest to the leaves).
The probability that v appears as descendant of ej is (zj − 1)/(m− 1). So,

Z1 = 4 Z2 = 3 Zk = 5

e1 e2 ek

Fig. 2.3: Subtree leaf-set sizes induced by cutting a coalescent tree at a certain time (dotted
line) when there are k lineages. The lineages are labeled e1, . . . , ek and the number of leaves
subtended by edge ei is denoted by Zi.
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2.3 Some properties of a subsample 19

P(z1, . . . , zk) =

k∑
j=1

zj − 1

m− 1
P(z1, . . . , zj−1, zj − 1, zj+1, . . . , zk)

=

k∑
j=1

zj − 1

m− 1

1(
m−2
k−1

)
=
m− k
m− 1

1(
m−2
k−1

) =
1(

m−1
k−1

) ,
where the second line follows from the induction hypothesis. ut

Theorem 2.5 can be used to find the marginal probability of Zi = m. If ei subtends
m leaves, there are n − m leaves remaining, and k − 1 other edges. There are

(
n−m−1
k−2

)
compositions of n−m into k − 1 positive integers, so we have the following result:

Corollary 2.6. Let Zi be defined as in Theorem 2.5. Then, for all i = 1, . . . , k,

P(Zi = m | An(t) = k) =

(
n−m−1
k−2

)(
n−1
k−1

) . (2.5)

2.3 Some properties of a subsample

Here we present a classical result concerning a subsample that can be easily proved using
what we have discussed in the previous section. The following theorem follows from ex-
changeability and applies to an arbitrary variable population size model. In Chapter 2.5, we
provide an alternate proof based on counting tree topologies.

Theorem 2.7 (Saunders et al 1984). Given an n-leaved random coalescent tree from the
n-coalescent, take a subsample of size m < n from [n]. Let sn,m denote the probability that
the subsample has the same most recent common ancestor (MRCA) as the entire sample [n].
Then,

sn,m =

(
m− 1

m+ 1

)(
n+ 1

n− 1

)
.

Proof. Here we provide a proof that utilizes Corollary 2.6. In Chapter 2.5, we provide an
alternate proof based on counting coalescent tree topologies.

Let (Z, n − Z) denote the number of leaves subtended by the two edges just before the
MRCA of the entire sample. Let E denote the event that the subsample of size m has the
same MRCA as the entire sample. Then,

P(E | Z = z) = 1−
(
z
m

)
+
(
n−z
m

)(
n
m

) ,

where
(
k
j

)
≡ 0 if k < j. Note that

sn,m =

n−1∑
z=1

P(E | Z = z)P(Z = z).
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20 2 Kingman’s coalescent

Therefore, using

P(Z = z) =
1

n− 1
,

n−1∑
z=1

(
z

m

)
=

n−1∑
z=m

(
z

m

)
=

(
n

m+ 1

)
,

n−1∑
z=1

(
n− z
m

)
=

n−m∑
z=1

(
n− z
m

)
=

(
n

m+ 1

)
,

where the first identity follows from (2.5) with k = 2, we obtain

sn,m = 1− 2

(
n

m+1

)(
n
m

) × 1

n− 1
= 1− 2(n−m)

(m+ 1)(n− 1)
=

(
m− 1

m+ 1

)(
n+ 1

n− 1

)
,

which is the desired result. ut

Intuitively, sn,m is the probability that the subsample of size m contains at least one
individual from each of the two subtrees branching from the MRCA of the entire sample [n].
Let ZL and ZR respectively denote the number of leaves in the left and the right subtrees.
For all 1 ≤ k ≤ n − 1, (2.4) implies that P(ZL = k, ZR = n − k) = 1/(n − 1), i.e., the
distribution is uniform over all compositions of n into two positive parts. So, in the limit
n → ∞, the proportion X of leaves in the left subtree is distributed as a U(0, 1) random
variable, for which the probability density is identically equal to 1. Hence, noting that the
subsample is contained in the left (respectively, right) subtree is Xm (respectively, (1−X)m),
we obtain

s∞,m = 1−
∫ 1

0

[xm + (1− x)m] dx =
m− 1

m+ 1
.

For the case when m = 2 and n is large, sn,m is approximately 1/3. Combined with
recombination, this implies that the genealogy of just a pair of genomes will have parts
that go far back into the past with high probability. This provides an intuitive explanation
for why a recently developed method called the pairwise sequentially Markovian coalescent
(PSMC) Li and Durbin (2011) is able to produce fairly accurate estimates of the effective
population size (see Definition 2.21) in the distant past using only a pair of genomes.

We end this section with another interesting result concerning subsamples.

Theorem 2.8 (Forming a subtree). Consider a subsample ⊂ [n] of size m < n, as in the
setting of Theorem 2.7. Let En,m denote the event that an n-leaved random coalescent tree
from the n-coalescent contains an edge that subtends only the subsample; i.e., the subsample
forms a subtree. Then,

P[En,m] =
2

(m+ 1)
(
n−1
m−1

) . (2.6)

Furthermore, for m ≥ 2, conditioned on the event En,m, the probability that the first coales-
cence event back in time involves a pair of leaves in the subsample is

m+ 1

n
.
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2.4 Forward-in-time jump chain 21

Proof. In Chapter 2.5, we provide a proof based on counting coalescent tree topologies.
Here, we present an alternate view on the problem. Let f(n,m) = P[En,m] and note that it
satisfies the recursion

f(n,m) =

(
m
2

)(
n
2

) f(n− 1,m− 1) +

(
n−m

2

)(
n
2

) f(n− 1,m), (2.7)

with boundary conditions f(n, 1) = 1 for all n > 1. We define f(n,m) = 0 if m ≥ n,
since this is not a valid sample-subsample pair. Note that the recursion for f(n,m) is strict,
since n decreases by 1 on the right hand side. Hence, given the boundary conditions, the
recursion has a unique solution. By this uniqueness property, one just needs to show that
the expression (2.6) satisfies the recursion (2.7) and the required boundary conditions. It is
straightforward to show that both conditions are satisfied.

Now, let C be the event that the first coalescence back in time is between two leaves in
the subsample. Then, from Bayes’ rule, we have

P[C | En,m] =
P[En,m | C] P[C]

P[En,m]
.

We know P[En,m] from the above discussion and P[C] is simply given by

P[C] =

(
m
2

)(
n
2

) .
Furthermore, P[En,m | C] is the probability that the subsample after the first coalescence
event (which happens between two leaves in the subsample) forms a subtree in the coalescent
tree of the remaining sample; i.e., the probability that a subsample of size m − 1 forms a
subtree in the coalescent tree of a sample of size n−1. Therefore, P[En,m | C] = P[En−1,m−1].
Putting all these things together yields P[C | En,m] = m+1

n . ut

Again, an alternate proof of the above result is provided in Chapter 2.5 by counting
coalescent tree topologies.

2.4 Forward-in-time jump chain

We now turn our attention to the process forward in time (as opposed to backwards in
time like the previous results). The steps below outline a way to run the coalescent process
forward in time:

Theorem 2.9. Given ξn,k = {B1, B2, . . . , Bk} ∈ P[n], ξn,k+1 in the jump chain of the n-
coalescent can be sampled as follows.

1. Choose a block Bi with probability bi−1
n−k . (We want the numerator to be bi − 1 since we

do not want to split a block with only one lineage in it.)
2. Choose s uniformly at random from {1, 2, . . . , bi − 1}.
3. Choose a bipartition of Bi into blocks of size s and bi − s uniformly at random over all

such partitions.
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22 2 Kingman’s coalescent

Proof. We want to show that this process generates the same distribution over partition
structures as the backward in time coalescent process. Let α, β ∈ P[n] and suppose α ≺ β.
Then by Bayes’ rule, we know

P (ξn,k+1 = α | ξn,k = β) =
P(ξn,k = β | ξn,k+1 = α)P(ξn,k+1 = α)

P(ξn,k = β)
. (2.8)

By following the procedure in Theorem 2.9 and splitting block Bi ∈ β into two blocks of
size s and bi − s, we obtain a formula for the left hand side:

P (ξn,k+1 = α | ξn,k = β) =
bi − 1

n− k
· 1

bi − 1
· 2(

bi
s

) =
1

n− k
2(
bi
s

) ,
where the factor of 2 in the numerator comes from the fact that the blocks are unordered.
Finally, we can show that the right hand side of (2.8) is equal to this expression using (2.2)
and (2.3). ut

2.5 Tree topologies

Consider a sample path of the embedded jump chain {ξn,k, k = n, . . . , 1}:

{{1}, . . . , {n}} = αn ≺ αn−1 ≺ · · · ≺ α1 = {{1, . . . , n}}.

Since {ξn,k, k = n, . . . , 1} is a Markov chain, the probability of this sample path is

P(ξn,n = αn, . . . , ξn,1 = α1) =

n∏
k=2

P(ξn,k−1 = αk−1 | ξn,k = αk) =

n∏
k=2

1(
k
2

) =
2n−1

n!(n− 1)!
.

(2.9)
So the jump chain has a uniform distribution over all its valid sample paths. We can represent
these sample paths with a labeled binary tree, where each interior vertex is labeled by the
jump time (where time is run backwards from n, n− 1, . . . , 1). We call a binary tree labeled
in this way a coalescent topology:

Definition 2.10 (Coalescent tree topologies). A coalescent topology is a binary tree
with unweighted edges and with a strict linear ordering on the heights of the interior vertices.
By convention, we label the highest vertex (the root) as 1, the second highest as 2, and so
forth. See Figure 2.4 for an illustration. We denote the set of all coalescent topologies with
leaves labeled by [n] as T c

n .

We now provide alternate proofs of Theorems 2.7 and 2.8 based on counting coalescent
tree topologies.

Proof (Theorem 2.7). Consider the partition induced by cutting the tree when there are
two lineages. The subsample has a different MRCA from the entire sample if and only if it
lies within one of the two blocks. So we need to compute the probability of the subsample
lying entirely in one block.

Since Kingman’s coalescent generates coalescent topologies following the uniform distri-
bution, we only need to count the number of coalescent topologies where the subsample lies
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1 2 3 4 5

1

2

3

4

Height Order

1

2

3

4

Fig. 2.4: An example of a coalescent topology.

in a single block. To do this, we can partition the sample into two blocks, one of which
contains the subsample, put a coalescent topology on each block, and then combine them
into a single topology by ordering how coalescent events hit the two blocks.

So fix a partition of two blocks, one of which has size k and contains the subsample. There
are

(
n−m
k−m

)
ways to do this, since we must choose k −m elements outside the subsample to

be in its block. Next fix a coalescent topology on each block; there are k!(k−1)!
2k−1

(n−k)!(n−k−1)!
2n−k−1

ways to do this. Finally, note there are
(
n−2
k−1

)
ways to put these two topologies into a single

topology, for there are n− 2 coalescent events before there are two lineages, k − 1 of which
occur on the block with the subsample. Summing over k, we get that the probability of
getting a different MRCA for the subsample is

n−1∑
k=m

2n−1

n!(n− 1)!

k!(k − 1)!(n− k)!(n− k − 1)!

2n−2

(n−m)!

(k −m)!(n− k)!

(n− 2)!

(k − 1)!(n− k − 1)!

=
2

n− 1

(
n

m

)−1 n−1∑
k=m

(
k

m

)
=

2

n− 1

(
n

m

)−1(
n

m+ 1

)
=

2(n−m)

(n− 1)(m+ 1)

which follows from repeated applications of the identity
(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
. Hence the

probability that the MRCA of the subsample and the full sample are the same is

1− 2(n−m)

(n− 1)(m+ 1)
=

(m− 1)(n+ 1)

(m+ 1)(n− 1)
,

which proves the claim. ut

Proof (Theorem 2.8). We count the coalescent topologies in En,m by first fixing two topolo-
gies, one on the subsample and one on its complement, and then counting the ways to
combine them into a single topology. To do this, we choose times for the coalescent events
to hit the subsample, we choose a time for the subsample to coalesce with the full sample,
and we choose a lineage for the subsample to coalesce with.

There are m!(m−1)!
2m−1

(n−m)!(n−m−1)!
2n−m−1 ways to choose topologies on the subsample and its

complement. Fixing the time i when subsample coalesces with its complement, there are(
i−1
m−1

)
ways to choose times for coalescences to hit the subsample, and n− i lineages for the

subsample to coalesce with. Hence the number of topologies in En,m is

c©Yun S. Song. DRAFT – May 5, 2021



24 2 Kingman’s coalescent

m!(m− 1)!(n−m)!(n−m− 1)!

2n−2

n−1∑
i=m

(i− 1)!

(m− 1)!(i−m)!
(n− i)

=
m!(m− 1)!(n−m)!(n−m− 1)!

2n−2

[
n

(
n− 1

m

)
−m

(
n

m+ 1

)]
=
m!(m− 1)!(n−m)!(n−m− 1)!

2n−2

n!

m!(n− 1−m)!

[
1− m

m+ 1

]
=

(m− 1)!(n−m)!n!

2n−2(m+ 1)
.

Multiplying each topology by 2n−1

n!(n−1)! yields a probability of

2(m− 1)!(n−m)!

(n− 1)!(m+ 1)
=

2

m+ 1

1(
n−1
m−1

) .
To show the second part of the theorem, we count coalescent topologies in En,m that start

with a coalescence on the subsample. There are
(
m
2

)
ways to pick a pair from the subsample

to coalesce. After doing this, there are

(m− 2)!(n−m)!(n− 1)!

2n−3m

ways to draw a coalescent topology on the configuration after the first coalescence, such
that the lineages of the subsample form a subtree. Hence the conditional probability is(

m

2

)
(m− 2)!(n−m)!(n− 1)!

2n−3m

[
(m− 1)!(n−m)!n!

2n−2(m+ 1)

]−1

=
m+ 1

n
,

which completes the proof. ut

For some problems, we may not care about the ordering of the interior vertices apart
from ancestral relationships. So in addition to coalescent topologies, we will be interested
in another type of tree topology, obtained by erasing the labels of the interior vertices:

Definition 2.11 (Rooted binary tree topologies). A rooted topology is a binary tree
with unweighted edges and a root vertex, but with no ordering on two interior vertices when
neither is an ancestor of the other. We denote the set of all rooted topologies with leaves
labeled by [n] as T r

n .

The number of coalescent and rooted topologies are given by the following formulas:

|T c
n | =

n!(n− 1)!

2n−1

|T r
n | = (2n− 3)!! = (2n− 3)(2n− 5) · · · 5 · 3 · 1.

So for n ≥ 4, we have the strict inequality |T r
n | < |T c

n |. In fact, it is not hard to compute
the number of coalescent topologies that are consistent with a given rooted topology:

Theorem 2.12. Call a coalescent topology τ c ∈ T c
n consistent with a rooted topology τ r ∈

T r
n if τ r is obtained from τ c by ignoring the order of the interior vertices when there is no
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ancestral relationship between them. For any given τ r, the number of coalescent topologies
consistent with τ r is

(n− 1)!
∏

v∈V̊ (τr)

1

l(v)− 1
,

where V̊ (τ r) denotes the set of interior vertices of τ r, and l(v) denotes the number of
descendant leaves of v ∈ V̊ (τ r).

Proof. Let τ r ∈ T r
n denote a rooted topology with n leaves. Then, τ r has (n − 1) interior

vertices. Given n − 1 objects, there are (n − 1)! ways to linearly order them. In coalescent
topologies, a linear ordering of interior vertices is constrained as follows: For v ∈ V ◦(τ r), let
D(v) denote the set of interior vertices (not including v) that are descendants of v. Since
|D(v)| = `(v) − 2, for a fixed linear ordering of the elements in D(v), there are `(v) − 1
ways to extend the linear ordering to D(v) ∪ {v}, but exactly one of those extensions is
realizable in coalescent topologies. Hence, the number of coalescent topologies that have the
same shape and leaf label assignment as τ r is

(n− 1)!
∏

v∈V̊ (τr)

1

l(v)− 1
.

Alternatively, one can also prove the result using induction. Consider the left subtree
τL and the right subtree τR attached to the root of τ r, and invoke induction hypothesis
on those subtrees. Then, given a linear ordering of the interior vertices in each subtree,
consider the number of ways to linearly order the interior vertices in τL relative to those in
τR. Multiplying the above factors gives the desired result. ut

This leads to the following corollary:

Corollary 2.13. Under the n-coalescent, the probability of generating a particular rooted
topology τ ∈ T r

n is given by
2n−1

n!

∏
v∈V̊ (τr)

1

l(v)− 1
.

Proof. Follows from (2.9) and Theorem 2.12. ut

2.6 The Yule-Harding process

The Yule-Harding process is a forward-in-time process that generates coalescent topologies
in T c

n with the same law as the n-coalescent. As an application, we will use the Yule-Harding
process to give a simple proof of Theorem 2.5 via an urn model.

Coalescent topologies have a clearer connection to the urn model than rooted topologies,
hence we will show that the Yule-Harding process induces the correct law on T c

n .

Definition 2.14 (Yule-Harding process). The Yule-Harding process is a forward-in-time
Markov chain with index set {1, . . . , n} and state space consisting of trees in which leaves
are labeled by subsets of [n]. Denoting by Yk the state of the chain at time k, we generate
a realization of the Yule-Harding process as follows:
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4

1 4

1 4 5

1 2 4 5

1 2 3 54

Y1 Y2 Y3 Y4 Y5

Fig. 2.5: A sample path in the Yule-Harding model, when n = 5. If we keep track of when
the lineages branch, the resulting coalescent topology is the same as in Figure 2.4.

1. Y1 consists of a single lineage, labeled uniformly at random by an element of the sample
[n].

2. To generate Yk+1 from Yk, select a leaf lineage uniformly at random from Yk and split
it into two. Label the new lineage uniformly at random with an unused element of [n].

To make this definition clear, we illustrate a realization of the Yule-Harding process in
Figure 2.5. The usefulness of the Yule-Harding model is a result of the following theorem:

Theorem 2.15. Generate a coalescent topology from the Yule-Harding process by keeping
track of the time indices when interior vertices split but ignoring the labels of interior lin-
eages. Then the Yule-Harding process induces the same law on T c

n as the n-coalescent.

Proof. The single lineage in Y1 is labeled by a particular element of [n] with probability
1/n. At time k + 1, we select a lineage to split with probability 1/k, then select an unused
lineage to add with probability 1/(n − k). Hence, each sample path in the Yule-Harding
process has probability

1

n

n−1∏
k=1

1

k(n− k)
=

1

n!(n− 1)!
.

We can represent a sample path in the Yule-Harding process by a binary tree, where the
interior vertices are ordered by the time in which they split, and where each edge is labeled
by the lineage in [n] that it corresponds to (note that we place an edge above the root vertex
as well). See Figure 2.6 for an illustration. Observe that the parent edge of a leaf must have
the same label as the leaf, while the parent edge of an interior vertex must have the same
label as one of its child edges.

We obtain a coalescent topology from a sample path by ignoring the labels of the edges.
So we count how many sample paths correspond to a coalescent topology. Working up from
the bottom of the tree, there are two choices when labeling the parent edge of an interior
vertex. Since there are n− 1 interior vertices, there are 2n−1 sample paths that correspond
to a single coalescent topology.

Hence the Yule-Harding process generates each coalescent topology with probability
2n−1

n!(n−1)! , i.e. it is uniform over T c
n . ut
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4

4

4

4

1

1 2 3 5

1 2 3 4 5

1

2

3

4

Height Order

Fig. 2.6: The sample path in Figure 2.5, but represented as a single binary tree with labeled
edges and an ordering on the interior vertices by branching time (height).

2.7 Urn models with stochastic replacement

At each time step in the Yule-Harding process, we select a lineage uniformly at random and
connect it to an unused leaf lineage. We can model this as a balls-and-urn process, where
we repeatedly sample a ball from an urn and return it with another ball. Here, each ball
in the urn corresponds to a lineage that has been attached to the tree, whereas the ball we
add corresponds to the unused leaf from [n] that we connect to the tree. This perspective
will give us an easy proof of (2.4) in Theorem 2.5, i.e., that cutting the n-coalescent at level
k generates a composition with k parts uniformly at random.

We begin by stating some facts about urn models, and then elaborate on their connec-
tion with the Yule-Harding process and compositions. While urn models are traditionally
attributed to Eggenberger and Polya (1923), all the results we will be using were obtained
by Markov (1917).

Theorem 2.16. Consider an urn with cj balls of color j, where j ∈ {1, . . . , k}. Sample a
ball from the urn, and return it with s copies of the same color. Repeat this m times, and
let Xj be the number of times color j was drawn. Then,

P(X1 = i1, . . . , Xk = ik) =

(
m

i1, . . . , ik

) ∏k
j=1(

cj
s )ij↑

( c1+···+ck
s )m↑

when i1, . . . , ik are non-negative integers that sum to m.

Proof. Let Yi be the color of the ith ball drawn from the urn. We have that

P(Y1 = y1, . . . , Ym = ym) = P(Y1 = y1)

m∏
i=2

P(Yi = yi | Y1 = y1, . . . , Yi−1 = yi−1). (2.10)

Now suppose that the color yi appears (l − 1) times in (y1, . . . , yi−1). Then

P(Yi = yi | Y1 = y1, . . . , Yi−1 = yi−1) =
cyi + (l − 1)s∑k
j=1 cj + (i− 1)s

,
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since there are
∑
j cj + (i− 1)s balls in the urn at time i, of which cyi + (l− 1)s have color

yi. Hence the ith draw contributes

k∑
j=1

cj + (i− 1)s =

[∑k
j=1 cj

s
+ (i− 1)

]
s

to the denominator of the product (2.10), while the lth draw of color j contributes

cj + (l − 1)s =
[cj
s

+ (l − 1)
]
s

to the numerator of that product. Hence, we get

P(Y1 = y1, . . . , Ym = ym) =

∏k
j=1(

cj
s )ij↑

( c1+···+ck
s )m↑

,

where ij =
∑m
l=1 I(yl = j) denotes the total number of times that color j appears in

(y1, . . . , ym). Since there are
(

m
i1,...,ik

)
sequences where color j is selected exactly ij times,

we get the desired result. ut

We now use the above urn model to provide an alternate proof of Theorem 2.5.

Proof (Theorem 2.5). Consider the time when there are k lineages in the Yule-Harding
process. Give each lineage a unique color, then run the Yule-Harding process as normal;
however, whenever we add a new lineage to the tree, give it the color of the lineage we are
attaching it to. Then the total number of leaves of color j will follow the urn model above,
with s = 1, cj = 1 for all j ∈ {1, . . . , k}, and m = n − k. Therefore, letting Zj denote the
number of descendant leaves of the jth lineage, Theorem 2.16 implies

P(Z1 = i1, . . . , Zk = ik) =

(
n− k

i1, . . . , ik

) ∏k
j=1 ij !

(k)(n−k)↑

=
(n− k)!

(k)(n−k)↑

=
(n− k)!(k − 1)!

(n− 1)!
=

1(
n−1
k−1

) ,
which agrees with (2.4). So the law of (Z1, . . . , Zk) is uniform over all compositions of size
n with k parts. ut

2.8 Sufficient conditions for weak convergence to the n-coalescent

In Chapter 1.2, we considered a popular discrete-time random mating model, namely the
Wright-Fisher model, and saw that probability computation under the model can be rather
cumbersome. We therefore sought a continuous-time model that facilitates computation
while providing an accurate approximation to the Wright-Fisher model when the population
size is large. In this section, we extend this concept to a more general class of random
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mating models called Cannings exchangeable models. For this class of models, we will prove
the celebrated result of Kingman which establishes a set of sufficient conditions for the
genealogical process associated with an exchangeable random mating model to converge
in distribution to the n-coalescent defined in Chapter 2.1. We begin with some definitions
needed to state the main theorem.

Definition 2.17 (Exchangeability). Let Sk denote the symmetric group on [k]. A k-
tuple (X1, X2, . . . , Xk) of random variables is said to be exchangeable if for all permutations
π ∈ Sk, (X1, X2, . . . , Xk) has the same distribution as (Xπ(1), Xπ(2), . . . , Xπ(k)).

Definition 2.18 (Cannings exchangeable models). Denote by νk(τ) the number of
offspring born to individual k ∈ [N ] at time τ . Cannings exchangeable models (Cannings,
1974) are a class of random mating models with the following properties:

1. Every individual survives for exactly one generation. Time, denoted by τ , is measured in
generations.

2. For all generations, population size remains constant at N , i.e., ν1(τ) + ν2(τ) + · · · +
νN (τ) = N for all τ . Individuals are labeled 1, 2, . . . , N .

3. For each generation τ , the N -tuple (ν1(τ), ν2(τ), . . . , νN (τ)) is exchangeable.
4. {(ν1(τ), ν2(τ), . . . , νN (τ))}τ∈Z≥0

are independently and identically distributed random

vectors. (For a fixed time τ , the νi(τ) are not independent of one another, since they sum
to N .)

Remark 2.19. We note the following simple observations:

1. P(νi(τ) = m) = P(νj(τ) = m) for all i, j ∈ [N ] and for all m ∈ {0, . . . , N}. This follows
directly from exchangeability.

2. Exchangeability and ν1(τ) + · · ·+ νN (τ) = N together imply E(νi(τ)) = 1 for all i ∈ [N ].
3. For all generations τ and index i ∈ [N ], Var(νi(τ)) = σ2

N , which may depend on N but
not on i.

In what follows, we drop the dependence on τ when writing offspring numbers, which
is allowed since {(ν1(τ), ν2(τ), . . . , νN (τ))}τ∈Z≥0

are i.i.d. random vectors. A well-known

example of Cannings exchangeable models is the Wright-Fisher model, in which the offspring
numbers (ν1, ν2, . . . , νN ) have a multinomial distribution in each generation, i.e.,

P(ν1 = m1, . . . , νN = mN ) =

(
N

m1, . . . ,mN

)
1

NN
.

Noting that νi are marginally binomial with success probability 1/N , one can easily check
that E(νi) = 1 and Var(νi) = 1− 1

N , which do not depend on i.

We now present the aforementioned weak convergence result due to Kingman.

Theorem 2.20 (Kingman 1982c). In a Cannings exchangeable model with population
size N , let {DN

n (τ), τ = 0, 1, . . .} denote the P[n]-valued backward-in-time Markov process
describing the genealogy of a sample of size n. (Take a sample of size n from the population at
time 0 and trace its genealogy backwards in time.) For all t ∈ R+, DN

n

(
btN/σ2c

)
converges

weakly to Cn(t) (the n-coalescent at time t) as N →∞, if the following conditions hold:

1. Var(ν1) = σ2
N → σ2 ∈ (0,∞) as N →∞. (Note that σ2 is strictly positive.)
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2. sup
N

E(νk1 ) <∞, for all k = 3, 4, . . .

Proof. Suppose DN
n (τ) = α and DN

n (τ + 1) = β, where α = (A1, . . . , Ak) ∈ P[n] and
β = (B1, . . . , Bl) ∈ P[n]. Let pαβ denote the one-step transition probability of DN

n (·) and
define PN = (pαβ)α,β∈P[n]

. Our goal is to show that

PN = I +
σ2

N
Q+ o

(
1

N

)
, (2.11)

where Q = (qαβ)α,β∈P[n]
is the infinitesimal generator of the n-coalescent (2.1). If this holds,

then limN→∞ P
bNt/σ2c
N = eQt, for all t ∈ R+, thus implying the desired weak convergence

result.
For 1 ≤ i ≤ l, suppose block Bi contains ki > 0 blocks in α, such that k =

∑l
i=1 ki. (If

this is not the case, then pαβ = 0.) Let j1, . . . , jl ∈ [N ] be l distinct individuals at time
τ + 1, and νj1 , . . . , νjl their corresponding offspring numbers. Then, pαβ is given by

pαβ = E

 ∑
j1,...,jl∈[N ],all distinct

(νj1)k1↓ · · · (νjl)kl↓
(N)k↓

 , (2.12)

where the expectation is taken over the distribution of νj1 , . . . , νjl .
We want to show that if it requires more than a single pairwise merger to get from α to

β, then pαβ decays faster than 1/N . Indeed, for k ≥ 3 and l < k − 1, we have

pαβ ≤ E

 ∑
j1,...,jl∈[N ],all distinct

νk1
j1
· · · νkljl

(N)k↓


≤

∑
j1,...,jl∈[N ],all distinct

1

(N)k↓
[E(νkj1)]

k1
k · · · [E(νkjl)]

kl
k

=
∑

j1,...,jl∈[N ],all distinct

1

(N)k↓
E(νk1 )

=
(N)l↓
(N)k↓

E(νk1 )

= o

(
1

N

)
,

where the second inequality follows from Hölder’s inequality, the third line follows from
exchangeability, and the last line follows from l < k − 1 and the second condition of the
theorem.

Now suppose α ≺ β; i.e., transitioning from α to β involves exactly a single pairwise
merger. In this case, l = k − 1. Without loss of generality, assume that two blocks in α
find individual j1 in generation τ + 1 as a common parent. Then, setting (k1, k2, . . . , kl) =
(2, 1, . . . , 1) and l = k − 1 in (2.12), we get
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pαβ = E

 ∑
j1,...,jk−1∈[N ],all distinct

νj1(νj1 − 1)νj2 · · · νjk−1

(N)k↓

 .
By removing the restriction that j1, . . . , jk−1 be distinct, we can upper bound the above
expression as

pαβ ≤ E

 N∑
j=1

νj(νj − 1)Nk−2

(N)k↓

 =
Nk−2

(N)k↓
N E(ν1(ν1 − 1)) =

Nk−2

(N)k↓
Nσ2

N =
σ2

N
+ o

(
1

N

)
,

where the first equality follows from exchangeability, and the difference between σ2 and σ2
N

has been absorbed into o(1/N) in the last equality.
To put a lower bound on pαβ when α ≺ β, first note

pαβ ≥ E

 1

(N)k↓

N∑
j=1

νj(νj − 1)

(N − νj)k−2 −
(
k − 2

2

)∑
i 6=j

ν2
i (N − νj)k−4

 . (2.13)

To see why this is a lower bound, think of assigning the k blocks of α to the individuals at
time τ . Recall α ≺ β, and suppose A1 and A2 are the two blocks of α that merge. Then,
note that

∑
j1,...,jk−1 distinct νj1(νj1 − 1)νj2 · · · νjk−1

corresponds to the number of ways of
assigning A1 and A2 to two distinct descendants of some individual j in generation τ+1, and
assigning the remaining k− 2 blocks of α to non-descendants of j such that no two of those
blocks have the same parent. Now note that (N−νj)k−2 corresponds to the number of ways
to map A3, . . . , Ak to the non-descendants of j. From this, we want to subtract the number
of maps that would lead to some of A3, . . . , Ak being siblings;

(
k−2

2

)∑
i 6=j ν

2
i (N − νj)k−4 is

an upper bound on that number.
From (2.13), we obtain

pαβ ≥
1

(N)k↓
E


N∑
j=1

νj(νj − 1)

(N − νj)k−2 −
(
k − 2

2

)∑
i 6=j

ν2
iN

k−4


≥ 1

Nk
E


 N∑
j=1

νj(νj − 1)Nk−2

−
(k − 2)

N∑
j=1

ν3
jN

k−3

− (k − 2

2

)∑
i 6=j

ν2
i ν

2
jN

k−4


≥ 1

N
E[ν1(ν1 − 1)]− (k − 2)

N2
E[ν3

1 ]−
(
k − 2

2

)
1

N2
E[ν2

1ν
2
2 ]

=
σ2

N
+ o

(
1

N

)
,

where the second line follows from 1
(N)k↓

> 1
Nk

and (N−νj)k−2 ≥ Nk−2−(k−2)Nk−3νj for

N sufficiently large, and the last line follows from the Cauchy-Schwarz inequality E[ν2
1ν

2
2 ] ≤

[E(ν4
1)E(ν4

2)]1/2 and the second condition of the theorem. Hence, for α ≺ β, since pαβ is

bounded from both above and below by σ2

N + o
(

1
N

)
, we conclude that

pαβ =
σ2

N
+ o

(
1

N

)
,
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and the one-step transition matrix PN has the desired form (2.11). ut

Note that the conditions in Theorem 2.20 are sufficient, but not necessary. Necessary and
sufficient conditions will be discussed in Chapter 2.10.

Consider a general Canning exchangeable model with population size N satisfying the
conditions in Theorem 2.20. The convergence result discussed above implies that the ge-
nealogical process at time τ for such a model follows approximately the same law as the
genealogical process at time τ for the Wright-Fisher model with population size N/σ2,
provided that N is sufficiently large. This motivates the following definition:

Definition 2.21 (Coalescent effective population size). Let σ2 be defined as in Theo-
rem 2.20. Then, the coalescent effective population size of the Canning exchangeable model
is defined as

Ne =
N

σ2
.

One unit of time in the n-coalescent corresponds to roughly Ne generations in the discrete-
time model.

2.9 Moran models

Moran models are another kind of random mating model widely used in population genetics.
Unlike the Wright-Fisher model, Moran models allow for overlapping generations. At any
given point in time, at most one birth-death event occurs. This simplification often allows
one to carry out exact computation. Furthermore, if one chooses a suitable birth-death rate
in the model, the coalescent process can be obtained without the need of taking N → ∞.
There are three different ways to define a Moran model with population size N :

1. (Continuous-time) Each individual dies at rate N
2 , and is replaced by a duplicate of

another individual chosen uniformly at random from the current population. This model
requires no rescaling of time for the genealogical process of a sample to converge to the
coalescent.

2. (Continuous-time) Each individual dies at rate 1, and is replaced by a duplicate as in the
above case. Weak convergence to the coalescent requires rescaling time by N

2 .
3. (Discrete-time) In each generation, exactly one individual dies and is replaced by a

duplicate of another individual chosen uniformly at random from the current genera-
tion. Every generation has exactly one birth-death event. The offspring number vector
(ν1, . . . , νN ) is defined to have exactly one 0 (representing death) and one 2 (represent-
ing duplication); all other entries are 1s. Note that E[νi] = 2 · 1

N + 1 · N−2
N = 1 and

Var(νi) = E[ν2
i ]− 1 = 4

N + N−2
N − 1 = 2

N . In this model, one would need to rescale time

by N2

2 to converge to the coalescent.

See Figure 2.7 for an illustration of a continuous-time Moran model with population size
N = 6. There are N parallel lines, each corresponding to an individual. The horizontal axis
corresponds to time. An arrow from i to j indicates that i reproduces and j dies, with the
newborn individual replacing j. The genealogical tree for a sample is obtained as follows:
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Fig. 2.7: Illustration of a continuous-time Moran model with N = 6.

1. For each individual i in the sample, start from the far right end and trace back the lineage
labeled i.

2. When the head of an arrow is encountered (which means the individual is replaced at
this time and its parent is specified by the tail of the arrow), follow the arrow and then
continue on the line specified by the arrow’s tail.

Figure 2.7 illustrates the genealogy for the sample {1, 2, 4, 6}. The partition structure at
time t3 is {{6}, {1, 2, 4}}. In the case of the first Moran model mentioned above, the rate of
pairwise merger is

(
k
2

)
while there are k ancestral lineages.

2.10 Necessary and sufficient conditions for weak convergence

We now present another milestone in the n-coalescent literature. Möhle and Sagitov (2001,
2003) established necessary and sufficient conditions for a process to converge in distribution
to the n-coalescent. Their results are phrased in terms of two quantities cN and dN , which
are defined below.

Definition 2.22 (2-merger probability). Let cN denote the probability that two individ-
uals chosen at random without replacement from the same generation have the same parent
one generation back in time. For an exchangeable discrete-time random mating model with
a constant population size N ,

cN =

N∑
i=1

E(νi(νi − 1))

N(N − 1)
=

E(ν1(ν1 − 1))

N − 1
.

Definition 2.23 (3-merger probability). Let dN denote the probability that three in-
dividuals chosen at random without replacement from the same generation have the same
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34 2 Kingman’s coalescent

parent one generation back in time. For an exchangeable discrete-time random mating model
with a constant population size N ,

dN =

N∑
i=1

E[(νi)3↓]

(N)3↓
=

E[(ν1)3↓]

(N − 1)(N − 2)
.

Given a sample of size two from a population of size N , let X denote the waiting time
until their most recent common ancestor is found. Then, X ∼ Geometric(cN ), which implies
that cN determines the right time scaling to obtain convergence to Kingman’s coalescent.
Further, for t ∈ R+, note that P(X > bt/cNc) = (1− cN )bt/cNc → e−t if cN → 0. Hence, we
need cN → 0 as N → ∞ for the waiting time to converge to an exponentially distributed
random variable with rate 1, as in Kingman’s coalescent. Another key property of Kingman’s
coalescent is that only pairwise mergers are allowed at any given time, so we want dN to be
negligibly small compared to cN for large N . It turns out that the above two conditions are
in fact necessary and sufficient for weak convergence:

Theorem 2.24 (Möhle and Sagitov 2001, 2003). The discrete-time P[n]-valued process{
DN
n (bt/cNc) , t ≥ 0

}
converges weakly to the n-coalescent {Cn (t) , t ≥ 0} as N → ∞ if

and only if the following conditions hold:

1. lim
N→∞

cN = 0.

2. lim
N→∞

dN
cN

= 0.

Remark 2.25. We conclude with a few remarks on the above result:

1. The coalescent effective population for this general setting is 1/cN .
2. In the discrete-time Moran model, Var(ν1) = 2/N → 0 as N → ∞, so Theorem 2.20

cannot be applied to show weak convergence. However, it satisfies the conditions of The-
orem 2.24. Specifically, cN = Var(ν1)/(N − 1) = 2/[N(N − 1)] → 0 as N → ∞, while
dN = 0 for all N .

2.11 Coming down from infinity

The n-coalescent satisfies the following consistency property : Suppose m < n. The restriction
of {Cn(t), t ≥ 0} to [m] has the same law as the process {Cm(t), t ≥ 0}. Moreover, there
exists a unique PN-valued Markov process {C∞(t), t ≥ 0}, called Kingman’s coalescent,
such that for every n ∈ N, the process {C∞(t), t ≥ 0} restricted to [n] has the same law as
{Cn(t), t ≥ 0}. See Section 2.1 of Berestycki (2009) for further details.

A surprising property satisfied by Kingman’s coalescent is that it “comes down from
infinity.” That is, although the number of blocks in C∞(0) is infinite, after any finite amount
of time t > 0, the number of blocks remaining in C∞(t) is finite almost surely:

Theorem 2.26 (Coming down from infinity). Let A∞(t) = |C∞(t)| denote the ancestral
process for C∞(t). Then, P(A∞(t) <∞ for all t > 0) = 1.
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Proof. It suffices to show that for every ε > 0, there exists a positive integer M , such that
P(A∞(t) > M) ≤ ε. Consider the restriction Cn(t) of C∞(t) to [n] and let An(t) = |Cn(t)|.
Then,

P(An(t) > M) = P

(
n∑

k=M+1

Tn,k > t

)

≤ 1

t
E

(
n∑

k=M+1

Tn,k

)

=
1

t

n∑
k=M+1

1(
k
2

)
≤ 2

tM
,

where the second line follows from Markov’s inequality and the third line follows from the
fact that Tn,k ∼ Exp(

(
k
2

)
) for a constant population size model. Now, setting M ≥ 2

tε , we
conclude lim supn→∞ P(An(t) > M) ≤ ε, which implies the desired result. ut
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Möhle M, Sagitov S (2003) Coalescent patterns in diploid exchangeable population models.

Journal of Mathematical Biology 47(4):337–352
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Part II

Neutral Mutations on Trees at Equilibrium
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Chapter 3

Number of mutations

In this chapter we consider mutations in the coalescent process. In Figure 3.1, mutations
m1, . . . ,m4 are marked by “×”s on the coalescent tree. In most biological applications, we do
not know the true genealogical histories. Rather, we only observe genetic variation data at
the leaves, and the objective is to make ancestral inference using the observed sequence data.
Mutation is a major evolutionary mechanism responsible for generating genetic variation in
a population.

Mutations change the allele type in a lineage, and exactly what kind of changes are in-
troduced depends on the assumed model of mutation. In this chapter, we derive several
probabilities that are independent of the details of the assumed mutation model. We first
describe mutation in the discrete-time Wright-Fisher model and then generalize it to continu-
ous time. We assume selective neutrality; that is, genetic types do not influence reproductive
success.

Throughout this chapter, we assume that the population size remains constant over time.

m2

34 5 2

T3

T4

T5

T2

m4

m3

m1

1

Fig. 3.1: A coalescent tree with mutations marked by “×”s and labeled m1, . . . ,m4. Muta-
tions on each edge arise according to a Poisson point process with rate θ

2 , independently of
all other edges

39
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40 3 Number of mutations

Fig. 3.2: Discrete-time Wright-Fisher model with mutations.

3.1 Mutations in a single lineage

In the discrete-time Canning exchangeable model, let TMut denote the number of generations
until a mutation is encountered when the lineage of a single individual is traced back in
time. Consider Figure 3.2, which illustrates two generations. The symbol “×” represents
a mutation that occurs when the second individual in the top row reproduces and creates
the second individual in the bottom row. If the probability u of mutation per locus per
generation per individual is constant over time, then the distribution of TMut satisfies

P
(
TMut > k

)
= (1− u)k.

Hence, for t ∈ R≥0,

P
(
TMut > bt/cNc

)
= (1− u)bt/cNc → e−

θ
2 t,

as cN → 0 and u → 0 such that u
cN
→ θ

2 . (The factor of 2 in the denominator is con-
ventionally introduced to simplify formulas in many quantities of interest.) Incidentally, u
is typically very small (u ≈ 1.2 × 10−8 for humans) while the population N is large, so
assuming this limit is fine for most organisms. In the above limit, the waiting time to en-
countering a mutation is distributed as an exponential random variable with parameter θ/2.
This is equivalent to saying that mutations arrive according to a Poisson point process with
intensity θ/2, so

P(m mutations on an edge of length t) =
1

m!

(
θ

2
t

)m
e−

θ
2 t.

3.2 Number of mutations in a coalescent tree with n leaves

Generalizing the above result to the whole coalescent tree, we conclude that mutations on
each edge arise according to a Poisson point process intensity rate θ

2 , independently of all
other edges.

Definition 3.1. (Mn,k and Mn). Let Mn,k denote the number of mutations while there are
k lineages in a coalescent tree with n leaves. Let Mn = Mn,2 + · · ·+Mn,n, the total number
of mutations in the tree.

Proposition 3.2. The probability that there are m mutations in a coalescent tree with n
leaves is

P(Mn = m) =

n∑
k=2

(−1)k
(
n− 1

k − 1

)
k − 1

θ + k − 1

(
θ

θ + k − 1

)m
. (3.1)
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3.2 Number of mutations in a coalescent tree with n leaves 41

Proof. We will prove this result using two different methods. The first method will involve
a direct computation of the probability, while the second approach will use the method of
generating functions.

Method 1: Let X1 ∼ Poi(λ1), X2 ∼ Poi(λ2) be independent Poisson random variables.
Recall that the sum of two independent Poisson variables is itself a Poisson variable. More
exactly,

X1 +X2 ∼ Poi(λ1 + λ2).

This property implies that Mn|T2, . . . , Tn ∼ Poi
(
θ
2Ln

)
, where Ln =

∑n
k=2 kTk denotes the

tree length. Thus

P(Mn = m | Ln = t) =
1

m!

(
θ

2
t

)m
e−

θ
2 t.

The marginal distribution of Mn is then

P(Mn = m) =

∫ ∞
0

P(Mn = m | Ln = t)fLn(t)dt, (3.2)

where fLn(t) is the probability density function of Ln discussed in Lecture 2:

fLn(t) =
∑
k=2

(−1)k
(
n− 1

k − 1

)
k − 1

2
e−

k−1
2 t.

Method 2: The second method uses the probability generating function Gn(z) defined as
follows.

Gn(z) =

∞∑
m=0

P(Mn = m)zm =

∞∑
m=0

E
[

1

m!

(
θ

2
Ln

)m
e−

θ
2Ln

]
zm.

For z ≥ 0, the monotone convergence theorems imply that we can bring the summation
inside the expectation, and we obtain

Gn(z) = E

[ ∞∑
m=0

1

m!

(
θ

2
Ln

)m
e−

θ
2Lnzm

]
= E

[
e(z−1) θ2Ln

]
=

m∏
k=2

E
[
e(z−1) θ2 kTk

]
=

m∏
k=2

∫ ∞
0

e(z−1) θ2 t
k − 1

2
e−

k−1
2 tdt

=

m∏
k=2

1

1−
(
z−1
k−1

)
θ
.

Lastly, we can obtain P(Mn = m) by finding the coefficient of zm in Gn(z). ut

Remark 3.3. Although (3.1) is a nice closed-form result, numerical problems often arise when
evaluating it. A numerically stable way of computing P(Mn = m) is to evaluate the integral
in (3.2) numerically using the following form of the probability density of Ln:
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fLn(t) =
n− 1

2
e−

t
2

(
1− e− t2

)n−2

.

Proposition 3.4. The probability mass function of Mn,k is

P(Mn,k = m) =
k − 1

θ + k − 1

(
θ

θ + k − 1

)m
. (3.3)

Proof. There are several ways to prove this result. We will mention three of them here. The
first method will involve a direct computation, the second a generating function, and the
third a coalescent argument.

Method 1: A direct computation of P(Mn,k = m) is

P(Mn,k = m) =

∫ ∞
0

P(Mn,k = m | kTk = t)fkTk(t) dt

=

∫ ∞
0

1

m!

(
θ

2
t

)m
e−

θ
2 t

(
k − 1

2

)
e−

k−1
2 t dt.

Method 2: We can define a generating function as follows.

Gn,k(z) =

∞∑
m=0

P(Mn,k = m)zm = E
[
e(z−1) θ2 kTk

]
=

1

1−
(
z−1
k−1

)
θ
.

We can then obtain P(Mn,k = m) by finding the coefficient of zm in Gn,k(z).

Method 3: Let X1 ∼ Exp(λ1), X2 ∼ Exp(λ2) be independent exponential random vari-
ables. Then P(X1 < X2) = λ1

λ1+λ2
. While there are k lineages, the rate of mutation events

is k θ2 and the rate of coalescence is
(
k
2

)
. Hence,

P(mutation | there are k lineages) =
θ

θ + k − 1
,

P(coalescence | there are k lineages) =
k − 1

θ + k − 1
,

and (3.3) immediately follows from these two probabilities. ut

Note that the generating function discussed in Method 2 allows us to obtain the moments
of Mn,k straightforwardly:

E(Mn,k) =
d

dz
Gn,k(z)

∣∣∣
z=1

=
θ

k − 1
,

Var(Mn,k) =

[
d

dz
z
d

dz
Gn,k(z)−

(
d

dz
Gn,k(z)

)2
]
z=1

=
θ

k − 1
+

(
θ

k − 1

)2

.

Further, from E(Mn,k) and Var(Mn,k), we can compute E(Mn) and Var(Mn) as follows:
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E(Mn) = θ

n−1∑
j=1

1

j
,

Var(Mn) =

n∑
k=2

Var(Mn,k) =

n−1∑
j=1

[
θ

j
+

(
θ

j

)2
]
,

where the first equality in the second line follows from the independence of Mn,i and Mn,j

for i 6= j. As n→∞, both E(Mn)→ θ log(n) and Var(Mn)→ θ log(n), up to some additive
constants. Under the infinite-sites model of mutation which will be discussed later, E(Mn)
is equal to the expected number of segregating (or polymorphic) sites.

3.3 Waiting times conditioned on the number of mutations

The waiting time Tk while k lineages is distributed as Tk ∼ Exp
[(
k
2

)]
. The following result

establishes the conditional probability density of Tk given that there are m mutations while
k lineages:

Proposition 3.5. The conditional probability density function of Tk given Mn,k = m is

fTk(t|Mn,k = m) =
1

m!

[
k

2
(θ + k − 1)

]m+1

tme−
k
2 (θ+k−1)t. (3.4)

Proof. Applying Bayes’ rule, the conditional probability density function of Tk given Mn,k =
m can be written as

fTk(t|Mn,k = m) =
P(Mn,k = m | Tk = t)

P(Mn,k = m)
fTk(t).

Because mutations for each lineage occur according to a Poisson point process with rate
θ/2,

P(Mn,k = m | Tk = t) =
1

m!

(
θ

2
kt

)m
e−

θ
2 kt.

We now have all the parts to compute the conditional probability density of Tk given Mn,k =
m, and (3.4) follows after some algebra. ut

In fact, Proposition 3.5 can be obtained in a much simpler way. While there are k lineages,
the total rate of coalescence and mutation is 1

2k(θ + k − 1). So, if there are m mutation
events before coalescence, the total waiting time is a sum of m+ 1 i.i.d. exponential random
variables each with rate 1

2k(θ+k−1), which gives the gamma distribution with shape m+1
and rate 1

2k(θ + k − 1). So,

Tk | (Mn,k = m) ∼ Gamma
(
m+ 1,

1

2
k(θ + k − 1)

)
,

and indeed (3.4) is the density function of this gamma distribution.
Using (3.4), one can show that the conditional expectation of Tk given Mn,k = m is
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(a) (b)

Fig. 3.3: Waiting time T2 conditional of M2 = m. (a) θ small and m large. (b) θ large and
m small.

E(Tk |Mn,k = m) =
2(m+ 1)

k(θ + k − 1)
. (3.5)

Compare this with the unconditional expectation of Tk:

E(Tk) =
2

k(k − 1)
.

Example 3.6. Consider the case of n = k = 2. Using k = 2 in (3.5) we obtain E(T2 | M2 =
m) = m+1

θ+1 , while E(T2) = 1. Suppose m is large, while θ is small. Then, E(T2 | M2 =
m) > E(T2). This makes sense since, as illustrated in Figure 3.3a, a long coalescence time
is expected for there to be many mutations when the mutation rate is low. On the other
hand, suppose m is small, while θ is large. Then, this implies a short coalescence time, as
illustrated in Figure 3.3b. For there to be few mutations when the mutation rate is high, a
short coalescence is expected.

Example 3.7 (TMRCA of human Y chromosomes). Dorit et al (1995) examined a region in
the upstream of the Zinc-Finger (ZFY) locus on the Y-chromosome. No polymorphism was
observed in the sample, which consisted of 729 base-pairs in 38 individuals.

Let Wn denote the waiting time until the most recent common ancestor. Recall that
Wn = Tn + · · ·+ T2. In estimating the conditional expectation of Wn given Mn = 0, Dorit
et al used an incorrect formula for P(Mn = 0 | Wn = t) and also incorrectly assumed that
fWn

(t) = 1. The correct answer can be computed as follows. Using (3.5), we obtain

E(Wn |Mn = 0) =

n∑
k=2

E(Tk |Mn,k = 0) =

n∑
k=2

2

k(θ + k − 1)
.

Suppose the long-term effective population size NY
e for Y -chromosomes is around 5, 000

(Harding et al, 1997; Harpending et al, 1998). To translate the coalescent time to years, the
estimate from the above expression needs to be multiplied by NY

e (the number of generations
per unit of coalescent time) and the average number G of years per generation. For the 729 bp
region, θ = 2NY

e × 729× 1.25× 10−8. Table 3.1 shows the expected time to the MRCA for
different values of Ne and G = 29. For NY

e = 5, 000, the expected Wn is about 252,884
years. Incidentally, using u = 2.7× 10−8 and G = 20, Dorit et al (1995) estimated Wn to be
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Table 3.1: TMRCA estimates for different effective population sizes, assuming the u =
1.25× 10−8 per individual per generation per bp and G = 29 years per generation.

NYe NYe ×G× E(Wn |Mn = 0), for n = 38
2,500 133,285 years
5,000 252,884 years

10,000 460,498 years

around 270,000 years, with a 95% confidence interval of (0, 800000). (There is not enough
information in 729 bp, and hence the large confidence interval.)
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Chapter 4

Infinite-alleles model and random combinatorial
structures

In this chapter, we will discuss a classical mutation model called the infinite-alleles model
(Kimura and Crow, 1964), in which each mutation gives rise to a new allele (genetic type)
that has never been seen before. In addition to having had numerous applications in pop-
ulation genetics, this model turns out to have fascinating connections with random combi-
natorial structures. We start with a specific example of this connection. See Arratia et al
(2003) for a more in-depth discussion of this topic, and Crane (2016) for a recent survey.

4.1 θ-biased random permutations

Consider the permutation group Sn on [n].

Definition 4.1 (Cycle type). For a given σ ∈ Sn, let ci represent the number of cycles
of length i in the cycle decomposition of σ. Then the n-tuple c = (c1, . . . , cn) is called the
cycle type of σ.

For example, if

σ =

(
1 2 3 4 5 6 7 8
6 8 3 5 7 1 4 2

)
= (3)(16)(28)(457),

then c(σ) = (1, 2, 1, 0, 0, 0, 0, 0). Given an n-tuple a = (a1, . . . , an) of non-negative integers,
we say that a partitions n, and write a ` n, if

∑n
i=1 iai = n.

Theorem 4.2 (Cauchy). For a given a ` n, define N(n,a)
def
= |{σ ∈ Sn : c(σ) = a}|, the

number of permutations in Sn with cycle type a. Then,

N(n,a) = n!

n∏
i=1

(
1

i

)ai 1

ai!
.

Proof. This result can be derived as follows. Given a cycle type a ` n, there are n! ways to
assign the elements of [n] to distinct positions of the following cycle decomposition:

a1︷ ︸︸ ︷
(·), . . . , (·),

a2︷ ︸︸ ︷
(·, ·), . . . , (·, ·),

a3︷ ︸︸ ︷
(·, ·, ·), . . . , (·, ·, ·), . . . .

47
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Some of the n! assignments lead to equivalent permutations. More precisely, for a given cycle,
cyclic permutations of its entries do not change the cycle. For example, (x, y, z), (y, z, x) and
(z, x, y) are the same cycle. Hence, for each cycle of length i, a factor of 1

i comes from the
fact that there are i equivalent ways to write down the cycle. Further, a factor of 1

ai!
comes

from the ai! possible arrangements of the cycles of length i. ut

Now suppose a permutation is randomly drawn from some distribution and let for a ` n.
If σ ∼ Unif{Sn}, then

P(c(σ) = a) =
N(n,a)

n!
=

n∏
i=1

(
1

i

)ai 1

ai!
.

In the θ-biased model of random permutation, for θ > 0, the probability of selecting a

permutation is proportional to θ‖a‖1 , where ‖a‖1
def
=
∑n
i=1 ai corresponds to the total number

of cycles. Under this model,

Pθ(c(σ) = a) =
(θ)
‖a‖1

(θ)n↑
N(n,a) =

n!(θ)
‖a‖1

(θ)n↑

n∏
i=1

(
1

i

)ai 1

ai!
. (4.1)

When θ is large, permutations with many small cycles are more likely. Conversely, when θ
is small, permutations with fewer, large cycles are more likely. Note that a1 ∈ {0, 1, . . . , n},
while an ∈ {0, 1}.

As we will see presently, a remarkable fact is that (4.1) is precisely equal to the sampling
probability under the infinite-alleles model.

4.2 The infinite-alleles model and the Ewens sampling formula

As mentioned earlier, in the infinite-alleles model of mutation, each mutation gives rise to a
new allele that has never been seen before. This can be modeled mathematically as follows.
Every time a mutation occurs, we label it by a new random number drawn from Unif[0, 1].
We label each leaf by the label of the most recent mutation encountered when the ancestral
lineage of the leaf is followed backward in time. See Figure 4.1 for an illustration. The leaf
labels represent observed allelic types. Given two alleles, we can tell whether they are the
same or not, but not how distantly they are related.

The configuration of a sample of size n is specified by an n-tuple a = (a1, . . . , an) ` n,
where ai denotes the number of allelic types that appear exactly i times in the sample. For
the example illustrated in Figure 4.1, a = (4, 1, 0, 0, 0, 0) since four alleles appear once and
one appears twice.

Definition 4.3. Let a = (a1, . . . , an) ` n denote a sample configuration.

1. The sample size is denoted |a| =
n∑
i=1

iai = n.

2. The number of distinct allele types observed is obtained by taking the 1-norm of a:

‖a‖1 =

n∑
i=1

|ai| =
n∑
i=1

ai,
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U1

U2

U3

U4

U5

U6 U7

U4 U6 U7 U3 U5U5

Fig. 4.1: A coalescent tree for a sample of size 6 under the infinite-alleles model of mutation.
Each “×” indicates a mutation that gives rise to a new allele. Each leaf is assigned the label
of the most recent mutation encountered when the ancestral lineage of the leaf is followed
backward in time.

where the second equality follows from the fact that the ai are non-negative.
3. For a sample of size n, the probability of observing a sample configuration a under the

infinite-alleles model is denoted by pθn. For all given θ > 0 and n ∈ N, the sampling
probability distribution is normalized as∑

a:a`n

pθn(a) = 1.

4. The unit n-vector consisting of a 1 in the ith position and a 0 elsewhere is denoted

ei = (0, . . . , 0, 1, 0, . . . , 0).

We aim to show that the formula (4.1) for the θ-biased random permutation model
coincides with the sampling formula for the infinite-alleles model. First, we prove that the
sampling formula pθn satisfies the following recursion relation:

Theorem 4.4 (Probability recursion for an unordered sample). Let a ` n be a
sample configuration with sample size n. Then, under the infinite-alleles model, the sampling
probability at stationary satisfies the following recursion:

pθn(a) =
θ

n− 1 + θ

a1

n
pθn(a) +

n∑
j=2

j(aj + 1)

n
pθn(a− e1 − ej−1 + ej)


+

n− 1

n− 1 + θ

n−1∑
j=1

j(aj + 1)

n− 1
pθn−1(a− ej+1 + ej), (4.2)

with boundary conditions pθ1(e1) = 1 and pθn(b) = 0 if bi < 0 for any i.
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j − 1

Event E

No mutations

j − 1

Event E

No mutations

Event E

(a) (b) (c)

Fig. 4.2: Illustration of possible first events. (a) A mutation occurred in an ancestor that
belonged to a 1-class. (b) A a mutation occurred in an ancestor that belonged to a j-class.
(c) An ancestor in a j-class reproduced.

Note that the right hand side contains terms corresponding to mutation events (the first
line) and coalescence events (the second line). The sample size stays the same in the former
case, whereas the sample size decreases by one in the latter case.

Proof. The basic idea underlying the proof is to condition on the first event back in time.
Let F denote the set of all possible types of the first event. Then,

pθn(a) =
∑
E∈F

P(a|E) P(E).

Given the type of the first event, we then find the conditional probability of obtaining the
configuration a. For this reason, the method is sometimes referred to as the “backward-
forward” argument.

Let b denote the sample configuration immediately after (going backwards in time) the
event E. Then,

pθn(a) =
∑
E∈F

∑
b

P(a|b, E) P(b|E) P(E).

As further detailed below, only certain configurations b will have non-zero forward proba-
bilities pθn(a|b, E). First, we note that P(E) is simple to compute:

1. If the first event E back in time is a mutation event, then P(E) = θ
θ+n−1 .

2. If the first event E back in time is a coalescence event, then P(E) = n−1
θ+n−1 .

We expand upon these two cases below.

Case 1 (E is a mutation event): Going forward in time, suppose a mutation occurred in an
ancestor that belonged to a j-class (i.e., an allele type seen j times), where 1 ≤ j ≤ n. If
j = 1 (as illustrated in Figure 4.2a), then b = a and

P(a | b, E) =
b1
n

=
a1

n
.

If j > 1 (as illustrated in Figure 4.2b), then b = a− e1 − ej−1 + ej and

P(a | b, E) =
jbj
n

=
j(aj + 1)

n
.
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At stationarity, P(b|E) = pθn(b). Combining the above factors, we obtain the first line of
(4.2).

Case 2 (E is a coalescence event): Suppose an ancestor in a j-class of b reproduced, where
1 ≤ j ≤ n− 1 (equivalently, two members of a (j + 1)-class of a coalesced), as illustrated in
Figure 4.2c. Then b = a − ej+1 + ej and |b| = n − 1. Since all ancestors are equally likely
to reproduce, we have

P(a | b, E) =
jbj
n− 1

=
j(aj + 1)

n− 1
.

At stationarity, P(b|E) = pθn−1(b). Summing over j gives the second line of (4.2). ut

The following closed-form sampling formula for the infinite-alleles model was first ob-
tained by Ewens (1972) and later proved by Karlin and McGregor (1972):

Theorem 4.5 (Ewens Sampling Formula (ESF)). Suppose a ` n is a sample configu-
ration with sample size |a| = n. Then, at stationarity,

ESFθ(a)
def
= pθn(a) =

n!θ‖a‖1

(θ)n↑

n∏
i=1

(
1

i

)ai 1

ai!
. (4.3)

Proof. This result can be proved by double induction on |a| and ‖a‖1 using the recursion
(4.2) in Theorem 4.4. The details are left as an exercise. ut

As mentioned earlier, this sampling formula for the infinite-allele model is the same as the
sampling formula Pθ(c(σ) = a) in (4.1) for the θ-based random permutation model.

4.3 The coalescent with killing

Consider a sequential sampling scheme in which we draw alleles one at a time from the
population. Label the first allele by A1. In the ith draw, if the observed allele is the same as
one of the first i− 1 alleles, label it by that allele label. Otherwise, give it a new label; Ak
denotes the kth distinct allele type observed. Repeat until the sample size is n and define
the following notation:

• Let K denote the number of distinct alleles observed in the sample.
• Let ni denote the number of times that allele type Ai is observed, and define n =

(n1, . . . , nK).

This sequential sampling induces a unique partition {B1, . . . , BK} of [n], where i ∈ Bk if
and only if the ith allele drawn is type Ak.

Consider the following example with K = 4 and n = (3, 1, 2, 1):

i : 1 2 3 4 5 6 7
ith allele : A1 A2 A1 A3 A1 A3 A4

The partition corresponding this ordered sample is

{{1, 3, 5}, {2}, {4, 6}, {7}}.
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Under the infinite-alleles model, what is the probability of observing a particular partition
of [n]? To answer this question, we introduce the ordered sampling probability qθn(n), which
denotes the probability of an ordered sample with configuration n. It it left as a simple
exercise to show the following lemma:

Lemma 4.6. Given an ordered sample with configuration n = (n1, . . . , nK), let a ` n with
‖a‖1 = K be the corresponding unordered sample configuration. (Note that a is completely
determined by n.) Then,

pθn(a) =

[
n∏
j=1

1

aj !

](
n

n1, . . . , nK

)
qθn(n).

Genealogically, an ordered sample corresponds to choosing a particular assignment of the
alleles in a sample to the leaf labels 1, . . . , n, while the probability of an unordered sample
sums over all inequivalent such assignments. In general it is more convenient to work with an
ordered sample than an unordered one. For the infinite-alleles model, this aspect is clearly
illustrated by the following recursion for qθn(n), which is much simpler than the recursion
(4.2) satisfied by pθn(a):

Theorem 4.7 (Probability recursion for an ordered sample). The ordered sampling
probability qθn satisfies the following recursion:

qθn(n) =
θ

n− 1 + θ

K∑
i=1

δni,1
n

qθn−1(n− ei) +
n− 1

n− 1 + θ

K∑
i=1

ni(ni − 1)

n(n− 1)
qθn−1(n− ei), (4.4)

with boundary conditions q1(ei) = 1 for all i ∈ [K].

Proof. This recursion can be proved using Theorem 4.4 and Lemma 4.6. A simpler strategy
is to construct a recursion directly for qθn(n), by following a similar line of argument as
in the proof of Theorem 4.4, adapted for an ordered sample. For example, suppose the
sample is ordered such that allele i appears before allele j if i < j. In the second term of
(4.4), the factor ni−1

n−1 corresponds to the probability that type i branches given that there
is a branching, while the factor ni

n corresponds to the probability of inserting the newborn
(which is of allele type i) into the ordered sample of size n− 1 with ni − 1 copies of type i,
such that the ordering convention still holds after the insertion (i.e., allele i appears before
allele j if i < j). ut

Using Theorem 4.5 and Lemma 4.6, one can obtain the following formula for the ordered
sampling probability:

Theorem 4.8 (Ordered ESF). For an ordered sample with configuration n = (n1, . . . , nK)
and sample size n =

∑
i ni,

qθn(n) =
θK

(θ)n↑

K∏
i=1

(ni − 1)!.

The recursion (4.4) for the ordered sampling probability is strictly recursive in the sample
size since we only have qθn−1 terms appearing on the right hand side. This suggests that we
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1 2 3 4 5 6 7

Fig. 4.3: Illustration of a sample path from the coalescent with killing. The partition of [7]
induced by this realization is {{1, 2}, {3}, {4, 5, 6}, {7}}. There are two 1-leaved subtrees,
one 2-leaved subtree, and one 3-leaved subtree, so a = (2, 1, 1, 0, 0, 0, 0).

can define a simpler stochastic process in which a lineage is lost whenever either a mutation
or a coalescence occurs. More precisely, (4.4) implies that such a stochastic process should
follow the dynamics described below:

Definition 4.9 (The Coalescent with Killing). The coalescent with killing for a sample
of size n starts with n leaves. Then, for k = n, n− 1, . . . , 2, 1,

1. Draw a waiting time Tk ∼ Exp
[(
k
2

)
+ k θ2

]
.

2. After time Tk since the last event, the next event is chosen as follows.

a. With probability θ
k−1+θ , kill a lineage chosen uniformly at random due to a mutation.

b. With probability k−1
k−1+θ , merge two lineages chosen uniformly at random.

See Figure 4.3 for an illustration of the process. The coalescent with killing gives rise to a
forest of subtrees, where each mutation event leads to a subtree. Further, the forest defines
a partition of [n], with the leaves of each subtree defining a block of the partition. It follows
from Theorem 4.8 that the probability distribution of such a random partition is given by:

Theorem 4.10. Let Πn denote a random partition of [n] induced by the coalescent with
killing for n leaves. For π = {B1, . . . , BK} ∈ P[n],

PθCK(Πn = π) =
θK

(θ)n↑

K∏
i=1

(|Bi| − 1)!.

Further, let Λn,i denote the number of blocks of size i in Πn, and define Λn =
(Λn,1, Λn,2, . . . , Λn,n). Then, given a ` n,

PθCK(Λn = a) =
n!θ‖a‖1

(θ)n↑

n∏
i=1

(
1

i

)ai 1

ai!
= ESFθ(a). (4.5)
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4.4 Ancestral process under the coalescent with killing

Consider the ancestral process {Aθn(t), t ≥ 0} for the coalescent with killing, where Aθn(t) ∈
{0, 1, . . . , n} denotes the number of surviving lineages at time t. Because of the killing due
to mutation, limt→∞Aθn(t) = 0 almost surely. By finding a spectral decomposition of the
generator for this process, Tavaré (1984) obtained the following result:

Theorem 4.11 (Tavaré 1984). For θ > 0, the ancestral process for the coalescent with
killing has the following distribution:

PθCK(Aθn(t) = j) =



n∑
k=1

e−[(k2)+ kθ
2 ]t (−1)k−j(2k + θ + 1)(j + θ)(k−1)↑(n)k↓

j!(k − j)!(n+ θ)k↑
, if 1 ≤ j ≤ n,

1 +

n∑
k=1

e−[(k2)+ kθ
2 ]t (−1)k(2k + θ + 1)(θ)(k−1)↑(n)k↓

k!(n+ θ)k↑
, if j = 0.

The above result reduces to (1.6) as θ → 0. Similarly, Theorem 1.8 can be generalized as
follows:

Theorem 4.12. The jth factorial moment of Aθn(t) is given by

E
[
(Aθn(t))j↓

]
=

n∑
k=j

e−[(k2)+ kθ
2 ]t(2k + θ − 1)

(
k − 1

j − 1

)
(θ + k)(j−1)↑(n)k↓

(n+ θ)k↑
.

4.5 Hoppe’s urn model

In the coalescent with killing, a lineage is lost whenever either a mutation or a coalescence
occurs. We can think of this as the sample size decreasing by one. Let Λn → Λn−1 → · · · →
Λ1 denote a random sequence of unordered sample configurations encountered by going
backwards in time under the coalescent with killing. We will be interested in a sequence
of this kind when we discuss importance sampling later on: Given Λn = a, where a ` n
denotes observed sample configuration, we want to sample a configuration Λn−1 one event
back in time from the posterior distribution, and iterate this procedure until arriving at
Λ1 = e1.

The above sequence is a Markov chain, but its transition probability is not immediately
obvious. However, by reversing the time direction of the coalescent with killing, we obtain a
forward-in-time Markov chain for which the transition probability is simple to write down.
This process can be formulated as a Pólya-like urn model (sampling with replacement), due
to Hoppe (1984), in which the urn contains balls of mass either θ or 1. The urn starts with
a single black ball of mass θ, and one draws and replaces balls in the urn as follows.

1. Draw a ball X from the urn with probability proportional to the mass of the ball.

a. If X is black, return it together with a ball of a new color with mass 1.
b. If X is not black, return it together with a ball of the same color as X, also with

mass 1.
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2. Repeat sampling n times.

Note that the number of distinct colors (aside from black) in the urn after the urn process
has been finished is the number of times that the black ball of mass θ is drawn. Let Γn,i
denote the number of colors, discounting the black θ-ball, represented i times in the urn
upon n draws, and let Γ n = (Γn,1, Γn,2, . . . , Γn,n). Then, one can easily show the following
result on transition probability:

Lemma 4.13. For b ` (k+1) and a ` k, the transition probability under Hoppe’s urn model
is given by

PθH(Γ k+1 = b | Γ k = a) =


θ
k+θ , if b = (a+ e1, 0),
iai
k+θ , if b = (a− ei + ei+1, 0), for i = 1, . . . , k − 1,
k
k+θ , if b = ek+1 and a = ek,

0, otherwise.

.

(Here, (a+ e1, 0) means concatenating a 0 to the k-tuple a+ e1 to obtain a (k + 1)-tuple;
(a− ei + ei+1, 0) is similarly defined. )

Hoppe (1984) proved the following result:

Theorem 4.14 (Hoppe 1984). For a given partition a ` n, the probability distribution
PθH under the above urn model satisfies

PθH(Γ n = a) = ESFθ(a),

where ESFθ(a) is defined in (4.3).

By construction, the forward-in-time transition probability under the coalescent with
killing is the same as the transition probability in Hoppe’s urn model:

Proposition 4.15. The forward-direction process Λ1 → Λ2 → · · · → Λn under the coales-
cent with killing is a Markov chain. Furthermore, the transition probability for this process
is equivalent to that of Hoppe’s urn model; i.e.,

PθCK(Λk+1 = b | Λk = a) = PθH(Γ k+1 = b | Γ k = a).

The reverse transition probability PθCK(Λk = a | Λk+1 = b) for the coalescent with killing
can then be computed using Bayes’ rule, together with Proposition 4.15 and equation (4.5).

PθCK(Λk = a | Λk+1 = b) =


b1
k+1 , if b = (a+ e1, 0),
ibi
k+1 , if b = (a− ei−1 + ei, 0), for i = 2, . . . , k,

1, if b = ek+1 and a = ek,

0, otherwise.

(4.6)

Note that this reverse transition probability does not depend on the mutation rate. Fur-
thermore, it implies that, given Λk+1 = b, a configuration Λk one event back in time can
be sampled from the correct posterior distribution by picking an allele in b uniformly at
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random and removing it. (If the chosen allele is a singleton, then it gets killed by a mutation
event. If it has copy number greater than one, then it coalesces with another allele of the
same type.

4.6 Chinese Restaurant Process

If you were asked to implement an algorithm to sample a random permutation from Sn,
how would you do it? Enumerating all possible permutations is out of question for even a
moderate n, since |Sn| = n! would be a very large number (e.g., for n = 20, n! > 2.4×1018).
As we will see below, the Chinese Restaurant Process (CRP) can be used to generate a θ-
biased random permutation in O(n) time. It was first considered by Aldous (1985) and
then later in population genetics by Joyce and Tavaré (1987). The latter rephrased CRP as
Hoppe’s Urn model plus some extra bookkeeping. Imagine a restaurant with infinitely many
tables and n customers who are lined up outside the door in order, with 1 first in line. The
customers enter the restaurant one at a time and seat themselves as follows:

1. The kth customer chooses to do the following:

a. with probability θ
k−1+θ , she starts a new table, or

b. with probability 1
k−1+θ , she sits to the left of a particular person already seated.

2. After all the customers have been seated, each non-empty table defines a cycle and the
collection of all non-empty tables defines a random permutation of [n].

Example 4.16. Suppose there are six customers who sit down as follows:

• 1 sits at table 1.
• 2 sits at table 2.
• 3 sits to the left of 1.
• 4 sits to the left of 2.
• 5 sites to the left of 2.
• 6 sits at table 3.

Then the resulting permutation is (13)(254)(6).

Below we relate the CRP with the infinite alleles model.

Theorem 4.17. In the CRP, the probability of generating a permutation σ ∈ Sn is

PθCRP(σ) =
θk

(θ)n↑
,

where k is the number of cycles in σ.

Proof. Each new cycle requires that someone starts a new table, so k tables are started.
Therefore,

PθCRP(σ) = θk
n∏
i=1

1

i− 1 + θ
=

θk

(θ)n↑
,

which is the desired result. ut
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Theorem 4.18. Let Ωn = (Ωn,1, Ωn,2, . . . , Ωn,n), where Ωn,i denotes the number of cycles
of length i in a CRP-generated random permutation of [n]. Let PθCRP denote the probability
distribution under the CRP. Then, for every partition a ` n,

PθCRP(Ωn = a) = PθCK(Λn = a).

Proof. We know from earlier that PθCK(Λn = a) = ESFθ(a). For CRP,

PθCRP(Ωn = a) =
∑

σ:c(σ)=a

PθCRP(σ)

= |{σ ∈ Sn | Ωn(σ) = a}| · θk

(θ)n↑

= ESFθ(a).

In summary, PθCRP(Ωn = a) = ESFθ(a) = PθCK(Λn = a). ut

We end this section with the following result by Goncharov on the distribution of wn,j :

Theorem 4.19 (Goncharov 1944). Consider the CRP with θ = 1 for sampling a permu-
tation in Sn under the uniform distribution. Then, for j ∈ [n],

PθCRP(Ωn,j = w) =
1

jww!

bn/jc−w∑
l=0

(−1)l
1

jll!
.

4.7 The number of distinct allele types

Given a permutation σ ∈ Sn, recall that c(σ) = (c1, . . . , cn) denotes the cycle type of σ,
with cj being the number of cycles of length j in σ. Let Kn(σ) = ‖c(σ)‖1 denote the total
number of cycles in σ. We will prove the following convergence result for the function Kn:

Theorem 4.20. For all θ-biased random permutation models with θ > 0,

Kn − E(Kn)√
Var(Kn)

d−→ N(0, 1) as n→∞.

So far we learned that the coalescent under the infinite-alleles model of mutation is
equivalent to the coalescent with killing. Furthermore, we learned that the coalescent with
killing is related to the Chinese Restaurant Process (CRP), which is a model for generating
θ-biased permutations. We will prove Theorem 4.20 by utilizing this connection between the
θ-biased random permutation model and the infinite-alleles model with mutation rate θ/2.
We will also obtain closed-form formulas for E(Kn) and Var(Kn).

The distribution of Kn can be found in closed form:

Theorem 4.21. Suppose a ` n. For all k ∈ [n],

P(Kn = k | θ) =
θk

(θ)n↑
|s(n, k)|,
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where |s(n, k)| = |{σ ∈ Sn : σ has k cycles}| are unsigned Stirling numbers of the first kind.

Proof. There are at least two ways to prove this result. The first one is far easier, but it is
hard to use when trying to calculate E(Kn). The second one invokes intuition that will pay
off in later calculations.

Method 1 : Calculate P(Kn = k|θ) directly by marginalizing over the ESF.

P(Kn = k | θ) =
∑

a:a`n,‖a‖1=k

ESFθ(a) =
θk

(θ)n↑

∑
a:a`n,‖a‖1=k

N(n,a) =
θk

(θ)n↑
|s(n, k)|.

The last equality follows from the definition of |s(n, k)|.

Method 2 : In the coalescent with killing, let Ij be the indicator variable defined as

Ij =

{
1, if the jth event is a killing by mutation,

0, if the jth event is a coalescence.

Then, Kn = I1 + I2 + · · · + In. These indicator variables are independent (though not
identically distributed) random variables, so the probability generating function GKn(z) of
Kn can be obtained by multiplying the probability generating functions of Ij , which are
given by

GIj (z) = P(Ij = 0) + P(Ij = 1)z.

Clearly P(In = 1) = 1, since the last lineage is always killed by mutation (i.e., there is no
other lineage to coalesce with). For 1 ≤ j ≤ n− 1, we have P(Ij = 1) = θ

n−j+θ , which gives

GIj (z) =
n− j

n− j + θ
+

θ

n− j + θ
z =

n− j + θz

n− j + θ
.

Therefore,

GKn(z) =

n∏
j=1

GIj (z) =

∏n
j=1(n− j + θz)∏n
j=1(n− j + θ)

=
(θz)n↑
(θ)n↑

.

Now, letting x = θz in the combinatorial identity

(x)n↑ =

n∑
k=1

(−1)n−ks(n, k)xk =

n∑
k=1

|s(n, k)|xk

and recalling the definition GKn(z) =
∑n
k=1 P(Kn = k|θ)zk, we can match coefficients to

obtain P(Kn = k|θ) = θk

(θ)n↑
|s(n, k)|. ut

In the above proof, Method 2 is harder than Method 1 for deriving the distribution of Kn,
but it is much more powerful. For example, by the linearity of expectation, we immediately
obtain,

E(Kn) =

n∑
j=1

E(Ij) = 1 +

n−1∑
j=1

θ

j + θ
. (4.7)
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Further, since I1, . . . , In are independent, we obtain

Var(Kn) =

n∑
j=1

Var(Ij) =

n∑
j=1

[
θ

n− j + θ
−
(

θ

n− j + θ

)2
]

= θ

n−1∑
j=1

j

(j + θ)2
.

Lastly, Theorem 4.20 can be proved by applying the Lyapunov Central Limit Theorem
(Billingsley, 2008, Chapter 27) to I1 + · · ·+ In as n→∞.

4.8 A sufficient statistic for θ

In the coalescent with killing, the conditional distribution of block structure given the num-
ber of distinct alleles does not depend on the mutation rate:

PθCK(Λn = a | Kn = k) =
n!

|s(n, k)|

n∏
j=1

1

jajaj !
.

Therefore, Kn is a sufficient statistic for θ and the maximum likelihood estimate θ̂ of θ can
be found from L(θ) = P(Kn = k | θ):

∂

∂θ
logL(θ) = 0 =⇒ k = 1 +

n−1∑
j=1

θ̂

j + θ̂
.

Comparing this with (4.7), we see that the maximum likelihood estimate (MLE) of θ is
equal to the moment estimate.

4.9 Population-wide distribution of allele frequencies

In the remainder of this chapter, we will discuss the population-wide distribution associated
with the Ewens sampling formula. Consider a population of N individuals evolving under
some discrete-time model, such as the Wright-Fisher model, with some mutation matrix on
K alleles. Assuming equilibrium has been reached, take a random sample of size n from the
population. Then for several such discrete-models, it has been shown that as the population
size N and the number of alleles K go to ∞ while keeping the population-scaled mutation
rate θ fixed, the probability distribution of the allelic configuration in the sample converges
to that described by the Ewens sampling formula.

Suppose the alleles in a population of size N were labeled from 1 to K, with frequencies
X1, . . . , XK , where 0 < Xk < 1 and

K∑
k=1

Xk = 1.

Kingman was interested in characterizing the limiting distribution of these population fre-
quencies given that the Ewens sampling formula holds in the limit. In particular, Kingman
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(1977) showed that the joint distribution of the decreasing order statistics of the allele fre-
quencies, {X(k)}, converges to a Poisson-Dirichlet distribution parameterized by θ if and
only if the allele frequencies generate the Ewens sampling formula in the limit of N and K
going to ∞.

In what follows, we will describe some of these connections between the Ewens sampling
formula and the Poisson-Dirichlet distribution, and in particular, to prove a special case of
Kingman’s result. We begin with some definitions.

4.9.1 Size-biased representation, stick breaking process, and the
GEM distribution

Consider an infinite population with countably infinite number of alleles labeled by N, where
Xk is the frequency of allele k in the population, 0 < Xk < 1 for all k and

∞∑
k=1

Xk = 1.

Sequentially sample n alleles according to the frequencies {Xk}, and let αi be the ith allele
drawn. Conditional on the population frequencies {Xk}, the random variables α1, . . . , αn
are i.i.d. where

P(αi = j | {Xk}) = Xj .

Let Kn be the number of distinct alleles in the sequence of alleles α1, . . . , αn, and let
d1, . . . , dKn be the distinct alleles in the order in which they first appear in the sequence
α1, . . . , αn. Note that alleles with higher frequencies are more likely to be sampled first.

Example 4.22. Let n = 10 and α1, . . . , αn = 2, 4, 1, 2, 2, 5, 10, 4, 1, 2. Then, Kn = 5 and
d1, . . . , d5 = 2, 4, 1, 5, 10.

Definition 4.23 (Size-biased representation). Taking the sample size n → ∞, the in-
finite sequence {Xdi} is called the size-biased representation of the infinite sequence {Xk}.
We can also call the permutation over N defined by the map i 7→ di as the size-biased
permutation generated by the sequence {Xk}.

We now describe the so-called stick breaking process for generating a random measure
over N. Consider the infinite sequence of independent and identically distributed random
variables {Rk}, where Rk ∼ Beta(1, θ). These random variables correspond to a sequence
of “residual fractions” in the stick breaking process. The probability density function of Rk
is given by

fRk(x) = θ(1− x)θ−1,

where 0 < x < 1 and θ > 0. Define the sequence of random variables {Xk} inductively as:

X1 = R1,

Xk = (1−X1 − · · · −Xk−1)Rk, for k > 1.

Pictorially, you can think of a stick of length 1, which is broken up into infinitely many
pieces with lengths given by {Xk}. The first piece has length distributed as Beta(1, θ) of the
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Fig. 4.4: Probability density function of Beta(1, θ)

stick length, the second piece has length distributed as a Beta(1, θ) fraction of the remaining
length of the stick, and so on, ad infinitum.

For θ � 1, most of the mass of the Beta(1, θ) distribution is concentrated near 1 (Fig-
ure 4.4a), and we expect to see one long piece with rest being very short. For θ � 1,
Beta(1, θ) is concentrated near 0, and we expect to see several pieces of roughly equal
length (Figure 4.4b) taking up most of the stick length.

Definition 4.24 (GEM distribution). The joint distribution of the sequence of random
variables {Xk} generated by the stick breaking process with parameter θ is called GEM(θ).

The GEM distribution is named after Griffiths (1979), Engen (1978) and McCloskey
(1965), who made connections between this distribution and population genetics and ecology.
In fact, the following theorem establishes how it is related to the infinite alleles model:

Theorem 4.25. Take a sample of size n from a population with infinitely many alleles
of which frequencies are given by an infinite sequence {Xk} distributed as the GEM(θ)
distribution. Let Cn,i be the number of alleles represented i times in the sample, and Cn =
(Cn,1, Cn,2, . . . , Cn,n). Then,

P(Cn = a) = ESFθ(a).

Remark 4.26. Here are some useful facts about the GEM distribution.

1. Since the residual fractions {Rk} are independent in the stick breaking construction, it
is easy to see that

E[Xj ] =
1

1 + θ

(
θ

1 + θ

)j−1

,

which is a decreasing function of j for all θ > 0.
2. The GEM distribution is invariant under size-biased permutations. More precisely, if
{Xk} is drawn from GEM(θ), then {Xdk} is also distributed as GEM(θ), where {dk} is
a size-biased random permutation generated by {Xk}.

3. Let X(1) > X(2) > · · · denote the decreasing order statistics of X1, X2, . . .; i.e., X(j) is
the jth largest element of {Xk}. Then, the sequence {X(k)} follows the so-called Poisson-
Dirichlet distribution with parameter θ, defined below.
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4.9.2 Poisson-Dirichlet point process

Definition 4.27 (Poisson-Dirichlet point process and distribution). Let {Yk} be a

non-homogeneous Poisson point process on R+ with intensity measure density θe−y

y for y > 0

and θ > 0. This is called the Poisson-Dirichlet point process with parameter θ. Let {Y(k)}
be the decreasing order statistics of {Yk} (i.e., Y(1) > Y(2) > · · · ) and let Y =

∑∞
k=1 Yk.

Define X(k) = Y(k)/Y . The law of the sequence of random variables {X(k)} is called the
Poisson-Dirichlet distribution with parameter θ, denoted by PD(θ).

Note that the intensity measure density θe−y

y blows up as y → 0, so there is an accumu-
lation of points near 0. However, the density vanishes as y → ∞, and the decreasing order
statistics {Y(k)} in Definition 4.27 exist because the intensity measure of any interval (a, b)

for 0 < a < b is finite. In particular,
∫∞
a

θe−y

y dy <∞.

We will see below that Y ∼ Gamma(θ, 1), i.e., the probability density function of Y is
given by

fY (y) =
yθ−1e−y

Γ (θ)
,

and that Y is independent of {X(k)}.

4.9.3 Probability generating functional

Here, we take a slight detour to discuss a useful result regarding Poisson point processes,
which we will employ in the next section to prove Kingman’s result mentioned in Chapter 4.9.
Recall that the probability generating function of a random variable Y is given by

GY (z) = E[zY ].

For example, for Y ∼ Poisson(λ),

GY (z) = eλ(z−1). (4.8)

This definition can be extended to d random variables Y = (Y1, . . . , Yd) as

GY (z) = GY (z1, . . . , zd) = E

[
d∏
i=1

zYii

]
.

However, when working with a point process such as a Poisson point process on R+, we have
one random variable per point, and the number of these random variables itself is random.
In this case, we can define a generalization called the probability generating functional. For
a Poisson point process {N(y), y > 0}, where N(y) denotes the total number of points in
(0, y], it is defined as

G[f ] = E
[
exp

(∫
R+

log f(y)dN(y)

)]
, (4.9)
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where f is assumed to be some smooth function of y which is different from 1 only on some
bounded subset of R+. Let {Yi} denote the coordinates of the random points in the Poisson
point process. Then, since N(y) is a step function, the integral in (4.9) can be replaced with∑
i log f(Yi), thus yielding

G[f ] = E

[∏
i

f(Yi)

]
. (4.10)

The aforementioned restriction on f ensures that (4.10) converges. If the intensity measure
density of the Poisson point process is ρ(y), then by conditioning on the number of points
and using the tower rule, one can show that

G[f ] = exp

(∫
R+

ρ(y)[f(y)− 1]dy

)
. (4.11)

Note the similarity with (4.8). A derivation of (4.11) from (4.9) can be found in Section 2.7 of
Cox and Isham (1980). The probability generating functional uniquely determines a Poisson
point process, and we will use this fact in the next section.

4.9.4 Limit of a symmetric mutation model with K alleles

We will now prove a special case of Kingman’s result described in Chapter 4.9. We can
take a symmetric K-alleles mutation model and let K go to infinity in order to create an
infinite alleles model, whose sampling probability is given by Ewens sampling formula. We
will show that the decreasing order statistics of the allele frequencies in the K-alleles model
with mutation rate θ/2 converges to the Poisson-Dirichlet distribution PD(θ) as K →∞.

Consider the K-allele parent-independent mutation model, with mutation rate θ/2 and
mutation matrix entries Pij = πj . Then, as we will discuss in Chapter 6, at stationarity the
population-wide allele frequencies X1, . . . , XK are distributed as

(X1, . . . , XK) ∼ Dirichlet(θπ1, . . . , θπK).

Now set πi = 1/K for all i, so that

(X1, . . . , XK) ∼ Dirichlet

(
θ

K
, . . . ,

θ

K

)
.

We would like to take K → ∞ and show that the joint distribution of the decreasing
order statistics of X1, . . . , XK converges to PD(θ). However X1, . . . , XK are not independent
random variables (in particular, X1 + · · · + XK = 1) and this might be hard to do. To
circumvent this, we use the following theorem about the connection between the Gamma
and Dirichlet distributions.

Theorem 4.28. Let Ui ∼ Gamma(ri, λ), for i = 1, . . . ,K, be independent random variables,
where ri and λ are shape and scale parameters, respectively. Then, if we define U = U1 +
· · ·+ UK and Vi = Ui/U , it follows that
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U ∼ Gamma(r1 + · · ·+ rk, λ),

(V1, . . . , VK) ∼ Dirichlet(r1, . . . , rk),

and U is independent of (V1, . . . , VK).

Let Y1, . . . , YK be i.i.d. random variables distributed as Gamma( θK , 1). Then, from Theo-
rem 4.28, it follows that Y = Y1 + · · ·+YK is distributed as Gamma(θ, 1) and is independent
of Y1

Y , . . . ,
YK
Y . Moreover, (

Y1

Y
, . . . ,

YK
Y

)
d
= (X1, . . . , XK).

Hence, to show that the distribution of the decreasing order statistics of (X1, . . . , XK)
converges to PD(θ), it suffices to show that as K → ∞, Y1, . . . , YK look like points drawn
from the Poisson-Dirichlet process.

If we treat the random variables Y1, . . . , YK as points realized from a point process, then
using (4.10), we have

GK [f ] = E

[
K∏
i=1

f(Yi)

]

=

(∫ ∞
0

f(y)
e−yy

θ
K−1

Γ ( θK )
dy

)K

=

(
1 +

1

K

∫ ∞
0

[f(y)− 1]
θe−yy

θ
K−1

Γ ( θK + 1)
dy

)K
−−−−→
K→∞

exp

(∫ ∞
0

[f(y)− 1)]
θe−y

y
dy

)
.

For the Poisson-Dirichlet process with parameter θ, from Definition 4.27 and (4.11), we
know that its probability generating functional is given by

G[f ] = exp

(∫ ∞
0

(f(y)− 1)
θe−y

y
dy

)
,

which is identical to (4.9.4). Since the probability generating functional completely char-
acterizes a Poisson point process, we get that in the limit as K → ∞, the sequence {Yi}
converges to a Poisson-Dirichlet process with parameter θ, and hence the distribution of the
decreasing order statistics of (X1, . . . , XK) approaches PD(θ).

Remark 4.29. Let {Xk} be a sequence drawn from GEM(θ), and {X(k)} be the decreasing
order statistics of {Xk}. Then {X(k)} is distributed as PD(θ). This can be directly seen
from Kingman’s characterization of the Ewens sampling formula (Kingman, 1977), since by
Theorem 4.25, we know that drawing population frequencies according to GEM(θ) generates
Ewens sampling formula.
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Chapter 5

Infinite-sites model of mutation

As we saw in the previous chapter, the infinite-alleles model has several interesting con-
nections with other probabilistic models and various closed-form results can be derived.
However, one notable drawback is that there is no notion of closeness between different al-
leles in the infinite-alleles model. That is, given a pair of alleles, we are able to tell whether
they are the same or not, but we cannot say how closely related they are. Hence, this model
is too coarse for describing the pattern of shared mutations in a collection of DNA sequences.
As we will see presently, however, what we learned about the infinite-alleles model in the
previous chapter is still very useful for studying some important properties of more realistic
mutation models. In this chapter, we consider a widely used model called the infinite-sites
model of mutation, in which each genome is assumed to be infinitely long and every mutation
occurs at a unique genomic position that has never mutated previously.

5.1 Model description

As usual, mutations arrive according to a Poisson point process with intensity θ/2 on each
edge independently of all other edges. Similar to the infinite-alleles case discussed in Chap-
ter 4.2, every time a mutation occurs, we label it by a new random number drawn from
Unif[0, 1]. In the infinite-alleles model, each leaf was assigned the label of the most recent
mutation encountered when the ancestral lineage of the leaf is followed backward in time. In
contrast, in the infinite-sites model, each leaf is assigned the unit interval [0, 1] marked by
the mutations encountered in the path from the leaf to the root of the tree. Such a marked
interval assigned to a leaf is referred to as a haplotype. See Figure 5.1 for an illustration.
Since the genomic location of each mutation is drawn independently from Unif([0, 1]), note
that every mutation arises at a unique location almost surely.

Definition 5.1 (Segregating site). A position in the genome is said to be segregating (or
polymorphic) if not every individual in the sample has the same allele. The total number of
segregating sites in a sample of size n is denoted by Sn.

In the example shown in Figure 5.1, n = 6 and Sn = 7. Note that Sn | Ln ∼ Poisson( θ2Ln),
where Ln is the tree length defined in Definition 1.11. Therefore, E(Sn) = E[E(Sn | Ln)] =
E( θ2Ln), which leads to the following result:

67
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Fig. 5.1: Illustration of generating a sample under the infinite-sites model of mutation. (a)
At each mutation event, a random number Ui is drawn from Unif[0, 1]. (b) Each leaf is
assigned the unit interval [0, 1] marked by the mutations encountered in the path from the
leaf to the root of the tree.

Proposition 5.2 (Expected number of segregating sites). For a sample of size n, the
mean number of segregating sites is given by

E(Sn) =
θ

2

n∑
k=2

kE[Tn,k], (5.1)

where Tn,k is the waiting time while there are k lineages.

Under a constant population size, E(Tn,k) = 1

(k2)
and (5.1) simplifies to

E(Sn) = θ

n−1∑
j=1

1

j
.

As we will see below, it will be useful to consider the following quantity:

Definition 5.3 (Unnormalized site frequency spectrum). Let ζn,b denote the number
of segregating sites each with b derived alleles in a sample of n sequences. The vector
(ζn,1, . . . , ζn,n−1) is called the unnormalized site frequency spectrum (SFS).

Note that Sn =
∑n−1
b=1 ζn,b. For the example shown in Figure 5.1, ζ6,1 = 2, ζ6,2 = 3, ζ6,4 = 2,

and ζ6,b = 0 for all other values of b. When there is ambiguity as to which allelic type is
ancestral and which is derived, a “folded” version is often used:

Definition 5.4 (Folded site frequency spectrum). For i ∈ {1, 2, . . . , bn2 c}, we define

ηn,i =
ζn,i + ζn,n−i

1 + δi,n−i
.

Note that the vector (ηn,1, . . . , ηn,bn2 c) is obtained by folding (ζn,1, . . . , ζn,n−1) in half.
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By conditioning on polymorphism, we obtain a normalized version of the SFS:

Definition 5.5 (Normalized Site Frequency Spectrum). Let qn,b denote the condi-
tional probability that, at a particular site, b alleles in a sample of size n are derived alleles,
conditional on the site segregating. The vector (qn,1, . . . , qn,n−1) is called the normalized
site frequency spectrum.

5.2 Connections with the infinite-alleles model

In this section, we apply what we know about the infinite-alleles model to obtain some useful
results for the infinite-sites model.

Proposition 5.6 (Expected number of distinct haplotypes). Let Hn denote the num-
ber of distinct haplotypes in a sample of size n. Then,

E(Hn) = 1 +

n−1∑
j=1

θ

j + θ
. (5.2)

Proof. Note that Hn is equal to Kn in the infinite-alleles model. For example, compare
Figure 5.1 with Figure 4.1. Hence, (5.2) follows from (4.7). ut

Since generating a new haplotype requires a mutation, while not all mutations increase
the number of distinct haplotypes, we have Sn ≥ Hn − 1. Furthermore, note that

E[Sn − (Hn − 1)] = θ2
n−1∑
j=1

1

j(j + θ)
,

which is small if θ is small.

Proposition 5.7 (Expected number of uniquely represented haplotypes). Let Hn,1

denote the number of distinct haplotypes represented exactly once in a sample of size n. Then,

E(Hn,1) =
nθ

n− 1 + θ
. (5.3)

Proof. The easiest way to prove this result is by using the Chinese Restaurant Process and
exchangeability. The probability that the first customer is sitting by themself after all n
customers have seated is(

1− 1

1 + θ

)(
1− 1

2 + θ

)(
1− 1

3 + θ

)
· · ·
(

1− 1

n− 1 + θ

)
=

(
θ

1 + θ

)(
1 + θ

2 + θ

)(
2 + θ

3 + θ

)
· · ·
(
n− 2 + θ

n− 1 + θ

)
=

(
θ

n− 1 + θ

)
,

where the last line follows from telescoping. By exchangeability, the probability that any
customer j ∈ [n] is sitting by themself after all n customers have seated is also

(
θ

n−1+θ

)
.

Then (5.3) follows from Hn,1 =
∑n
j=1 I{j is sitting by themself}. ut
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In the coalescent with killing, call the last one to be killed the ancestral allele. In Fig-
ure 4.3, leaves labeled 4, 5, 6 have the ancestral allele by this definition. Non-ancestral alleles
are called derived (or mutant) alleles.

Theorem 5.8 (Polarized sampling probability). Consider an infinite-alleles model with
mutation rate θ/2, and assume that the ancestral allelic type is known. Suppose a sample
of size n consists of nd derived alleles and n − nd ancestral alleles. Then, the probability
Pθn(nd = b) of observing such a sample is

Pθn(nd = b) =
(n− 1)!

b!

(θ)b↑
(1 + θ)(n−1)↑

.

Proof. We use the duality between Hoppe’s urn model and the infinite-alleles model. The
first draw is the black ball with probability 1. The new ball returned to the urn together with
the black ball is designated as the ancestral type. At step j of the urn model, j−1 non-black
balls have already been placed in the urn, so the total mass in the urn is j − 1 + θ. Suppose

the urn has n
(j−1)
a ancestral balls and n

(j−1)
d mutant balls, where n

(j−1)
a + n

(j−1)
d = j − 1.

Then, the probability of picking the ancestral type is
n(j−1)
a

j−1+θ , while the probability of picking

a mutant (non-ancestral) type or the black ball is
n

(j−1)
d +θ

j−1+θ . Hence, a particular sequence
of draws leading to na ancestral types and nd = n − na mutation types in the urn has
probability

(
∏na−1
i=1 i)[

∏nd−1
j=0 (j + θ)]∏n−1

k=1(k + θ)
. (5.4)

Since there are n−1 draws after the ancestral type is first introduced to the urn and we need
na − 1 of those steps to be drawing an ancestral ball, we obtain

(
n−1
na−1

)
distinct sequences

of draws. Multiplying this combinatorial factor with (5.4) gives the desired result. ut

If the mutation rate is small, we may want to consider a first-order approximation to the
above sampling formula. Doing a Taylor expansion of (5.4) about θ = 0, the probability of

observing b ≥ 1 derived alleles is (n−1)!
b!

(b−1)!
(n−1)!θ +O(θ2), which simplifies to

Pθn(nd = b) =
θ

b
+O(θ2). (5.5)

While this is a nice formula, perhaps there are models of mutation that better describe the
biological scenario of long sequences with low per-base mutation rates. One such a model is
the infinite-sites model of mutation.

Consider now a sample of n sequences, each with L sites at which mutations arise. Assume
that the total mutation rate for the entire region is θ

2 . The n sequences are related by a
single coalescent tree and mutations are placed on that tree as a Poisson point process with
rate θ

2
1
L for each of the L sites according to the infinite alleles model. Note that this is

equivalent to placing mutations on the genealogy at rate θ
2 and then having each mutation

hit one of the L sites uniformly at random. If we take the limit of L→∞, we arrive at the
infinite-sites model of mutation.

We want to compute E(ζn,b), which will illustrate the computational convenience of taking
L to∞. Let n`d denote the number of sequences with a derived allele at site `. Then, we can
see, using (5.5) and summing over all L sites,
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E(ζn,b) =

L∑
`=1

Pθn(n`d = b) =

L∑
`=1

[
θ

L

1

b
+O

(
θ2

L2

)]
=
θ

b
+O

(
θ2

L

)
. (5.6)

In the limit as L→∞, the normalized SFS can be obtained as

qn,b = lim
L→∞

Pθn(nd = b | nd > 0) = lim
L→∞

Pθn(nd = b)

Pθn(nd > 0)
=

1
b∑n−1
j=1

1
j

. (5.7)

5.3 Site frequency spectrum (SFS) under the infinite-sites model

In this section, we obtain more general formulas for the unnormalized and normalized site
frequency spectra under the infinite-sites model. These formulas will hold for arbitrary
population size functions.

Definition 5.9. Let τn,b denote the sum of the lengths of all edges each subtending exactly
b leaves. See Figure 5.2 for an example.

Theorem 5.10. For b ∈ {1, . . . , n− 1},

E(τn,b) =

n∑
k=2

(
n−b−1
k−2

)(
n−1
k−1

) kE(Tn,k). (5.8)

Proof. Note that τn,b be can be decomposed into epochs while there are k lineages:

τn,b =

n∑
k=2

∑
e∈Ek

I{edge e subtends exactly b leaves}Tn,k,

where Ek denotes the set of edges in the epoch while there are k lineages and, as usual,
Tn,k denotes the waiting time while there are k lineages. See Figure 5.2b for an il-
lustration. Now, note that the random variables I{edge e subtends exactly b leaves} and
Tn,k are independent, so E(I{edge e subtends exactly b leaves}Tn,k) can be factorized as
E(I{edge e subtends exactly b leaves}E(Tn,k). Furthermore, from Corollary 2.6, we have

P{edge e subtends exactly b leaves} =

(
n−b−1
k−2

)(
n−1
k−1

) .

Since Ek contains k edges, (5.8) then follows. ut

For b ∈ {1, . . . , n− 1}, since ζn,b|τn,b ∼ Poisson( θ2τn,b), the unnormalized SFS entries are
given by

E(ζn,b) = E(E(ζn,b | τn,b)) =
θ

2
E(τn,b).

For a constant population size, E(Tn,k) = 1/
(
k
2

)
, and plugging this into (5.8) and simplifying

gives E(τn,b) = 2
b , which implies E(ζn,b) = θ

b . This result agrees with the leading order term
in (5.6). Entries of the normalized SFS, for b ∈ {1, . . . , n− 1}, are given by
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l1 l2

l4

l3
l5

l6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) (b)

Fig. 5.2: A coalescent tree with interior edges labeled with their lengths. (a) For this partic-
ular tree, τ8,5 = τ8,6 = τ8,7 = 0, while τ8,2 = l3 + l4 + l6, τ8,3 = l5, τ8,4 = l1 + l2, and τ8,1 =
sum of the lengths of all pendant edges. (b) The same tree sliced by epochs while there are
k lineages, for k = n, n− 1, . . . , 2.

qn,b =
E(ζn,b)∑n−1
j=1 E(ζn,j)

=
E(ζn,b)

E(Sn)
, (5.9)

which agrees with (5.7) in the case of a constant population size.

5.4 A warning on conditioning on the number of segregating sites

Sometimes people simulate sequence data under the coalescent while conditioning on the
number of segregating sites. One should note that the SFS simulated in this way has a
distribution different from qn,b. To illustrate this point, suppose you simulate a random
3-leaved coalescent tree and drop a single mutation on the tree uniformly at random. This
will lead to either a singleton site with one derived allele or a doubleton site with two
derived alleles. Suppose you repeat this experiment many times to estimate the frequency of
observing a doubleton site. What is the result you expect to obtain? In fact, this example is
simple enough to find the exact answer analytically. Given the inter-coalescence times T3,3

and T3,2 of a sampled tree, the conditional probability that the mutation leads to a doubleton
site is T3,2/(3T3,3 + 2T3,2), where the denominator corresponds to the total length of the
tree. Furthermore, since T3,3 and T3,2 are independent when the population size remains
constant over time, E[T3,2/(3T3,3 + 2T3,2)] can be easily evaluated as

E
[

T3,2

3T3,3 + 2T3,2

]
=

∫ ∞
0

∫ ∞
0

t2
3t3 + 2t2

3e−3t3e−t2dt3dt2 = 1− log 2 ≈ 0.307. (5.10)

In contrast, we know from (5.7) that q3,2 = 1/3 ≈ 0.333. The key difference is that, as can
be seen in (5.9), qn,b is a ratio of the expectations E[T3,2] and E[3T3,3 + 2T3,2], while (5.10)

is an expectation of the ratio
T3,2

3T3,3+2T3,2
.
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5.5 The age of a mutation

We present here a general result concerning the age of a mutation under the infinite-sites
model, first obtained by Griffiths and Tavaré (1998).

Theorem 5.11 (The age of a mutation). Assume the infinite-sites model of mutation,
and let Mn,b denote the event that a site is segregating with b mutant alleles and n − b
ancestral alleles. Let A denote the age of the corresponding mutation (i.e., how long back in
time it arose). Then,

E(A | Mn,b) =

∑n
k=2 kpn,k(b)E[Tn,k( 1

2Tn,k + Tn,k+1 + · · ·+ Tn,n)]∑n
j=2 jpn,j(b)E(Tn,j)

, (5.11)

where pn,k(b) is defined as

pn,k(b) =

(
n−b−1
k−2

)(
n−1
k−1

) .

Proof. Assume that our chromosome is [0, 1] and that mutations are located in this in-
terval according to the uniform distribution. Let M(x, δx, b) be the event that there is a
segregating site with b mutant alleles in (x, x + δx), and let Mk(x, δx, b) be the event of
there being such a segregating site, and that it arose when there were k lineages. Define
T = (Tn,2, Tn,3, . . . , Tn,n) and let A(x, δx) be the age of the first mutation in (x, x+ δx).

Conditional on T , the number of mutations in (x, x+δx) is Poisson with rate proportional
to δx, so the probability of more than one mutation is O((δx)2). Therefore,

P[M(x, δx, b) | T ] =

n∑
k=2

P[Mk(x, δx, b) | T ] + o(δx) =

n∑
k=2

θδx

2
kTn,kpn,k(b) + o(δx).

This follows from the fact that the number of mutations when there are k lineages is Poisson
with rate θδx

2 kTn,k, so the probability of getting such a mutation is θδx
2 kTn,k + o(δx). Once

we have a mutation, the probability that it has b descendants is given by pn,k(b).
By the same argument,

E[A(x, δx) · IM(x,δx,b) | T ] =

n∑
k=2

E[A(x, δx) · IMk(x,δx,b) | T ] + o(δx)

=

n∑
k=2

E[A(x, δx) |Mk(x, δx, b),T ] P[Mk(x, δx, b) | T ] + o(δx)

=

n∑
k=2

(
Tn,n + · · ·+ Tn,k+1 +

1

2
Tn,k

)
θδx

2
kTn,kpn,k(b) + o(δx).

Since mutations arise according to a Poisson point process, given that a mutation occurs in
the time interval Tn,k, its position is uniformly distributed in the interval. This explains the
factor of 1/2 in front of Tn,k.

Finally, using the tower property to find E[A(x, δx)IM(x,δx,b)], we obtain

c©Yun S. Song. DRAFT – May 5, 2021



74 5 Infinite-sites model of mutation

E[A(x, δx) |M(x, δx, b)] =
E[A(x, δx)IM(x,δx,b)]

P[M(x, δx, b)]

=

∑
k kpn,k(b)E[(Tn,n + · · ·+ Tn,k+1 + 1

2Tn,k)Tn,k] + o(δx)∑
k kpn,k(b)E[Tn,k] + o(δx)

,

and letting δx→ 0 yields the desired result. ut

Griffiths and Tavaré (1998) actually obtained stronger results; they obtained the moment
generating function as well as the probability density of the mutation age. The expression
in (5.11) simplifies considerably for the case of a constant population size.

Corollary 5.12. In the case of a constant population size, (5.11) simplies to

E(A | Mn,b) =
2b

n− b

n∑
k=b+1

1

k
. (5.12)

Proof. In the case of a constant population size, the denominator of (5.11) is given by∑n
k=2 kpn,k(b)E(Tn,k) = 2

b . The numerator of (5.11) can be computed as follows. First,

E
[
Tn,k

(
1

2
Tn,k + Tn,k+1 + · · ·+ Tn,n

)]
=

1

2

2(
k
2

)2 +
1(
k
2

) n∑
j=k+1

1(
j
2

) =
1(
k
2

) n∑
j=k

1(
j
2

)
=

1(
k
2

) n∑
j=k

2

[
1

j − 1
− 1

j

]
=

2(
k
2

) [ 1

k − 1
− 1

n

]
.

Now, since

kpn,k(b) = k

(
n−b−1
k−2

)(
n−1
k−1

) =
k(k − 1)

b

(
n−k
b−1

)(
n−1
b

) ,
we obtain

E(A | Mn,b) =
b

2

n∑
k=2

k(k − 1)

b

(
n−k
b−1

)(
n−1
b

) × 2(
k
2

) n− k + 1

n(k − 1)

=
2(
n−1
b

) n∑
k=2

n− k + 1

n(k − 1)

(
n− k
b− 1

)

=
2b

n− b

n−b+1∑
k=2

(
n−b
k−1

)(
n
k−1

) 1

k − 1
=

2b

n− b

n−b∑
k=1

(
n−b
k

)(
n
k

) 1

k
.

To simplify the above expression, consider a sequence of numbers c0,0, c0,1, . . . , c0,m. Let
ck−1,j+1 = ck−1,j + ck,j for k = 1, . . . ,m and j = 0, . . . ,m− k. Then,

m∑
k=0

(
m

k

)
ck,0 = c0,m. (5.13)

If c0,0 = 0 and c0,j =
∑j−1
k=0

1
n−j for j = 1, . . . , n− b, one can show that ck,0 = 1

k(nk)
. Hence,

with m = n− b in (5.13), the left hand side is
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n−b∑
k=0

(
n− b
k

)
ck,0 =

n−b∑
k=0

(
n− b
k

)
1(
n
k

)
k
,

while the right hand side is

c0,n−b =

n−b−1∑
k=0

1

n− j
=

n∑
k=b+1

1

k
.

We therefore conclude that

E(A | Mn,b) =
2b

n− b

n∑
k=b+1

1

k
,

which proves the claim. ut

We now use the above result to reproduce a classical result in population genetics. From
(5.12), we have

E(A | Mn,b) =
2b/n

1− b/n

( n∑
k=1

1

k

)
−

n(b/n)∑
j=1

1

j


=

2b/n

1− b/n

( n∑
k=1

1

k
− log(n)

)
−

n(b/n)∑
j=1

1

j
− log(n(b/n))

+ log(n)− log(b)

 .
Therefore, as n→∞, b→∞, and b/n→ x,

E(A | Mn,b)→
2x

1− x
[γE − γE − log(x)] = − 2x

1− x
log(x),

where γE denotes the Euler constant. This corresponds to the population-wide expectation
of the age of a neutral mutation, a result obtained by Kimura and Ohta (1973) using the
diffusion theory.

5.6 Unbiased moment estimators of θ

In Chapter 4.7, we saw that the number Kn of distinct alleles in a sample of size n is a
sufficient statistic for θ under the infinite-alleles model. Further, we saw that the moment
estimator based on E(Kn) is equal to the maximum likelihood estimate. In the infinite-
sites model, the number of distinct haplotypes is not a sufficient statistic for θ; in fact, no
simple sufficient statistic for θ is known. In this section, we discuss several classical unbiased
moment estimators of the mutation rate.

Definition 5.13 (Watterson’s estimator of θ). Watterson (1975) suggested the follow-
ing estimator of θ:

θ̂W =
2Sn∑n

k=2 kE[Tn,k]
, (5.14)
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where Sn denotes the observed number of segregating sites in a sample of size n.

Under a constant population size model, for which E[Tn,k] = 1/
(
k
2

)
, Watterson’s estima-

tor becomes θ̂W = Sn/
∑n−1
k=1

1
k . Note that (5.1) immediately implies that (5.14) satisfies

E(θ̂W ) = θ, so this estimator is unbiased. Furthermore, it turns out that θ̂W is a weakly
consistent estimator; e.g., under a constant population size model,

Var(θ̂W ) =

∑n−1
j=1

[
θ
j +

(
θ
j

)2
]

[∑n−1
j=1

1
j

]2 → 0 as n→∞,

which implies θ̂W
p−→ θ as n→∞, which can be shown using Chebyshev’s inequality.

Definition 5.14 (Tajima’s estimator of θ). Tajima (1983) proposed the following esti-
mator of θ:

θ̂T =
1(

n
2

)
E[T2,2]

∑
i<j

Πi,j ,

where Πi,j denote the Hamming distance between haplotypes i and j; i.e., the number of
differences between them.

Note that

E(θ̂T ) =
1(

n
2

)
E[T2,2]

∑
i<j

E(Πi,j) =
E(Π1,2)

E[T2,2]
=

E(S2)

E[T2,2]
= θ,

so Tajima’s estimator is also unbiased.

Definition 5.15 (Fu and Li’s estimator of θ). For n > 2, Fu and Li (1993) proposed
the following estimator of θ:

θ̂FL =
2ηn,1

E(τn,1) + E(τn,n−1)
,

where ηn,1 denotes the number of folded singleton sites (cf., Definition 5.4), and τn,b denotes
the total length of all edges each subtending exactly b leaves in a coalescent tree with n leaves
(cf., Definition 5.9).

For a constant population size model, we have E(τn,k) = 2
k , so θ̂FL = n−1

n ηn,1. Note that

E(θ̂FL) = θ for n > 2. Neither θ̂T nor θ̂FL converges to θ as n → ∞. Moreover, θ̂FL is not
very reliable, since ηn,1 is rather sensitive to sequencing errors.

It turns out that many estimators of θ can be written as a linear combination of the entries
ζn,k of the unnormalized SFS defined in Definition 5.3: i.e., θ̂ =

∑n−1
k=1 an,kζn,k, where an,k

are constants. For example, the estimators described above can be written as follows:
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θ̂W =
2∑n

j=2 jE[Tn,j ]

n−1∑
k=1

ζn,k,

θ̂T =
1(

n
2

)
E[T2,2]

n−1∑
k=1

k(n− k)ζn,k,

θ̂FL =
2

E(τn,1) + E(τn,n−1)
(ζn,1 + ζn,n−1).

A natural question to ask is, which linear estimator is better? Fu (1994) showed that Wat-

terson’s estimator θ̂W is approximately the best linear unbiased estimator (BLUE) for small

θ. However, Futschik and Gach (2008) showed that θ̂W is inadmissible and obtained a uni-
formly better, biased estimator using shrinkage under the mean squared error loss function.

The variance of an estimator of the form θ̂ =
∑n−1
k=1 an,kζn,k can be computed using the

following result:

Theorem 5.16. Suppose θ̂ =
∑n−1
k=1 an,kζn,k. Then,

Var(θ̂) =
θ

2

n−1∑
k=1

a2
n,kE(τn,k) +

θ2

4

n−1∑
j=1

n−1∑
k=1

an,jan,k Cov(τn,j , τn,k), (5.15)

where τn,b is defined in Definition 5.9.

Proof. Consider the following decomposition of the variance:

Var(θ̂) = E(Var(θ̂|τn)) + Var(E(θ̂|τn)),

where τn = (τn,1, . . . , τn,n−1). Here, the first factor captures the “mutational part” (i.e.,
variance due to the placement of mutations on the tree) of the variance, while the second
factor captures the “genealogical part” (i.e., variance due to the randomness in the geneal-
ogy). Now, noting that ζn,1, . . . , ζn,n−1 are conditionally independent given τn and that
ζn,k | τn,k ∼ Poisson( θ2τn,k), we get

Var(θ̂|τn) =

n−1∑
k=1

a2
n,k Var(ζn,k|τn) =

n−1∑
k=1

a2
n,k Var(ζn,k|τn,k) =

n−1∑
k=1

a2
n,k

θ

2
τn,k,

which explains the first term of (5.15). Using E(
∑n−1
k=1 an,kζn,k|τn) =

∑n−1
k=1 an,k

θ
2τn,k and

taking the variance leads to the second term of (5.15). ut

Computing Cov(τn,j , τn,k) involves second-order moments E(Tn,jTn,k) of inter-coalescence
times. In the case of a constant population size,

E(Tn,jTn,k) =
1 + δjk(
j
2

)(
k
2

) ,
and Fu (1995) used this result to derive a closed-form formula for Cov(τn,j , τn,k). The work
of Polanski et al (2003) can be used to obtain a general formula for E(Tn,jTn,k) under an
arbitrary variable population size function, and Živković and Wiehe (2008) independently
obtained a formula for the special case of piecewise-constant population size functions, but
neither result is numerically stable for large values of n.
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(a) (b)

Fig. 5.3: Two extreme examples. (a) Large τn,1. (b) Long Tn,2, with about n/2 leaves on
each subtree adjacent to the root.

5.7 Tests of selective neutrality

Deviations from the assumed model can have significantly different effects on different esti-
mators of θ. Motivated by this observation, Tajima (1989) considered a test statistic defined
as

D =
θ̂T − θ̂W√

Var(θ̂T − θ̂W )
.

Under a constant population size model, E(D) = 0, and Tajima used simulations to show
that D approximately follows a rescaled Beta distribution and can be used to test for
selective neutrality. He provided critical values for rejecting the null model (neutrality) at a
significance level of α. For α = 5%, one rejects neutrality if |D| > 2. Consider the following
two extreme examples to see what the statistic D is trying to capture:

1. (Strong positive selection) Consider the tree shape with long terminal branches (τn,1),

as shown in Figure 5.3a. In this case ζn,1 ≈ Sn, so θ̂T ≈ 1

(n2 )
(n − 1)Sn = 2

nSn. Since

θ̂W ≈ Sn
log(n−1) , we would expect D < 0.

2. (Balancing selection) Consider the tree shape with long internal branches (Tn,2) adja-
cent to the root, as shown in Figure 5.3b, with approximately n/2 leaves in each of left

and right subtrees. In this case, θ̂T ≈ 1

(n2 )
(n2 )2Sn = n

2(n−1)Sn. Since θ̂W ≈ Sn
log(n−1) , we

would expect D > 0.

Remark 5.17. Selectively neutral models with non-trivial population demography can also
lead to tree shapes similar to those shown in Figure 5.3. For example, the first kind of tree
shape can result from a severe bottleneck followed by a rapid expansion, while the second
kind can result from population substructure.

Using their moment estimator θFL, Fu and Li (1993) considered the following statistics
for testing neutrality:
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D∗ =
θ̂W − θ̂FL√

Var(θ̂W − θ̂FL)
, F ∗ =

θ̂T − θ̂FL√
Var(θ̂T − θ̂FL)

.

See their paper for further details on applications of these statistics. More recently, Achaz

(2009) considered finding estimatores θ̂1 =
∑n−1
k=1 a

(1)
n,kζn,k and θ̂2 =

∑n−1
k=1 a

(2)
n,kζn,k, such

that the statistic (θ̂1 − θ̂2)/

√
Var(θ̂1 − θ̂2) provides more powerful tests of deviations from

selective neutrality.

5.8 A direct method of computing the full likelihood

In Chapter 5.6, we discussed several unbiased moment estimators of the mutation parameter
θ. Recall that they are all based on summary statistics of data (namely, the unnormalized
frequency spectra ζn,i). In what follows, we will discuss a full-likelihood method. The main
advantage of such a method is that it improves the statistical efficiency of the estimate by
utilizing as much of the information in the data as possible.

Given a data set X with n haplotypes generated under the infinite-sites model without
recombination, our goal is to compute the likelihood L(θ) = pθn(X), also referred to as the
sampling probability. As usual, let n denote the sample size, which is equal to the number
of rows in X. We first consider a direct approach to computing pθn(X). To be concrete,
assume that the root sequence is the all-0 sequence and let 1 denote the derived allele at
each segregating site. Consider the following simple example, where rows correspond to
haplotypes and columns segregating sites:

X =

0 0 0
1 0 0
0 1 1

 .

The basic idea we employ is to compute the conditional probability of observing X given
a coalescent tree topology, and then to sum over all possible topologies. For n = 3, there are
three possible coalescent tree topologies. They are illustrated in Figure 5.4, where the leaf
labels correspond to the labels of three distinct individuals in a population. The probability
of each coalescent tree topology is 1

3 .
For each coalescent tree topology, there are six inequivalent ways to generate the data in

(5.8), depending on which haplotype is associated with which individual. A complete list of

Topology 3

2 3 1 2 31 1 32

Topology 1 Topology 2

Fig. 5.4: The three possible coalescent tree topologies for X in (5.8). Each topology occurs
with probability 1

3 .
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2

2 3 1 2 3

1 32

1 3

1 1 32

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 32

1 32

1 32

Fig. 5.5: Possible coalescent histories (topology + mutations) consistent with X in (5.8).

coalescent histories (topology + mutations) for X is shown in Figure 5.5. Let hi denote the
ith row of X. In the coalescent histories shown in the top row of Figure 5.5, haplotype hi
is associated with leaf i. We use qθn(X) to denote the probability of this “ordered sample.”
Note that each of the three coalescent histories in the top row of Figure 5.5 appears exactly
6 times in the full list, with permuted assignments of h1, h2, h3 to leaves 1, 2, 3. Therefore,
pθn(X) = 6× qθn(X).

Henceforward, assume a constant population size model. Using the fact that mutations
occur according to a Poisson point process with rate θ/2 for each lineage, independently of
all other lineages, the conditional probability qθn(X | topology 1) can be computed as
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qθn(X | topology 1) = E

[
e−

θ
2T3

(
θ

2
T3

)
e−

θ
2T3

1

2!

[
θ

2
(T2 + T3)

]2

e−
θ
2 (T2+T3)e−

θ
2T2

]

= E
[
θ3

16
T3(T2 + T3)2e−θ(T2+ 3

2T3)

]
=

∫ ∞
0

∫ ∞
0

[
θ3

16
t3(t2 + t3)2e−θ(t2+ 3

2 t3)

]
e−t23e−3t3dt2 dt3

=
θ3

16

(24 + 32θ + 11θ2)

(1 + θ)3(2 + θ)4
,

where Tk denotes the waiting time while there are k lineages. The conditional probabilities
qθn(X | topology 2) and qθn(X | topology 3) can be computed in a similar fashion:

qθn(X | topology 2) =
θ3

16
E[T 3

3 e
−θ(T2+ 3

2T3)] =
θ3

16

32

9

1

(1 + θ)(2 + θ)4

qθn(X | topology 3) =
θ3

16
E[(T2 + T3)T 2

3 e
−θ(T2+ 3

2T3)] =
θ3

16

16

9

4 + 3θ

(1 + θ)2(2 + θ)4
,

yielding

qθn(X) =

3∑
i=1

qθn(X | topology i)× 1

3
=
θ3

18

(12 + 18θ + 7θ2)

(1 + θ)3(2 + θ)4
.

Although, this direct approach is straightforward, there are at least two problems:

1. As discussed in Chapter 2.5, the number of inequivalent coalescent tree topologies with
n leaves is n!(n− 1)!/2n−1, which increases super exponentially with the sample size n

2. The integral we need to perform for each coalescent tree topology is (n− 1)-dimensional.

So, the computational complexity of this direct approach grows quickly with n, and we need
a more efficient approach that avoids having to enumerate all possible histories explicitly.

5.9 Perfect phylogeny

It turns out that there is an efficient test to check whether a given data set is compatible
with the infinite-sites model without recombination. To illustrate, consider the following
data set:

X =


0 1 0 1 0
1 1 1 0 1
0 1 1 1 0
1 1 1 1 0
0 0 0 0 1

 .

In this data set, the haplotypes (rows) restricted to the first and the fourth columns, cor-
responding to the first and the fourth segregating sites, contain all four possible configu-
rations 00, 01, 10, and 11. It is easy to see that, in the absence of recombination, at least
three mutations are needed to generate all four configurations. This violates the infinite-
sites assumption, which implies that at most one mutation occurs per site. In summary, a
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sufficient condition for pθn(X) = 0 is that X is not compatible with the model assumption.
Equivalently, under the infinite-sites model without recombination, P(X | θ) = 0 if X does
not admit a perfect phylogeny, defined as follows:

Definition 5.18. A perfect phylogeny for a binary matrix X is a tree which satisfies the
following conditions:

1. There is a 1-1 correspondence between the leaves of the tree and the rows of X.
2. Mutations occur on the edges of the tree and every interior edge has at least one mutation

on it.
3. There is at most one mutation per column of X.
4. For any two leaves i and j of the tree, the path between them contains a mutation for

column k if and only if Xi,k 6= Xj,k.

Note that a perfect phylogeny need not be a binary tree. Given an n-by-m binary matrix
X, there exists an O(nm)-time algorithm (Gusfield, 1991) to test whether X admits a perfect
phylogeny and to construct one if it exists. Also, one can show the following results [proofs
can be found in (Gusfield, 1997)]:

Theorem 5.19 (Root known). Suppose that the root sequence is the all-0 sequence. Then,
there exists a rooted perfect phylogeny for X if and only if no two columns contain all of
01, 10 and 11 configurations.

Theorem 5.20 (Root unknown). There exists an unrooted perfect phylogeny for X if and
only if no two columns contain all of 00, 01, 10 and 11 configurations.

Given an input binary matrix X with m columns, the majority-allele sequence is a length-
m binary string in which the ith character is the majority allele at column i of X; if there
is a tie, then arbitrarily choose 0 or 1.

Theorem 5.21. There exists an unrooted perfect phylogeny for X if and only if there exists
a rooted perfect phylogeny for X with the majority-allele sequence as the root sequence.

5.10 Probability recursion for gene trees

In this section, we develop a systematic approach to computing pθn(X). Assume that the
root sequence is the all-0 sequence. Then, given an n-by-m binary matrix X, first test for the
existence of a rooted perfect phylogeny and construct one if it exists. Then, for each distinct
haplotype, record its multiplicity and follow the path to the root to record the mutations
encountered. For example, consider

X =


1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1

 .

This data set admits a rooted perfect phylogeny (see Figure 5.6) with the root being the all-0
sequence. The ordering of the columns of X is not important in the absence of recombination,
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Fig. 5.6: A rooted perfect phylogeny for the data X in (5.10). We use the column numbers
to label mutations, marked by crosses.
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Fig. 5.7: A graphical illustration of the probability recursion for the infinite-sites model.
Transitions are denoted by blue arrows.

and likewise the ordering of mutations within each edge is irrelevant. Two trees related by
permutations of mutation labels within each edge are considered equivalent. For the perfect
phylogeny in Figure 5.6, the corresponding distinct mutation lists and their multiplicities
are

x1 = (2, 1, 0), n1 = 2,
x2 = (3, 0), n2 = 1,
x3 = (4, 0), n3 = 1,
x4 = (5, 4, 0), n4 = 1,

where we appended a 0 to each xi to denote the root. In general, if there are d distinct
haplotypes, we encode the perfect phylogeny as (T ,n), where T = (x1, . . . ,xd) is a d-tuple
of distinct mutation lists and n = (n1, . . . , nd) is the associated multiplicity vector. The pair
(T ,n) is referred to as a gene tree.

The goal is to construct a recursion satisfied by (T ,n) by summing over all possible im-
mediately preceding events. The basic idea is illustrated in Figure 5.7 for a simpler example
with 4 haplotypes and 3 segregating sites.

To write down the recursion mathematically, we introduce the following operators that
modify T or n:

Definition 5.22. Shift operators S and Sk, and the removal operator Rk are defined as
follows.
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84 5 Infinite-sites model of mutation

1. Sxi: Delete the first entry of xi.
2. SkT : Delete the first entry of xk in T = (x1, . . . ,xd).
3. RkT : Remove xk from T = (x1, . . . ,xd)
4. Rkn: Remove nk from n = (n1, . . . , nd).

Ethier and Griffiths (1987) and Griffiths (1989) established the following result for the case
of a constant population size:

Theorem 5.23 (Probability recursion for an unordered sample). Let pθn(T ,n) de-
note the stationary probability of a labeled unordered sample with configuration (T ,n) and

sample size n =
∑d
i=1 ni. For θ > 0, pθn(T ,n) satisfies the following recursion equation:

pθn(T ,n) =
n− 1

n− 1 + θ

 ∑
k:nk≥2

nk − 1

n− 1
pθn(T ,n− ek)

+
θ

n− 1 + θ
×

[ ∑
k : nk = 1,
xk,1unique in T ,
Sxk 6= xj , ∀j

1

n
pθn(SkT ,n) +

∑
k : nk = 1,
xk,1unique in T

∑
j:Sxk=xj

nj + 1

n
pθn(RkT ,Rk(n+ ej))

]
,

with the boundary conditions pθn(T 0, (1)) = 1, where T 0 = ((0)).

Let qθn(T ,n) denote the stationary probability of a labeled ordered sample with configu-

ration (T ,n) and sample size n =
∑d
i=1 ni. Note that

pθn(T ,n) =

(
n

n1, . . . , nd

)
qθn(T ,n).

Theorem 5.24 (Probability recursion for an ordered sample). For θ > 0, qθn(T ,n)
satisfies the following recursion equation:

qθn(T ,n) =
n− 1

n− 1 + θ

 ∑
k:nk≥2

nk(nk − 1)

n(n− 1)
qθn(T ,n− ek)

+
θ

n− 1 + θ
×

[ ∑
k : nk = 1,
xk,1unique in T ,
Sxk 6= xj , ∀j

1

n
qθn(SkT ,n) +

∑
k : nk = 1,
xk,1unique in T

∑
j:Sxk=xj

1

n
qθn(RkT ,Rk(n+ ej))

]
,

with the boundary condition qθn(T 0, (1)) = 1, where T 0 = ((0)).

Remark 5.25.

1. The above results can be proved using the backward-forward argument, similar to that
used in Chapter 4.2.

2. The condition “xk,1unique in T ” is needed so that the root does not get removed.
3. The recursions are purely algebraic. No messy integration appears in the recursions.
4. The recursions can be solved numerically using dynamic programming or Monte Carlo

methods.
5. Wu (2010) has developed a dynamic programming algorithm to solve the above recursions

numerically for moderate-size data sets.
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Fig. 5.8: A minimal unrooted tree for n = 9.

5.11 Root unknown case

In the case the root is unknown, construct the unrooted perfect phylogeny, if there exists
one, and contract all edges with no mutations. Denote the resulting unrooted tree by τ and
call it a minimal unrooted tree. An example is provided in Figure 5.8.

Theorem 5.26. Let m denote the number of segregating sites (or columns) in the input ma-
trix X and suppose that X admits an unrooted perfect phylogeny. Then, up to permutations
of mutation labels, the number of inequivalent rooted perfect phylogenies for X is 1 +m.

Proof. For a given minimal unrooted tree τ , we can place the root at any vertex or between
two consecutive mutations on an edge. Thus, up to permutations of mutation labels, the
total number of inequivalent perfect phylogenies is

|V (τ)|+
∑

e∈E(τ)

(me − 1) = |V (τ)| − |E(τ)|+
∑

e∈E(τ)

me,

where V (τ) and E(τ) are the vertex and edge sets of τ , respectively, and me denotes the
number of mutations on edge e. Now, |V (τ)| − |E(τ)| = 1, while

∑
e∈E(τ)me = m, and

therefore we have the desired result.

If the root is unknown and X admits an unrooted perfect phylogeny, one way to compute
the probability of X is to sum pθn(X) over all 1 + m rooted perfect phylogenies. A more
efficient method is to use a probability recursion for the unrooted case. See Tavaré (2004)
for details.
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Chapter 6

Finite-alleles model of mutation

In this chapter, we will study a more realistic model of mutation. Specifically, we will consider
a finite collection of loci each with a finite number of possible alleles. When mutation occurs
at a particular locus, the allelic type at that locus changes according to a Markov process.
Furthermore, unlike in the infinite-sites model, the same locus can mutate multiple times
in this model. Unfortunately, except for a rather special Markov model called the parent-
independent mutation model, no exact sampling formula is known even for the case of
a single locus. We will therefore discuss Monte Carlo algorithms for approximating the
sampling probability.

6.1 Sampling probability

We consider a finite number of loci and assume that the allelic type space E at each locus
is finite. A particularly interesting example is E = {A,C,G, T}, corresponding to the four
DNA nucleotides at a particular site in the genome. More generally, we consider

E = {1, 2, 3, . . . ,K},

for some K ∈ N. This case could correspond to the situation where we have a locus consisting
of L sites, each of which could be one of {A,C,G, T}, giving |E| = 4L unique alleles at the
locus. We make three key assumptions in this model:

1. Mutations arrive according a Poisson point process with intensity θ/2,
2. Given that a mutation has occurred, allelic type change is governed by a Markov chain

with transition matrix P = (Pαβ)α,β∈E , where Pαβ gives the probability of transitioning
from allele α to allele β (going forward in time).

3. There exists a unique stationary distribution ϕ = (ϕ1, ϕ2, . . . , ϕK) of the Markov chain.

Definition 6.1 (Sample configuration). A sample configuration is denoted by n =
(n1, n2, . . . , nK), where nα ∈ N0 corresponds to the number of times that allele α ∈ E
is represented in the sample. The size of the sample n is denoted |n| =

∑
α∈E nα.

We are interested in the stationary probability pn(n | θ,P) of an unordered sample of
size n having configuration n, where |n| = n. For ease of notation, we drop the dependence

87
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88 6 Finite-alleles model of mutation

on θ and P when writing the sampling probability. By conditioning on the first event back
in time and using a similar “backward-forward” argument as in the proof of Theorem 4.4,
one can show the following result:

Theorem 6.2 (Probability recursion for an unordered sample). Suppose a sample
of n alleles is drawn from an infinite population at stationary. Then, the probability pn(n) of
observing a particular unordered sample with configuration n = (n1, . . . , nK) ∈ NK0 , where
|n| = n, satisfies the recursion

pn(n) =
θ

n− 1 + θ

∑
β∈E

∑
α∈E:nα≥1

(
nβ + 1− δαβ

n

)
Pβα pn(n− eα + eβ)

+
n− 1

n− 1 + θ

∑
α∈E:nα≥2

nα − 1

n− 1
pn−1(n− eα), (6.1)

where δαβ denotes the Kronecker delta. Boundary conditions are p1(eα) = ϕα for all α ∈ E.

Note the condition nα ≥ 1 in the first line of the above recursion. Unlike in the recursion for
the infinite-sites model (cf., Theorem 5.23), where at most one mutation occurs per site, in
(6.1) alleles of type α can undergo mutation (backward in time) before coalescence events
reduce the copy number to one.

Now, suppose n alleles are sequentially sampled one by one from the population and the
order in which they appear is recorded. Then, the probability qn(n) of observing a particular
ordered sample with configuration n, where |n| = n, is related to the unordered sampling
probability pn(n) as

pn(n) =

(
n

n1, . . . , nK

)
qn(n). (6.2)

The recursion for qn(n) takes on a slightly simpler form than (6.1):

Theorem 6.3 (Probability recursion for an ordered sample). Suppose a sample of n
alleles is sequentially drawn from an infinite population at stationarity. Then, the probability
qn(n) of observing a particularly ordered sample with configuration n = (n1, . . . , nK) ∈ NK0 ,
where |n| = n, satisfies the recursion

qn(n) =
θ

n− 1 + θ

∑
β∈E

∑
α∈E:nα≥1

nα
n
Pβα qn(n− eα + eβ)

+
n− 1

n− 1 + θ

∑
α∈E:nα≥2

nα(nα − 1)

n(n− 1)
qn−1(n− eα), (6.3)

with boundary conditions are q1(eα) = ϕα for all α ∈ E.

Note that neither (6.1) nor (6.3) is strictly recursive. For a general transition matrix P,
an exact closed-form solution to (6.1) or (6.3) is unknown. However, sampling probabilities
can be computed numerically by solving systems of coupled linear equations sequentially for
sample sizes 2 through n. Graphically, assign a vertex to each distinct sample configuration
and draw an edge from vertex vm to vertex vm′ if m appears on the left hand side of
(6.1) while m′ appears on the right hand side. Topologically sort this directed graph, find
the highest strongly connected component (SCC), and solve the system of couple linear
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6.2 Parent-independent mutation 89

equations corresponding to that SCC. Upon recording that solution, move down in the
topological order, solve the system of couple linear equations corresponding to that new
SCC, and iterate the procedure until the SCC for sample size n has been solved. The desired
probability pn(n) appears as one of the variables in the last system of linear equations.
Clearly this method will not scale to large sample sizes, since the SCC at level m has O(mK)
vertices. In this chapter, we will discuss Monte Carlo methods for solving the recursion (6.1).

6.2 Parent-independent mutation

The solution to (6.1) remains unknown in general, but with additional assumptions and
conditions, we can obtain a more tractable model for which an exact solution exists. Such
a more tractable model is parent-independent mutation (PIM), in which Pβα = ϕα, i.e., the
probability of transitioning to allele α (forward in time) is independent of the current allelic
state β. We discuss below what this buys us.

Let Xα denote the population-wide frequency of allele α ∈ E. Then, the sampling prob-
ability pn(n) can be written as

pn(n) =

(
n

n1, . . . , nK

)
E

[ ∏
α∈E

Xnα
α

]

Using this representation and the fact
∑
α∈E Xα = 1, one can show that for all sample

configurations n with |n| = n ≥ 1,∑
β∈E

nβ + 1

n+ 1
pn+1(n + eβ) = pn(n),

which implies ∑
β∈E

nβ + 1− δαβ
n

pn(n− eα + eβ) = pn−1(n− eα). (6.4)

Hence, if Pβα = ϕα, then (6.4) can be used to simplify (6.1) as

pn(n) =
θ

n− 1 + θ

∑
α∈E:nα≥1

ϕα pn−1(n− eα) +
n− 1

n− 1 + θ

∑
α∈E:nα≥2

nα − 1

n− 1
pn−1(n− eα),

(6.5)
which is strictly recursive in n. The unique solution to (6.5) with boundary conditions
p1(eα) = ϕα, for all α ∈ E, is given by

pn(n) =

(
n

n1, . . . , nK

)∏
α∈E(θϕα)nα↑

(θ)n↑
. (6.6)
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(1, 0) (n1, 0)

(0, 1)

(0, n2)

4 Possible moves

Fig. 6.1: Illustration of a random walk in the case of K = 2. The probability pn(n) can
be approximated by averaging a certain function over random sample paths each of which
starts at n = (n1, n2) (denoted by a red circle) and ends at one of the absorbing states {eα}
(denoted by blue squares). There are four allowed moves in the interior of the lattice, while
only two moves are allowed on the x- and y-axes.

6.3 A simple Monte Carlo method for approximating the likelihood

Here, we discuss a simple Monte Carlo algorithm for finding an approximate solution to
(6.1). This approach was originally proposed by Griffiths and Tavaré (1994a,b,c). Figure 6.1
illustrates the method in the case of K = 2. The input sample configuration n = (n1, n2) is
identified with a point in the lattice N2

0, and starting from that point one takes a random
walk through N2

0 using allowed moves, until hitting one of the absorbing states e1, . . . , eK .
The transition probability Pαα may be non-zero for some α ∈ E, which means pn(n)

will appear on both sides of (6.1). To make the Monte Carlo algorithm more efficient, we
manipulate the original recursion to eliminate terms corresponding to self-loops:

[
1− θ

n− 1 + θ

∑
α∈E

Pαα
nα
n

]
pn(n) =

θ

n− 1 + θ

∑
α,β∈E:α6=β,nα≥1

Pβα
nβ + 1

n
pn(n− eα + eβ)

+
n− 1

n− 1 + θ

∑
α∈E:nα≥2

nα − 1

n− 1
pn−1(n− eα) (6.7)

Let b(n) denote the coefficient of pn(n) on the left hand side of (6.7), and define

a(n) =
θ

n− 1 + θ

∑
α,β∈E:α 6=β,nα≥1

Pβα
nβ + 1

n
+

1

n− 1 + θ

∑
α∈E:nα≥2

(nα − 1).

This gives us
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pn(n) =
a(n)

b(n)

[ ∑
α,β∈E:α 6=β,nα≥1

λβα(n)︷ ︸︸ ︷
θ

a(n)(n− 1 + θ)

Pβα(nβ + 1)

n
pn(n− eα + eβ)

+
∑

α∈E:nα≥2

nα − 1

a(n)(n− 1 + θ)︸ ︷︷ ︸
µα(n)

pn−1(n− eα)

]
. (6.8)

The coefficients µα(n) and λβα(n) are defined as shown above, and they satisfy∑
α,β∈E:α 6=β,nα≥1

λβα(n) +
∑

α,β∈E:α 6=β,nα≥1

µα(n) = 1.

Hence, the form of (6.8) suggests constructing a discrete-time Markov chain {Zj , j ≥ 0}
with state space NK0 as follows:

1. Z0 = n.
2. For n ≥ 2, possible transitions are

a. n→ n− eα + eβ with probability λβα(n), for α, β ∈ E,α 6= β, nα ≥ 1,
b. n→ n− eα with probability µα(n), for α ∈ E,nα ≥ 2.

3. Absorbing states are A = {e1, e2, . . . , eK}.
4. The random hitting time is τ = inf{j ≥ 0 | Zj ∈ A}.

In terms of this Markov chain, (6.8) can be rephrased as follows.

Theorem 6.4 (Griffiths and Tavaré 1994c). Define f(eα) = ϕα for α ∈ E and f(m) =
a(m)/b(m) for |m| ≥ 2. Then, the sampling probability pn(n) is given by

pn(n) = En

 τ∏
j=0

f(Zj)

 ,
where the expectation is taken over the random path Z0, . . . ,Zτ conditioned on Z0 = n.

This result implies that the probability pn(n) can be approximated by

pn(n) ≈ 1

M

M∑
s=1

f(Z
(s)
0 )f(Z

(s)
1 ) · · · f(Z(s)

τs ),

where Z
(s)
0 ,Z

(s)
1 , . . . ,Z

(s)
τs are independent sample paths drawn from the above Markov chain.

Remark 6.5.

1. A potential problem with this approach is that some sample paths might start out with
low probability but become more probable later, compared to other sample paths. Such
paths are unlikely to be sampled from the above Markov chain, thus reducing efficiency.

2. The above technique has been extended to more general models with additional features,
including variable population size (Griffiths and Tavaré, 1994b), recombination (Larribe
et al, 2002), natural selection (Coop and Griffiths, 2004), and subdivided population
structure (Bahlo and Griffiths, 2000).
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T

T G G C

T → C

T → G

H0 = {T,G,G,C}

H−1 = {T,G,C}

H−2 = {T, T, C}

H−3 = {T,C}

H−4 = {T, T}

H−5 = {T}

Fig. 6.2: An example history H = (H0, H−1, . . . ,H−τ ), where H−j denotes the configuration
after j events. This history has three coalescence and two mutation events until the root in
reached, so τ = 5. Mutation events are denoted by the × symbol.

6.4 Sequential importance sampling (SIS)

In this section, we discuss a more efficient Monte Carlo method for approximating the
likelihood. First, we define the concept of a coalescent history.

Definition 6.6 (Coalescent history). A coalescent history records the sample configu-
ration after each coalescence or mutation event. It is defined as H = (H0, H−1, . . . ,H−τ ),
where H−j denotes the configuration after j events and τ denotes the random number of
events until the configuration size has decreased to 1. An example history is illustrated in
Figure 6.2.

Note that there is a one-to-one correspondence between the set of sample paths in the
Markov chain discussed in the previous section and the set of coalescent histories.

Let Hn denote the set of all coalescent histories H with |H0| = n, and let Pn denote the
coalescent distribution over Hn. Then,

pn(n) =
∑

H∈Hn

Pn(n | H)Pn(H), (6.9)

where

Pn(n | H) =

{
1, if config(H0) = n,

0, otherwise,

where config(H0) denotes the allele configuration of H0. (For ease of notation, we sometimes
use Ht and config(Ht) interchangeably in what follows.) It would be hopeless to approximate
(6.9) using

pn(n) ≈ 1

M

M∑
s=1

Pn(n | H(s))
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where H(s) are independent samples of coalescent histories from the coalescent prior Pn(·),
since most such histories would have Pn(n | H(s)) = 0. A much better scheme is to sample

coalescent histories H(s) conditioned on config(H
(s)
0 ) = n. Importance sampling will enable

us to achieve this goal. The basic idea is as follows. Suppose Q is a probability measure such
that the support of Pn is contained in the support of Q. Then, we can write

pn(n) =
∑

H∈Hn

Pn(n | H)
Pn(H)

Q(H)
Q(H)

≈ 1

M

M∑
s=1

Pn(n | H(s))
Pn(H(s))

Q(H(s))
,

where H(s) are independent samples from Q. The ratio w(s) = P(H(s))/Q(H(s)) is called
the importance weight. The key to the success of this algorithm depends critically on the
choice of the proposal distribution Q.

Proposition 6.7 (Optimal proposal distribution). The optimal proposal distribution
Q∗(H) is given by the posterior distribution Pn(H | H0 = n). This implies that we can
compute the true probability pn(n) using a single draw and that the importance weight w(s)

has zero variance.

Proof. Suppose H is sampled from the posterior distribution Pn(·|n). Then, Pn(n | H) = 1
and using Bayes’ rule we see that the importance weight is given by

Pn(H)

Pn(H | n)
=

Pn(H)pn(n)

Pn(n | H)Pn(H)
= pn(n),

so a single draw from Pn(·|n) is sufficient to find the true likelihood. ut

Unfortunately, sampling from the optimal proposal distribution Q∗ is as hard as comput-
ing pn(n). A major advance on this problem was made when Stephens and Donnelly (2000)
showed that it is possible to characterize the optimal proposal distribution Q∗ in terms of
a simpler sampling distribution. In the remainder of this section, we provide an alternate
derivation of their results.

6.4.1 The coalescent prior distribution of histories

A history H can be sampled from the coalescent prior Pn(·) as follows. Starting from n
lineages, sample a sequence of coalescence and mutation events backwards in time until only
one lineage remains. Then, sample the ancestral allele type from the stationary distribution
ϕ, and propagate the information forward in time conditioned on the sequence of coalescence
and mutation events sampled in the first step. A graphical model describing the conditional
independence structure of this generative model is shown in Figure 6.3, where A−t denotes
the number of lineages remaining after t events.

To compute the numerator Pn(H) of the importance weight, first note that
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A0 A−1 A−τ+1 A−τ

H0 H−1 H−τH−τ+1

A−2

H−2

Fig. 6.3: Graphical model depicting the conditional independence structure of the process for
generating a coalescent history. The random variable A−t denotes the number of lineages
remaining after t events backwards in time. The sequence A0, A−1, . . . , A−τ is a Markov
chain, with A0 = n.

Pn(H) =
∑

a1,...,aτ

Pn(H | A−1 = a1, . . . , A−τ = aτ )Pn(A−1 = a1, . . . , A−τ = aτ )

= Pn(H | A−1 = |H−1|, . . . , A−τ = |H−τ |)Pn(A−1 = |H−1|, . . . , A−τ = |H−τ |).

For ease of notation, we define nt = |Ht|. Then, the conditional independence structure of
the model (Figure 6.3) implies that the above equation factorizes as

Pn(H) = Pn(H−τ | A−τ = n−τ )

0∏
t=−τ+1

P(At−1 = nt−1 | At = nt)P(Ht | Ht−1, At = nt)

The definition of τ implies A−τ = 1 and H−τ = {α} for some α ∈ E, so the first term in
the above factorization is P(H−τ = {α}|A−τ = 1) = p1(eα) = ϕα. The backward transition
probability P(At−1 = j | At = k) in the number of lineages is given by

P(At−1 = j | At = k) =


k − 1

k − 1 + θ
, if j = k − 1,

θ

k − 1 + θ
, if j = k,

0, otherwise,

(6.10)

where the first case corresponds to a coalescence event, and the second case a mutation
event. Lastly, for config(Ht−1) = (nt−1,α)α∈E where

∑
α∈E nt−1,α = nt−1 and config(Ht) =

(nt,α)α∈E where
∑
α∈E nt,α = nt, the forward transition probability P(Ht|Ht−1, At = nt) is

given by

P(Ht|Ht−1, At = nt) =



nt−1,α

nt−1
=
nt,α − 1

nt − 1
, if Ht = Ht−1 + α,

nt−1,β

nt−1
Pβα =

nt,β + 1− δαβ
nt

Pβα, if Ht = Ht−1 − β + α,

0, otherwise.
(6.11)
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6.4 Sequential importance sampling (SIS) 95

The first case is the probability of a lineage of type α splitting into two, given that a
branching occurs. The second case is the probability of a lineage of type β mutating to α,
given that a mutation occurs.

6.4.2 Reverse transition probability

Noting thatH0, H−1, . . . ,H−τ is a Markov chain, the optimal proposal distributionQ∗(H) =
Pn(H | H0 = n) can be written in terms of the reverse transition probabilities:

Pn(H | H0 = n) = P(H−1|H0 = n)P(H−2|H−1) · · ·P(H−τ |H−τ+1).

Noting that P(Ht−1|Ht) = P(Ht−1|Ht, At = nt), where nt = |Ht|, we can utilize the condi-
tional independence structure illustrated in Figure 6.3 to obtain

P(Ht−1|Ht, At = nt)

= P(Ht | At = nt, Ht−1)
P(Ht−1 | At = nt)

P(Ht | At = nt)

= P(Ht | At = nt, Ht−1)
P(Ht−1, At−1 = nt−1 | At = nt)

P(Ht | At = nt)

= P(Ht | At = nt, Ht−1)P(At−1 = nt−1 | At = nt)
P(Ht−1 | At−1 = nt−1)

P(Ht | At = nt)
.

The first two terms in the last line are known; the first term is given by (6.11) while the
second term is given by (6.10). Unfortunately, the last term is challenging to evaluate, since
P(Ht−1 | At−1 = nt−1) = pnt−1(Ht−1) and P(Ht | At = nt) = pnt(Ht), which are unknown.

Let π(α | H) denote the conditional probability that an additionally sampled allele is
of type α, given that a sample H has been observed already. This conditional sampling
probability can be written as a simple ratio of ordered probabilities. Specifically, if |H| = h,
then

π(α | H) =
qh+1(H + α)

qh(H)
. (6.12)

Then, using (6.12) and the relation (6.2) between unordered and ordered sampling proba-
bilities, we obtain

P(Ht−1|At−1 = nt−1)

P(Ht|At = nt)
=



nt,α
nt

1

π(α|Ht − α)
, if Ht = Ht−1 + α,(

nt,α
nt,β + 1− δαβ

)
π(β|Ht − α)

π(α|Ht − α)
, if Ht = Ht−1 − β + α,

0, otherwise.

Putting all these terms together, we obtain the following result:

Theorem 6.8 (Reverse transition probability). Suppose config(Ht) = (nt,α)α∈E and
nt =

∑
α∈E nt,α. Then, the transition probability of the Markov chain H0, H−1, . . . ,H−τ is

given by (Stephens and Donnelly, 2000)
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96 6 Finite-alleles model of mutation

P(Ht−1|Ht) =



2

nt(nt − 1 + θ)

(
nt,α

2

)
1

π(α|Ht − α)
, if Ht−1 = Ht − α,

2

nt(nt − 1 + θ)

θ

2
Pβαnt,α

π(β|Ht − α)

π(α|Ht − α)
, if Ht−1 = Ht − α+ β,

0, otherwise.

(6.13)

The above theorem relates the multi-dimensional distribution P(Ht−1|Ht) to a one-dimension
conditional sampling distribution (CSD) π, which is much simpler to work with. In partic-
ular, this connection allows us to construct a useful approximation of Q∗ by approximating
π. We turn to this topic in the next section.

6.5 Approximate conditional sampling distribution (CSD)

The exact conditional sampling probability π(α | H) is not known for a general mutation
model with an arbitrary transition matrix P. In what follows, we consider a useful approx-
imation proposed by Stephens and Donnelly (2000).

6.5.1 A single site

Stephens and Donnelly (2000) suggested an approximation of π(α | H) based on the follow-
ing urn model: Suppose config(H) = n = (nβ)β∈E with n =

∑
β∈E nβ . Then, consider an

urn containing nβ copies of allele β for each β ∈ E, sample an allele uniformly at random
from the urn, and then mutate it a random number M of times according to the transi-
tion matrix P. Specifically, M is assumed to follow the geometric distribution with success
probability n

n+θ , so that

P(M = m) =

(
θ

n+ θ

)m
n

n+ θ
.

Under this model, the corresponding approximate conditional sampling probability is easy
to compute in closed form:

π̂SD(α | n) =
∑
β∈E

nβ
n

∞∑
m=0

(
θ

θ + n

)m
n

θ + n
[Pm]βα. (6.14)

The above expression has a genealogical interpretation. First, note that(
θ

θ + n

)m
n

θ + n
=

∫ ∞
0

ne−nt
[

1

m!
(θt)me−θt

]
dt,

which is the probability in a Poisson point process with intensity θ that there are m points
in a random interval [0, X] where X ∼ Exp(n). The random variable X can be interpreted
as the waiting time until the lineage corresponding to the additionally sampled allele α
coalesces with one of the n lineages corresponding to n (the n lineages are assumed to
extend to infinity without mutating or coalescing among them). The probability that the
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6.5 Approximate conditional sampling distribution (CSD) 97

additional lineage coalesces with a lineage corresponding to type β is nβ/n. Conditioned on
X = t, the number of mutations hitting the additional lineage is distributed as a Poisson
random variable with mean θt. The mutation rate in this interpretation is θ instead of θ/2,
to make up for the fact that the lineages corresponding to n are assumed to be static (in
particular, they do not mutate). In summary, we can rewrite (6.14) into a genealogically
interpretable form as

π̂SD(α | n) =
∑
β∈E

nβ
n

∫ ∞
0

ne−nt
[
eθt(P−I)

]
βα
dt,

where we have used the identity

∞∑
m=0

1

m!
(θt)me−θt[Pm]βα =

[
eθt(P−I)

]
βα
. (6.15)

As detailed below, the approximation π̂SD has several nice properties. First, it is actually
equivalent to the true conditional sampling distribution π under the PIM model, in which
(Pβα) = (ϕα) for all α, β ∈ E, and (6.6) implies

π(α | n) =
nα + θϕα
n+ θ

. (6.16)

Proposition 6.9. Under a PIM model, π̂SD(α | n) = π(α | n) for all sample configuration
n and allele α ∈ E.

Proof. Under a PIM model, the transition matrix P takes the form

P =


ϕ1 ϕ2 · · · ϕK
ϕ1 ϕ2 · · · ϕK
...

...
...

...
ϕ1 ϕ2 · · · ϕK

 .

So, since
∑
α∈E ϕα = 1, Pm = P for all positive integers m ∈ N, while [P0]βα = δβα.

Therefore,

π̂SD(α | n) =
∑
β∈E

nβ
n

[
n

n+ θ
δβα + ϕα

∞∑
m=1

(
θ

θ + n

)m
n

n+ θ

]

=
nα
n+ θ

+ ϕα

∞∑
m=1

(
θ

θ + n

)m
n

n+ θ

=
nα
n+ θ

+
n

n+ θ
ϕα

(
1

1− θ
n+θ

− 1

)

=
nα + θϕα
n+ θ

,

which is equal to (6.16). ut
Proposition 6.10. Suppose |n| = 1; i.e., n = eα for some α ∈ E. If P is reversible, then
π̂SD(α | eβ) = π(α | eβ) for all α, β ∈ E.
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98 6 Finite-alleles model of mutation

Proof. First, note that

π(α | eβ) =
q2(eβ + eα)

q1(eβ)
=

(
δαβ + 1

2

)
p2(eβ + eα)

p1(eβ)
. (6.17)

The ordered case is simpler, but the unordered case helps to understand why the combi-
natorial coefficient in (4.11) is necessary, so we will work with the latter case. Let (ϕβ)β∈E
denote the unique stationary distribution of P. Then, p1(eβ) = ϕβ . To compute p2(eβ+eα),
consider a coalescent tree for sample size 2, and let mi denote the number of mutations from
leaf i to the root. Then, given m1 and m2, the conditional probability of observing alleles
α, β ∈ E at the leaves is

p2(eβ + eα | m1,m2) = (2− δαβ)
∑
γ∈E

ϕγ [Pm1 ]γβ [Pm2 ]γα

= (2− δαβ)
∑
γ∈E

ϕβ [Pm1 ]βγ [Pm2 ]γα

= (2− δαβ)ϕβ [Pm1+m2 ]βα,

where the symmetry factor (2− δαβ) comes from assigning α and β to the two leaves (since
we are dealing with an unordered sampling distribution), and the second line follows from
the reversibility of P, which implies ϕγPγβ = ϕβPβγ .

According to (3.1), the probability that there are m mutations in a coalescent tree with
2 leaves is (

θ

1 + θ

)m
1

1 + θ
.

Hence, (6.17) can be written as

π(α | eβ) =

(
δαβ + 1

2

)
1

ϕβ

∞∑
m=0

(
θ

1 + θ

)m
1

1 + θ
(2− δαβ)ϕβ [Pm]βα

=

∞∑
m=0

(
θ

1 + θ

)m
1

1 + θ
[Pm]βα,

which is equal to π̂SD(α | eβ). ut

Proposition 6.11. The conditional sampling distribution π̂SD satisfies

π̂SD(α | n) =
∑
β∈E

π̂SD(β | n)
nα + θPβα
n+ θ

. (6.18)

Proving this result is left as an exercise. This property implies that π̂SD is a stationary
distribution of the Markov chain on E with transition matrix

Tβα =
nα + θPβα
n+ θ

.

Under the PIM model, note that Tβα = π(α | n). De Iorio and Griffiths (2004) proposed an
alternate approach to constructing an approximation to the CSD π by using the generator
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6.5 Approximate conditional sampling distribution (CSD) 99

of the Wright-Fisher diffusion, which is dual to the coalescent process. They showed that the
approximation of Stephens and Donnelly that π̂SD satisfies the stationary condition (6.18)
is equivalent to the diffusion-generator approximation that De Iorio and Griffiths developed.

Stephens and Donnelly (2000) showed that if their approximation π̂SD is used in (6.13),
then the probability that allele type α is involved in the transition Ht → Ht−1 is nα/n. This
suggests a more efficient sampling scheme that avoids having to compute P(Ht−1 | Ht) for
all possible Ht−1:

1. Choose an allele uniformly at random from Ht. Denote this allele by α.
2. Then, set Ht−1 = Ht − α + β with probability proportional to θPβαπ̂SD(β | Ht − α), or

set Ht−1 = Ht − α with probability proportional to nα − 1.

We have seen that π̂SD has several nice properties, but it also has an undesirable property,
namely that it violates exchangeability in general. Specifically, the probability of a sample
configuration should not depend on the order in which the elements are sampled; formally,

π(α | n)π(β | n + eα) = π(β | n)π(α | n + eβ).

However, for a general transition matrix P, π̂SD does not satisfy the above condition. Despite
this problem, π̂SD has proved useful in approximating the optimal proposal distribution Q∗

in sequential importance sampling.

6.5.2 Generalization to multiple sites

Consider a non-recombining locus with L sites each with a finite type space E and per-site
mutation rate θ/2. The allele type of the entire locus is a haplotype x ∈ EL, and we can
generalize π̂SD to approximate the conditional probability π(x | n) that an additionally
sampled haplotype is of type x ∈ EL given that a sample with configuration n = (nx)x∈EL
has been already observed. We define n =

∑
x∈E nx.

Similar to the single-site case, one considers an urn containing nx copies of haplotype
x ∈ EL, sample a haplotype uniformly at random from the urn, and then mutate it a
random number M of time according to the transition matrix P. Here, M is assumed to
follow the geometric distribution with success probability n

n+Lθ :

P(M = m) =

(
Lθ

n+ Lθ

)m
n

n+ Lθ
.

In the L-site model, these M mutations are distributed uniformly into the L sites; that
is, letting M` denote the number of times that site l is mutated, the joint distribution of
(M1, . . . ,ML) is given by

P((M1, . . . ,ML) = (m1, . . . ,mL)) = I{m1 + · · ·+mL = m} 1

Lm

(
m

m1, . . . ,mL

)
.

Combining everything, the approximate conditional sampling distribution proposed by
Stephens and Donnelly (2000) is
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100 6 Finite-alleles model of mutation

π̂SD(x | n) =
∑

x′∈EL

nx′

n

∞∑
m1=0

· · ·
∞∑

mL=0

(
m

m1, . . . ,mL

)
1

Lm
n

n+ Lθ

L∏
`=1

(
Lθ

Lθ + n

)m`
[Pm` ]x′`x` ,

(6.19)

where m = m1 + · · ·+m`, x = (x1, . . . , xL), and x′ = (x′1, . . . , x
′
L). Now, using the identity(

m

m1, . . . ,mL

)
1

Lm

(
n

n+ Lθ

) L∏
`=1

(
Lθ

Lθ + n

)m`
[Pm` ]x′`x`

=

∫ ∞
0

ne−nt

[
L∏
`=1

e−θt
1

m`!
(θt)m` [Pm` ]x′`x`

]
dt

and (6.15), we can rewrite (6.19) as

π̂SD(x | n) =
∑

x′∈EL

nx′

n

∫ ∞
0

ne−nt
L∏
`=1

[
eθt(P−I)

]
x′`x`

dt.

6.6 The infinite-sites model revisited

Before we conclude this chapter, we briefly revisit the infinite-sites model. Sequential im-
portance sampling works differently under the latter model. We mentioned above that if
the approximation π̂SD is used in (6.13), then the probability that allele type α is involved
in the transition Ht → Ht−1 is nα/n. Recall that the same probability also applies to the
infinite-alleles model; see (4.6) and the discussion therein. Under that model, one event back
in time can be sampled from the correct posterior distribution by picking an allele uniformly
at random from the current configuration, since the event is completely determined by the
allele type chosen: If the chosen allele is a singleton, then it gets killed by a mutation event.
If it has copy number greater than one, then it coalesces with another allele of the same
type.

Motivated by these results, the following importance sampling scheme has been proposed
for the infinite-sites model: Suppose the root sequence is unknown and consider the unrooted
perfect phylogeny (cf., Figure 5.8) corresponding to an input data set. Consider the set of all
haplotypes hα with (a) multiplicity nα ≥ 2, or (b) nα = 1 and the degree of its corresponding
vertex in the unrooted perfect phylogeny is 1. Then, choose a haplotype uniformly at random
from this set. This uniquely determines the event to be sampled: If the multiplicity of the
chosen haplotype is > 1, then it is involved in a coalescence event. Otherwise, a singleton
mutation is removed from the haplotype.

See Hobolth et al (2008) for an improved version of SIS for the infinite-sites model.

6.7 Posterior probability of the first event back in time

Assume a constant population size, and consider the coalescent for a K-allelic model with
mutation rate θ/2 and transition matrix P = (Pij)i,j∈[K]. Let n = (n1, . . . , nK) denote the
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6.7 Posterior probability of the first event back in time 101

configuration of a sample of size n = n1 + · · ·+ nK . Using what has been covered so far in
this chapter, we would like to address the following two questions:

1. Let T denote the time to the first event back in time. What is the posterior distribution
of T given n?

2. Assume that the mutation model is PIM. Let Cα denote the event that “the first event
back in time is a coalescence between two lineages of type α”. Further, let Mα denote
the event that “the first event back in time is a mutation in a lineage of type α”. Find
P(Cα | n) and P(Mα | n).

The reader is strongly encouraged to think about these problems before taking a look at
the solutions below.

Answer to Question 1: This is a trick question. It so happens that T is independent of n,

and therefore P(T ∈ dt | n) = λe−λtdt, where λ =
(
n
2

)
+ nθ

2 and t > 0.
We check the independence. Let u be the full ordered sample, and let v be the full ordered

sample after the first event. Let X be the first event back in time (so it is a coalescence for
a specific pair, or a mutation on a specific individual).

We can generate u as follows: wait for exponential time T with rate λ. When the time
hits, we select what event X occurs independently of T , with probability proportional to
the rate at which that event occurs (for example, each pairwise coalescence event occurs
with rate 1). We can do this because superpositions of Poisson processes are still Poisson
processes; that is, the above is equivalent to “racing” the waiting times of each event.

Once we have selected the time T and the event X, we generate v by sampling the rest
of the coalescent tree and dropping mutations on it. Finally, to generate u, there are two
cases: if X is a coalescence then u is determined from v, otherwise we generate u from v
according to P. Summarizing, we have

P(T,X,v,u) = P(T )P(X)P(v | X)P(u | X,v) = f(T )g(X,v,u).

So T is independent of u, and hence also independent of n = n(u).

Answer to Question 2: Let C denote the event that the first event back in time is a
coalescence. Then, the recursion shown in (6.1) implies

P(C | n) =
P(n | C)P(C)

pn(n)
=

n− 1

n− 1 + θ

K∑
α=1

nα − 1

n− 1
· pn−1(n− eα)

pn(n)
,

which can be written as

P(C | n) =
1

n(n− 1 + θ)

K∑
α=1

nα(nα − 1)

π(α | n− eα)
,

where

π(α | n− eα) =
nα
n

pn(n)

pn−1(n− eα)
. (6.20)

Similarly, the posterior probability of the event Cα is

P(Cα | n) =
1

n(n− 1 + θ)

nα(nα − 1)

π(α | n− eα)
.
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Using (6.20) and

π(β | n− eα) =
nβ + 1− δαβ

n

pn(n− eα + eβ)

pn−1(n− eα)
,

one can show that the posterior probability of Mα is given by

P(Mα | n) =
θ

n(n− 1 + θ)

∑
β

Pβαnα
π(β | n− eα)

π(α | n− eα)
.

Under the PIM model where Pβα = ϕα,

π(α | n− eα) =
nα − 1 + θϕα
n− 1 + θ

,

so

P(C | n) =
1

n

K∑
α=1

nα(nα − 1)

nα − 1 + θϕα
,

while

P(Cα | n) =
nα(nα − 1)

n(nα − 1 + θϕα)
,

P(Mα | n) =
nαθϕα

n(nα − 1 + θϕα)
.

6.8 Closed-form asymptotic sampling formulae for small θ

As mentioned above, finding an exact, closed-form sampling formula for non-PIM models
has remained a challenging open problem. However, it is possible to derive approximate,
closed-form sampling formulae that are very accurate when θ is small, by considering the
Taylor expansion of the sampling probability pn(n | θ,P) about θ = 0 (Bhaskar et al,
2012; Jenkins and Song, 2011). If P is irreducible when restricted to the set On of distinct
observed alleles in the sample n, then the leading order term in the expansion is proportional
to θ|On|−1. Hence,

pn(n | θ,P) = θ|On|−1f(n | P) +O(θ|On|),

where f(n | P) is the leading order coefficient that depends on the mutation transition
matrix P but not on the mutation rate θ.

By decomposing the set of possible mutation events in the coalescent genealogy into dif-
ferent classes, Jenkins and Song (2011) obtained closed-form formulae for f(n | P) for a
general transition matrix P when |On| ≤ 3. Bhaskar et al (2012) later provided alternate
proofs using martingale arguments and an urn construction related to the coalescent, which
led to a recursion that could be solved in closed-form using combinatorial techniques. Fur-
thermore, Bhaskar et al (2012) extended the results to obtain a closed-form formula for
f(n | P) when |On| = 4 and the transition matrix P is reversible restricted to On. We
summarize these results below, where we use hk to denote the kth harmonic number:
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hk =

k∑
j=1

1

j
.

Theorem 6.12 (Bi-allelic observation). Consider a sample configuration n = (nα)α∈E
with |n| = n and |On| = 2. For an arbitrary mutation transition matrix P that is irreducible
when restricted to On, the sampling probability pn(n) is given by (Bhaskar et al, 2012;
Jenkins and Song, 2011)

pn(n) = θ
∑

a,b∈On:a 6=b

πaPab
nb

+O(θ2).

Theorem 6.13 (Tri-allelic observation). Consider a sample configuration n = (nα)α∈E
with |n| = n and |On| = 3. For an arbitrary mutation transition matrix P that is irreducible
when restricted to On, then pn(n) is given by (Bhaskar et al, 2012; Jenkins and Song, 2011)

pn(n) = θ2
∑

distinct a,b,c∈On

{
ϕaPabPac

[
1

nc(nb + nc)
− d(na, nb, nc)

]
+ ϕaPabPbcd(na, nb, nc)

}
+O(θ3)

where

d(na, nb, nc) =
1

(na + nb)(na + nb − 1)

[
1 +

n

nc
− 2n(hn − hnc−1)

na + nb + 1

]
.

Corollary 6.14 (Tri-allelic observation under a reversible model). Suppose |On| = 3
with sample configuration n = naea + nbeb + ncec, where a, b, c are distinct alleles in E. If
the mutation transition matrix P is reversible and irreducible when restricted to the observed
alleles On, then pn(n) is given by (Bhaskar et al, 2012)

pn(n) = θ2

(
πaPabPac
nbnc

+
πbPbaPbc
nanc

+
πcPcaPcb
nanb

)
+O(θ3).

Theorem 6.15 (Quadra-allelic observation under a reversible model). Consider a
sample configuration n = (nα)α∈E with |n| = n and |On| = 4. If the mutation transition
matrix P is reversible and irreducible when restricted to the observed alleles On, then pn(n)
is given by (Bhaskar et al, 2012)

pn(n) = θ3
∑

distinct a,b,c,d∈On

[πaPabPacPadγ(n, a, b, c, d) + πaPabPacPbdδ(n, a, b, c, d)] +O(θ4),

where

γ(n, a, b, c, d) =
1

nbncnd

{[
na − 1

2(na + nb + nc − 1)
− 2nbnd

(na + nb + nc)2↓

]
+

nd
2(nb + nc + nd)

−
[

nd(na − 1)

(nc + nd)(na + nb − 1)
− 2nbnd

(na + nb)2↓

]}

+
2n

nc(na + nb + nc + 1)3↓
(hn − hnd−1)− 2n

nc(na + nb + 1)3↓
(hn − hnc+nd−1),
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and

δ(n, a, b, c, d) =
1

nbncnd

{[
nb

na + nb + nc − 1
+

2nbnd
(na + nb + nc)2↓

]

−
[

nbnd
(nc + nd)(na + nb − 1)

+
2nbnd

(na + nb)2↓

]}

− 2n

nc(na + nb + nc + 1)3↓
(hn − hnd−1) +

2

nc(na + nb + 1)3↓
(hn − hnc+nd−1).

6.9 How many triallic sites do we expect to see in a sample of n
genomes?

Here, we utilize asymptotic sampling formulae to obtain a rough approximation of the
expected number of triallic sites in a sample of n genomes. The results will be expressed in
terms of harmonic numbers, for which we use the following notation:

Hn =

n∑
j=1

1

j
, and H(2)

n =

n∑
j=1

1

j2
.

Further, let c
(s)
n denote the sth order generalized harmonic number (Roman, 1993), defined

for s ≥ 0 and n ≥ 1 by

c(s)n =


1, if s = 0,
n∑
j=1

c
(s−1)
j

j
, if s > 0.

In particular,

c
(1)
n = Hn and c

(2)
n =

n∑
j=1

Hj

j
=

1

2

[
(Hn)2 +H(2)

n

]
.

In what follows, we assume the coalescent under a constant population size.

Theorem 6.16 (Jenkins and Song 2011). Let Mn,s denote the event that there are ex-
actly s mutation events in the history of a sample of size n. Then,

P(Mn,s) =

∞∑
j=0

θs+jc
(s+j)
n−1 (−1)j

(
s+ j

j

)
.

The series converges for θ < 1.

It follows from (6.9) and (6.16) that

P(Mn,0) = 1− θHn−1 +O(θ2),

and that the probability of the event Πn that a particular site is polymorphic in a sample
of size n genomes is
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P(Πn) = θHn−1 +O(θ2).

Suppose the pattern of mutation is governed by an ergodic, irreducible Markov chain on
Γ = {A,C,G, T}, with transition matrix P = (Pji), where Pji denotes the probability of
allele j mutating to allele i forward in time given that a mutation occurs. The stationary
distribution of P is denoted by (πA, πC , πG, πT ).

Theorem 6.17 (Bhaskar et al 2012; Jenkins and Song 2011). Given a sample of
size n, denote by α the allele of the most recent common ancestor to the sample. Let On,3;a

denote the event of a triallelic polymorphism at a given site, with one of the observed alleles
being a ∈ Γ . Then,

P(On,3;a,Mn,2 | α = a) = θ2

{
[1− (P2)aa]

(
Hn +

1

n
− 2

)

+ [1− (PPT )aa]

[
(Hn−1)2

2
−
H

(2)
n−1

2
−Hn −

1

n
+ 2

]}
+O(θ3).

Corollary 6.18. Let On,3 denote the event of a triallelic polymorphism at a given site for
a sample of n genomes. Then, Theorem 6.17 implies

P(On,3) =
∑
a∈Γ

P(On,3;a,Mn,2 | α = a) · πa +O(θ3)

=
∑
a∈Γ

θ2

{
[1− (P2)aa]

(
Hn +

1

n
− 2

)

+ [1− (PPT )aa]

[
(Hn−1)2

2
−
H

(2)
n−1

2
−Hn −

1

n
+ 2

]}
+O(θ3).

Consider the mutation transition matrix

P =


0.503 0.082 0.315 0.100
0.186 0.002 0.158 0.655
0.654 0.158 0.000 0.189
0.097 0.303 0.085 0.515

 ,

which was estimated from human data, and suppose θ = 0.0014. For these parameters, (6.9)
implies that the probability of a given site in a sample of size n = 2000 genomes being
polymorphic is

P(Πn) = 0.011,

while (6.18) implies P(On,3) = 3.8× 10−5. Combining the two results gives P(On,3 | Πn) =
0.003. For genomes of length 3 × 109, we conclude that the expected number of triallelic
sites in a sample of size n = 2000 is about

3× 109 × P(On,3) ≈ 1.1× 105.
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Chapter 7

Variable population size

In this chapter, we relax the assumption that the population size remains constant over
time. This is a necessary extension for modeling any real population. When the population
size is variable, inter-coalescence times of the n-coalescent are not independent of each other,
thus introducing significant complication to analysis. However, we will see that the expected
site frequency spectrum (SFS) can still be computed efficiently and numerically stably. We
will also discuss the theoretical question of whether and under what conditions the expected
SFS uniquely determines the population size function.

7.1 Discrete-time model

Consider the Wright-Fisher model and let N (τ) denote the population size in generation
τ = 0, 1, 2, . . ., with τ = 0 corresponding to the present, τ = 1 one generation back in time,
and so on.

Definition 7.1 (Relative population size). For t ∈ R≥0, the relative population size
ηN (t) is defined as

ηN (t) =
N (btNc)

N
,

where N is some reference population size.

To take a large-N limit, we make the following assumptions:

1. N is a strictly positive deterministic function.
2. N (τ) is sufficiently large for all τ .
3. limN→∞ ηN (t) = η(t) exists for all t ≥ 0.
4. η(t) > 0 for all t ≥ 0. (Note that the function η is strictly greater than zero.)

Example 7.2. SupposeN (τ) =
⌊
(1− α

N )τN
⌋
, so that the population size decays exponentially

backwards in time. Then, limN→∞ ηN (t) = e−αt, where α is a population-scaled decay rate.

The n-coalescent {Cn(t), t ≥ 0} obtained in the N → ∞ limit is a time-inhomogeneous
P[n]-valued Markov process where the instantaneous rate of coalescence between a pair of

lineages at time t is given by 1
η(t) . Intuitively, in smaller populations it is easier for lineages to

109
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find a common ancestor and so the rate of coalescence is higher, while in larger populations
the opposite is true. The embedded jump chain {ξn,k, k = n, n− 1, . . . , 1} is the same as in
the constant population size case.

7.2 Inter-coalescence times and the ancestral process

As usual, we use Tn,k to denote the waiting time while there are k ancestral lineages
for a sample of size n taken at time 0. In the constant population size case with η ≡ 1,
Tn,k are independent exponential random variables with rate

(
k
2

)
. For non-constant η, the

inter-coalescence times Tn,k are no longer independent: depending on the previous inter-
coalescence times, the rate of coalescence (determined by η) may be different.

We define the following notation, which will play an important role in the subsequent
discussion:

Definition 7.3 (Time rescaling). Given a population size function η, we define

Rη(t) :=

∫ t

0

1

η(s)
ds, (7.1)

which corresponds to the total intensity of pairwise coalescences up to time t

Note that this function is monotonically increasing and continuous, and hence invertible.
This function will allow us to reparameterize time, thereby relating the time-inhomogeneous
coalescent process with a time-homogeneous one.

We now discuss the distribution of inter-coalescence times, starting with T2,2.

Proposition 7.4. The probability density function of T2,2 is given by

fT2,2
(t) =

1

η(t)
e−Rη(t).

Proof. We will show that P(T2,2 > t) = e−Rη(t), differentiating which implies the desired
result. In the discrete-time Wright-Fisher model,

P(TWF
2,2 > bNtc) =

bNtc∏
j=1

[
1− 1

N (j)

]
, (7.2)

where 1− 1
N (j) is the probability that two individuals will find different parents one gener-

ation back. Taking the log of (7.2) and noting x ≤ − log (1− x) ≤ x
1−x for all x ∈ (0, 1), we

obtain
bNtc∑
j=1

1

N (j)
≤ −

bNtc∑
j=1

log

[
1− 1

N (j)

]
≤
bNtc∑
j=1

1

N (j)− 1
(7.3)

Then, in the limit as N →∞, the left and right hand sides of (7.3) both converge to Rη(t),
so by the squeeze theorem we obtain
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− lim
N→∞

bNtc∑
j=1

log

[
1− 1

N (j)

]
= Rη(t).

Therefore, we conclude P(T2,2 > t) = e−Rη(t). ut

Remark 7.5. We want limt→∞ P(T2,2 ≤ t) = 1, so we require η to satisfy limt→∞Rη(t) =∞.

Proposition 7.6. Define σn+1 = 0 and σk = tn+ tn−1 + · · ·+ tk for k = 2, . . . , n. The joint
probability density function of Tn,n, . . . , Tn,2 is given by

fTn,n,...,Tn,2(tn, . . . , t2) =

n∏
k=2

(
k

2

)
1

η(σk)
e−(k2)[Rη(σk)−Rη(σk+1)]. (7.4)

Proof. Noting that Tn,n, . . . , Tn,2 is a Markov chain, we can decompose the joint distribution
of Tn,n, . . . , Tn,2 as a product of the following conditional distributions:

Tn,n−1 | Tn,n = tn

Tn,n−2 | (Tn,n, Tn,n−1) = (tn, tn−1)

...

Tn,2 | (Tn,n, . . . , Tn,3) = (tn, . . . , t3)

Now note that the condition distribution of Tn,k given (Tn,n, . . . , Tn,k+1) = (tn, . . . , tk+1)
depends on Tn,n, . . . , Tn,k+1 only through the sum Tn,n+· · ·+Tn,k+1 = tn+· · ·+tk+1 = σk+1.
Further, this conditional distribution is equal to the distribution of the time to the first
coalescence event in the coalescent process starting at time σk+1 with k lineages. Therefore,

fTn,k|(Tn,n,...,Tn,k+1)=(tn,...,tk+1)(tk) =

(
k

2

)
1

η(σk)
exp

[
−
(
k

2

)∫ σk

σk+1

1

η(s)
ds

]
=

(
k

2

)
1

η(σk)
exp

{
−
(
k

2

)
[R(σk)−R(σk+1)]

}
,

and combining these conditional densities yields the desired result. ut

Let {A(η)
n (t), t ≥ 0} denote the ancestral process for population size η, where A

(η)
n (t)

denotes the number of ancestral lineages at time t for a sample of size n taken at time

0. For non-constant η, {A(η)
n (t), t ≥ 0} is a time-inhomogeneous Markov chain on [n]. For

0 < h� 1, note that

P(A
(η)
2 (t+ h) = 1 | A(η)

2 (t) = 2) = P(T2,2 ≤ t+ h | T2,2 > t)

=
P(t < T2,2 ≤ t+ h)

P(t > T2,2)

=
e−Rη(t) − e−Rη(t+h)

e−Rη(t)

=
1

η(t)
h+ o(h).
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In general, for n ≥ 2 and 0 < h� 1,

P(A(η)
n (t+ h) = j | A(η)

n (t) = k) =


(
k
2

)
1
η(t)h+ o(h), j = k − 1,

1−
(
k
2

)
1
η(t)h+ o(h), j = k,

o(h), otherwise.

What this implies is that we can relate {A(η)
n (t), t ≥ 0} to the ancestral process for the

constant population size model with η ≡ 1. More precisely, we have

A(η)
n (t)

d
= A(1)

n (Rη(t)).

So, P(A
(η)
n (t) = j) is obtained from (1.6) by simply replacing e−(k2)t with e−(k2)Rη(t).

This suggests an algorithm for sampling inter-coalescence times T
(η)
n,n, . . . , T

(η)
n,2 under a

variable population size function η:

1. Simulate Tn, . . . , T2, where Tk ∼ Exp[
(
k
2

)
], and let sn, . . . , s2 denote the sampled times.

2. Solve for tn using Rη(tn) = sn and then set σn = tn.
3. For k = n − 1, . . . , 2, solve for tk using sk = Rη(σk+1 + tk) − Rη(σk+1) and then set
σk = σk+1 + tk.

In general it is not possible to solve for tk in closed form. An exception is when η(t) = e−αt,
in which case Rη(t) = 1

α (eαt − 1) and tk = 1
α log(1 + αske

−ασk+1).

7.3 The expected SFS under variable population size

Recall that we use τn,b to denote the sum of the lengths of all edges each subtending exactly
b leaves; see Definition 5.9 and Figure 5.2. The expected site frequency spectrum (SFS)
can be easily found if we know E[τn,b]. Good news is that the formula for E[τn,b] shown in
(5.8) applies to an arbitrary population size function. However, computing the expectation
E[Tn,k] is generally challenging, except in the case of a constant population size. For one
thing, although the joint density of Tn,n, . . . , Tn,2 is straightforward to write down (see
(7.4)), finding the marginal distribution of Tn,k is not easy. Fortunately, there is a very nice
solution to this problem, which we detail below.

7.3.1 Inter-coalescence times in terms of first-coalescence times

Polanski and Kimmel (2003) came up with a beautiful solution to computing the expected
SFS under variable population size. Building on their earlier work (Polanski et al, 2003), they
found an efficient, numerically stable way of computing E[τn,b] without having to compute
E[Tn,k] explicitly. Here, we provide an alternate proof of their result. First we establish a
useful lemma by using exchangeability and the consistency property of the coalescent (cf.,
Chapter 2.11), in a similar vein as Kamm et al (2017).
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Lemma 7.7. For k + 1 ≤ n,

E[Tn−1,k] =
k(k + 1)

n(n− 1)
E[Tn,k+1] +

[
1− k(k − 1)

n(n− 1)

]
E[Tn,k]. (7.5)

Proof. Let {ξn,k, k = n, . . . , 2} denote the jump chain embedded in the n-coalescent. Then,

Tn−1,k = I({n} ∈ ξn,k+1)Tn,k+1 + I({n} 6∈ ξn,k)Tn,k, (7.6)

which can be seen as follows. In a coalescent tree with n leaves labeled by 1, . . . , n, consider
the subtree corresponding to the subsample 1, 2, . . . , n− 1. As illustrated in Figure 7.1, let
Tn−1,n−1, . . . , Tn−1,2 denote the inter-coalescence times of that subtree, while Tn,n, . . . , Tn,2
denotes the inter-coalescence times of the full tree. Suppose that when the nth lineage in
the full tree coalesces with another lineage, there are j lineages in the subtree. Then, for
k > j, we have Tn−1,k = Tn,k+1, while for k < j, we have Tn−1,k = Tn,k. Furthermore,
Tn−1,j = Tn,j+1 + Tn,j . This establishes (7.6).

Now, noting that I({n} ∈ ξn,k+1) and Tn,k+1 are independent random variables, and
likewise for I({n} 6∈ ξn,k) and Tn,k, we obtain

E[Tn−1,k] = P({n} ∈ ξn,k+1)E[Tn,k+1] + P({n} 6∈ ξn,k)E[Tn,k].

To complete the proof, note that

P({n} ∈ ξn,i) =

n∏
l=i+1

[
1− l − 1(

l
2

) ] =
i(i− 1)

n(n− 1)
,

which follows from the fact that the probability that a particular lineage is involved in a
coalescence event while there are l lineages is l−1

(l2)
. ut

Using (7.5), we can rewrite E[Tn,k] as

E[Tn,k] =

[
1− k(k − 1)

n(n− 1)

]−1(
E[Tn−1,k]− k(k + 1)

n(n− 1)
E[Tn,k+1]

)
.

By iteratively applying this recursion, we can represent E[Tn,k] as a linear combination of
E[Tm,m]:

E[Tn,k] =

n∑
m=2

An,k,mE[Tm,m], (7.7)

where An,k,m are combinatorial factors that do not depend on η. (Note that An,k,m = 0 for
m < k.) This is a useful result, since E[Tm,m] can be computed easily:

E[Tm,m] =

∫ ∞
0

P(Tm,m > t)dt =

∫ ∞
0

e−(m2 )Rη(t)dt. (7.8)

Unfortunately, the coefficients An,k,m are extremely large and have alternating signs, so
evaluating (7.7) is numerically unstable due to catastrophic cancellation. However, plugging
(7.7) into (5.8), we obtain the following result:

c©Yun S. Song. DRAFT – May 5, 2021



114 7 Variable population size

1 2 3 456

T5,5

T5,4

T5,3

T5,2

T6,6

T6,5

T6,4

T6,3

T6,2

Fig. 7.1: Inter-coalescence times for the full sample {1, . . . , n} (shown on the left) and that
for the subsample {1, . . . , n − 1} (shown on the right), where n = 6. Note that T5,5 =
T6,6, T5,4 = T6,5 and T5,2 = T6,2, while T5,3 = T6,4 + T6,3.

Theorem 7.8 (Polanski and Kimmel 2003). For all n > 1, there exist universal con-
stants Wn,b,m independent of η, where b = 1, . . . , n− 1 and m = 2, . . . , n, such that

E[τn,b] =

n∑
m=2

Wn,b,mE[Tm,m]. (7.9)

Proof. Using (7.7) in (5.8), we obtain

E(τn,b) =

n∑
k=2

pn,k(b) · k
n∑

m=2

An,k,mE[Tm,m] =

n∑
m=2

(
n∑
k=2

k pn,k(b)An,k,m

)
E[Tm,m],

where

pn,k(b) =

(
n−b−1
k−2

)(
n−1
k−1

) . (7.10)

So, setting Wn,b,m =
∑n
k=2 k pn,k(b)An,k,m completes the proof. ut

Empirically, the constants Wn,b,m grow much less quickly than do An,k,m, so (7.9) is
much more numerically stable than first computing E[Tn,k] using (7.7) and plugging them
into (5.8). Furthermore, Polanski and Kimmel (2003) showed that Wn,b,m can be computed
recursively:
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Wn,b,2 =
6

n+ 1
,

Wn,b,3 = 30
(n− 2b)

(n+ 1)(n+ 2)
,

Wn,b,m+2 = − (1 +m)(3 + 2m)(n−m)

m(2m− 1)(n+m+ 1)
Wn,b,m +

(3 + 2m)(n− 2b)

m(n+m+ 1)
Wn,b,m+1.

7.3.2 Monotonicity and convexity

Sargsyan and Wakeley (2008) proved interesting properties of E[τn,b] that hold for an ar-
bitrary population size function η. Recall the combinatorial coefficient pn,k(b) defined in
(7.10). For k = 2, we have pn,k(b) = 1/(n − 1) for all b. For k > 2 and 1 ≤ b ≤ n − k,
Sargsyan and Wakeley noted that pn,k(b) satisfies

pn,k(b)− pn,k(b+ 1) = pn,k(b)
k − 2

n− b− 1
> 0.

Also, since pn,k(b) = 0 if b > n− k + 1, we have pn,k(b)− pn,k(b+ 1) ≥ 0 for b ≥ n− k + 1.
Hence, for fixed values of n and k, where 2 ≤ k ≤ n, we conclude that pn,k(b) is a non-
increasing function of b. Then, since E[τn,b] is a linear combination of pn,2(b), . . . , pn,n(b)
with positive coefficients (namely, kE[Tn,k]) and each pn,k(b) is a non-increasing function of
b, we conclude that E[τn,b] is a non-increasing function of b.

In addition, Sargsyan and Wakeley showed that pn,k(b) is convex in b, which implies that
E[τn,b] is also convex in b.

7.4 SFS-based likelihoods

Consider a locus with m sites and let θ/2 denote the population-scaled mutation rate for the
whole locus. If the per-site per-generation mutation rate is µ and Nref denotes a reference
population size, then

θ = 4Nrefmµ.

In a sample of size n, suppose we observe s = (s1, . . . , sn−1) as the frequency spectrum at
the locus, where sb denotes the number of sites each with b derived alleles. What is the
probability of this event under the infinite-sites model of mutation and a given demographic
model Φ? Below we closely follow the exposition of Bhaskar et al (2015) to present two
extreme cases, namely, completely linked and completely unlinked loci.
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7.4.1 Completely linked case

If the locus under consideration is completely linked, then the n haplotypes in the sample
are related by the same coalescent tree T at all sites of the locus, and we have

P(s | T, Φ, θ) =

n−1∏
b=1

exp

[
−θ

2
τn,b(T )

] [ θ
2τn,b(T )

]sb
sb!

, (7.11)

where τn,b(T ) is the sum of the lengths of all branches in T that subtend b descendant leaves.
To compute the probability of observing s, we need to integrate (7.11) over the distribution
f(T | Φ) of T under the demography Φ. Let Tn denote the space of coalescent trees with
n leaves (capturing both tree topologies and branch lengths). Then, abusing notation, the
probability P(s | Φ, θ) can be written as

P(s | Φ, θ) =

∫
Tn

P(s | T, Φ, θ)f(T | Φ) dT

=

∫
Tn

{
n−1∏
b=1

[
θ
2τn,b(T )

]sb
sb!

}
exp

[
−θ

2
τn(T )

]
f(T | Φ) dT

=

∫
Tn

(
s

s1, . . . , sn−1

){n−1∏
b=1

[
τn,b(T )

τn(T )

]sb}
exp

[
−θ

2
τn(T )

] [ θ
2τn(T )

]s
s!

f(T | Φ) dT,

(7.12)

where s =
∑n−1
b=1 sb and τn(T ) =

∑n−1
b=1 τn,b(T ), the total branch length of T . Lohse et al

(2011, 2016) recently developed an interesting technique based on generating functions for
computing likelihoods of this kind, but unfortunately the approach does not scale well with
sample size. When the sample size is moderate to large, it is unknown how to efficiently and
exactly compute (7.12), even for a constant population size demographic model. So, recent
works (Keinan and Clark, 2012; Nelson et al, 2012) approximated the integral in (7.12) by
sampling coalescent trees under the demographic model Φ, and tried to find the MLE for θ
by repeating this Monte-Carlo integration for each value of θ in some grid.

7.4.2 Completely unlinked case: Poisson Random Field

The opposite extreme is the Poisson Random Field (PRF) approximation of Sawyer and
Hartl (1992), which assumes that all the sites in a given locus are completely unlinked; i.e.,
the underlying coalescent tree at each site is independent of the trees at other sites. Under
this assumption, the probability of observing the frequency spectrum s is given by

P(s | Φ, θ) =

[
n−1∏
b=1

(
θ
2EΦ[τn,b]

)
sb!

sb
]

exp

(
−θ

2
EΦ[τn]

)

= C

[
n−1∏
b=1

(
θ

2
EΦ[τn,b]

)sb]
exp

(
−θ

2
EΦ[τn]

)
, (7.13)
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where C =
∏n−1
b=1

1
sb!

is a data-dependent constant that can be ignored for maximum like-

lihood estimation, and the expectations EΦ[·] are taken over the distribution on coalescent
trees with n leaves under the demographic model Φ. Therefore, under the PRF approxima-
tion, the problem of computing the likelihood in (7.13) reduces to that of computing the
expectations EΦ[τn,b] and EΦ[τn]. Using the results discussed in Chapter 7.3, this can be
done numerically stably and exactly for a wide class of population size functions. Taking log-
arithms on both sides of (7.13), we obtain the following log-likelihood for the demographic
model Φ and mutation rate θ:

L(Φ, θ) = logP(s | Φ, θ) =

n−1∑
b=1

sb (logEΦ[τn,b] + log θ)− θ

2
EΦ[τn] + constant(s), (7.14)

where constant(s) depends on s but not on Φ or θ.
Now suppose there are L independent loci with observed frequency spectrum s(l) =

(s
(l)
1 , . . . , s

(l)
n−1) and mutation rate θ(l)/2 for the lth locus. Assuming that each locus is

completely unlinked, the one-locus log-likelihood in (7.14) can be summed across all loci
l = 1, . . . , L, yielding

L(Φ, {θ(l)}Ll=1) = logP({s(l)}Ll=1 | Φ, {θ(l)}Ll=1)

=

L∑
l=1

[
n−1∑
b=1

s
(l)
b

(
logEΦ[τn,b] + log θ(l)

)
− θ(l)

2
EΦ[τn]

]
+ constant({s(l)}Ll=1).

(7.15)

It is easy to see that L is a concave function of θ(l), since the Hessian of L with respect to
θ = (θ(1), . . . , θ(L)) is negative definite for all θ � 0, as can be seen from

∂2L
∂θ(l)∂θ(l′)

= −δl,l′
1

[θ(l)]
2

n−1∑
b=1

s
(l)
b .

Hence, the mutation rates that maximize L are the solutions of

0 =
∂L
∂θ(l)

=
1

θ(l)

n−1∑
b=1

s
(l)
b −

1

2
EΦ[τn],

yielding the following MLE for θ(l) given the demographic model Φ:

θ̂(l) =
2
∑n−1
b=1 s

(l)
b

EΦ[τn]
, (7.16)

which generalizes Watterson’s (1975) estimator to the case of variable population size. Sub-
stituting this MLE for θ(l) into (7.15), we obtain the following log-likelihood for Φ with the
optimal mutation rates:

L(Φ) =

n−1∑
b=1

[(
L∑
l=1

s
(l)
b

)
log

(
EΦ[τn,b]

EΦ[τn]

)]
+ constant({s(l)}Ll=1). (7.17)
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Now, define the discrete probability distribution pn = {pn,b}n−1
b=1 , where

pn,b =

∑L
l=1 s

(l)
b∑n−1

k=1

∑L
l=1 s

(l)
k

,

and let qn(Φ) = {qn,b(Φ)}n−1
b=1 , where

qn,b(Φ) =
EΦ[τn,b]

EΦ[τn]
.

Then, the MLE of the likelihood function L(Φ) in (7.17) is given by (Bhaskar et al, 2015)

Φ̂ = arg max
Φ

L(Φ) = arg min
Φ

KL(pn‖qn(Φ)),

where KL(P‖Q) denotes the Kullback-Liebler divergence of distribution Q from P .
In summary, for a given demographic model Φ, one can compute the log-likelihood using

(7.17), and infer the optimal mutation rate at each locus using (7.16). The gradient of L(Φ)
with respect to Φ can be computed using automatic differentiation (Griewank and Corliss,
1991), which allows one to search over the space of demographic models more efficiently
using standard gradient-based optimization algorithms.

7.5 A recursion for efficiently computing P(Am(t) = k)

For a fixed positive integer n, Kamm et al (2017) showed that P(Am(t) = k) for all values
of k,m satisfying 1 ≤ k ≤ m ≤ n can be computed efficiently in O(n2) time. The idea is
to use exchangeability and the consistency property of the coalescent, as in the proof of
Lemma 7.7. Let {Cm(t), t ≥ 0} denote the m-coalescent. Then, note that

P(Am−1(t) = k) = P(Am(t) = k + 1, {m} ∈ Cm(t)) + P(Am(t) = k, {m} /∈ Cm(t))

= P({m} ∈ ξm,k+1)P(Am(t) = k + 1) + P({m} /∈ ξm,k)P(Am(t) = k)

=
k(k + 1)

m(m− 1)
P(Am(t) = k + 1) +

[
1− k(k − 1)

m(m− 1)

]
P(Am(t) = k).

Upon rearranging the above equation, we obtain the recursion

P(Am(t) = k) =

[
1− k(k − 1)

m(m− 1)

]−1 [
P(Am−1(t) = k)− k(k + 1)

m(m− 1)
P(Am(t) = k + 1)

]
with boundary conditions

P(Am(t) = m) = e−(m2 )Rη(t).

Hence, after computing Rη(t), we can use the above recursion and memoization to solve for
all of the O(n2) terms P(Am(t) = k), where 1 ≤ k ≤ m ≤ n, in O(n2) time.
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7.6 Identifiability of population size histories from the SFS

Numerous empirical studies in population genetics have been based on the SFS, which
describes the distribution of the number of mutant alleles at a polymorphic site in a sample of
DNA sequences. This widely-used summary statistic provides a highly efficient dimensional
reduction of large-scale population genomic variation data, summarizing the information in
n sequences of arbitrary length in just n− 1 numbers.

Suppose the mutation rate is low so that the infinite-sites model is applicable. Then,
given a sample of n sequences, its empirical SFS is f̂n = (f̂n,1, . . . , f̂n,n−1), where f̂n,b, for
b ∈ {1, . . . , n− 1}, is defined as

f̂n,b =
# sites with b mutant alleles and n− b ancestral alleles

# segregating sites
.

Example 7.9. Suppose 1 denotes the mutant type and 0 the ancestral type, and consider the
following four sequences:

Sequence 1 = 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
Sequence 2 = 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
Sequence 3 = 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Sequence 4 = 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Count of 1s: 1 3 1 1 2 1

There are six segregating sites and the count of 1s at those sites are shown above. The
empirical SFS corresponding to the above toy data are

f̂4,1 =
4

6
, f̂4,2 =

1

6
, f̂4,3 =

1

6
,

which sum to 1.

Under a given model Θ of population size history, the expected SFS for a sample of n

sequences is defined as f
(Θ)
n = (f

(Θ)
n,1 , . . . , f

(Θ)
n,n−1), where f

(Θ)
n,b is the conditional probability

that a site has b mutant alleles and n− b ancestral alleles given that the site is segregating.

As discussed in Chapter 7.3, the mathematical dependence of the expected SFS f
(Θ)
n on

the underlying population demography Θ is well understood, and we can compute f
(Θ)
n

efficiently.
By the law of large numbers, as the number of segregating sites tends to infinity, the

empirical SFS converges almost surely to the expected SFS corresponding to the true de-
mographic model. The question of identifiability is whether the expected SFS uniquely
determines the population size history. In other words, how much information about the
underlying demography is captured by the expected SFS? Which population size functions
are identifiable and what is the sample size n needed to guarantee unique recovery of the
true population size function from the expected SFS?

7.6.1 An analogy: Can you hear the shape of a drum?

Before we proceed with the SFS question, it would help to draw an analogy at this point. A
famous question in analysis (Kac, 1966) is whether one can uniquely determine the shape
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Fig. 7.2: A counterexample to the “can you hear the shape of a drum” problem constructed
by Gordon et al (1992). The two drumheads have different shapes, but they have exactly
the same set of Dirichlet eigenvalues.

of a two-dimensional drumhead from the sound it makes, more precisely by knowing the
complete list of overtones that the drumhead is capable of producing. Mathematically this
question can be translated to whether two plane regions with different boundaries can have
exactly the same set of eigenvalues of the Laplacian, with the Dirichlet boundary condition
that the eigenfunction vanishes at the boundary.

Gordon et al (1992) proved that the answer to this question is negative if arbitrarily
shaped drumheads are allowed. They actually constructed an explicit counterexample, illus-
trated in Figure 7.2. Note that these shapes have sharp corners and do not exhibit symme-
tries. Interestingly, Zelditch (2000) showed that if drumhead shapes are constrained to have
analytical boundaries and certain reflection symmetries, then the answer to the question is
positive.

7.6.2 Non-identifiability and an explicit counterexample

Suppose we have perfect information about the expected SFS fn for n genomes randomly
sampled from a population. Can the data uniquely determine η(t)? If η(t) is allowed to be
arbitrary, the answer to this question is negative. Myers et al (2008) proved that different
population size functions can generate the same expected SFS fn = (fn,1, . . . , fn,n−1) for all
sample sizes n. Using Müntz-Szasz theory, they showed that there exist smooth functions F
such that for every population size function η, both η and η+F generate the same expected
SFS for all n. Furthermore, they constructed an explicit example of such a function F (t):

F (t) =

∫ t

0

g0(t− u)g1(u)du,

where g1(t) = cos(π2/t) exp(−t/8)√
t

and g0(t) = exp(−1/t2). Because of the cos(π2/t) term, this

F (t) oscillates at an increasingly higher frequency as time approaches the present.
The population size functions involved in the counterexample are arguably unrealistic for

biological populations, since birth and death rates in a real population are bounded. Then,
one may ask,

1. What kind of population size models are identifiable?
2. What sample sizes are required for identifiability?

c©Yun S. Song. DRAFT – May 5, 2021



7.6 Identifiability of population size histories from the SFS 121

Bhaskar and Song (2014) provided answers to these questions. As in the drum analogy
discussed in the previous section, although the population size function η is in general not
identifiable from the SFS if η is allowed to be arbitrary, we can achieve identifiability if we
impose suitable constraints on η.

Definition 7.10 (F , family of piecewise continuous population size functions). A
family F of piecewise continuous population size functions is a set of positive piecewise
continuous functions g : R≥0 → R+ of a particular type parameterized by a collection of
variables.

7.6.3 Rule of signs

Definition 7.11 (A zero of multiplicity m). Let g be a smooth function on [a, b] ⊂ R.
We say that g has a zero (or root) of multiplicity m ∈ N at the point x0 ∈ [a, b] if

g(x0) = g′(x0) = · · · = g(m−1)(x0) = 0 and g(m)(x0) 6= 0.

Let Z(g, I) denote the number of zeros of g in interval I, counted with their multiplicity.

Theorem 7.12 (Rolle’s Theorem). Let g : R → R be a differentiable function on [a, b]
that satisfies g(a) = g(b). Then, there exists at least one point x0 in the open interval (a, b)
such that g′(x0) = 0.

Lemma 7.13. For all smooth function g and interval I, Z(g, I) ≤ Z(g′, I) + 1.

Proof. Suppose g has n zeros x1, . . . , xn in I with multiplicity m1, . . . ,mn, respectively.
Then, for all r = 1, . . . n, the point xr is a zero of g′ with multiplicity mr − 1. Furthermore,
by Theorem 7.12, g′ has at least one zero between each consecutive points of x1, . . . , xn. So,

Z(g′, I) ≥ n− 1 +

n∑
r=1

(mr − 1) = n− 1 + Z(g, I)− n = Z(g, I)− 1.

ut

Suppose an, . . . , a0 ∈ R and pn, . . . , p1 ∈ R where pn > pn−1 > · · · > p1.

• Ordinary polynomials:

P (x) = anx
n + an−1x

n−1 + · · ·+ a0, where x ∈ R.

• Generalized polynomials:

Q(t) = ant
pn + an−1t

pn−1 + · · ·+ a1t
p1 , where t ∈ R+.

• Generalized Dirichlet polynomials:

D(x) = ane
pnx + an−1e

pn−1x + · · ·+ a1e
p1x, where x ∈ R.
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Theorem 7.14 (Descartes’ rule of signs). Counted with multiplicity, let Z+(P ) denote
the number of positive zeros of P and let Z(Q), Z(D) denote the number of zeros of Q,D
over their respective domains. Let S[(aj)] denote the number of sign changes in the sequence
an, an−1, . . . , a0. Then,

Z+(P ) ≤ S[(aj)], Z(Q) ≤ S[(aj)], Z(D) ≤ S[(aj)]

Proof. We prove by induction on the number of sign changes. Let D(x) =
∑n
j=1 aje

pjx,
where p1 < p2 < · · · < pn. Suppose S[(aj)] = 0. Then, either D(x) > 0 for all x or D(x) < 0
for all x ∈ R, so Z(D) = 0. Assume Z(D) ≤ S[(aj)] holds when there are ≤ s sign changes.
Suppose S[(aj)] = s + 1 and suppose that a sign change in a1, . . . , an occurs at index k.
Choose p such that pk−1 < p < pk and define

F (x) = e−pxD(x) =

n∑
j=1

aje
(pj−p)x.

Note that D and F have the same zeros. Further

F ′(x) =

n∑
j=1

(pj − p)aje(pj−p)x.

Define bj = (pj − p)aj . Then, the sequence b1, . . . , bn does not change sign at index k,
so S[(bj)] = s and the induction hypothesis implies Z(F ′) ≤ s. Finally, Z(D) = Z(F ) ≤
Z(F ′) + 1 ≤ s+ 1. ut

Example 7.15. How many positive roots does the following polynomial have?

P (x) = x100 − 7x77 + 13x14 + 19x3 + 8.

Since the sequence of coefficients has two sign changes, Descartes’ rule of signs implies
Z+(P ) ≤ 2. In fact, P (x) has exactly two positive roots. How many negative roots does it
have? Since

P (−x) = x100 + 7x77 + 13x14 − 19x3 + 8

has two sign changes, applying Descartes’ rule of signs implies to this polynomial implies
that P has at most 2 negative roots. In fact, it turns out that P has exactly two negative
roots.

We use σ(g) to denote the number of sign changes of a function g; it counts the number
of times the function g changes value from positive to negative (and vice versa) while ig-
noring intervals where it is identically zero. See Bhaskar and Song (2014) for a more precise
definition.

Theorem 7.16 (Generalized Descartes’ rule of signs). Let g : R≥0 → R be a piecewise-
continuous function which is not identically zero and with a finite number σ(g) of sign
changes. Then, the function G(x) defined by

G(x) =

∫ ∞
0

g(t)e−tx dt

has at most σ(g) roots in R (counted with multiplicity).
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Proof. By induction on the number of sign changes of g. If g has zero sign changes, then
without loss of generality, g(t) ≥ 0 for t ∈ (0,∞) and g(t) > 0 for some interval (a, b) ⊆
(0,∞). Hence, G(x) > 0 for all x, and the base case holds. Assume the statement holds up
to m and suppose g has m+ 1 sign change points t0, . . . , tm, where m ≥ 0.

Note that G(x) and F (x) = et0xG(x) have the same real-valued roots (with multiplicity)
since et0x > 0 for all x ∈ R. Further, F ′(x) is given by

F ′(x) =
d

dx

(∫ ∞
0

g(t)e−(t−t0)x dt

)
=

∫ ∞
0

(t0 − t)g(t)e−(t−t0)x dt,

where the interchange of the differential and integral operators in the second equality is
justified by the Leibniz integral rule.

Note that the set of sign change points of (t0 − t)g(t) is {t1, . . . , tm}. Hence (t0 − t)g(t)
has only m sign changes.

By the induction hypothesis, F ′ has at most m real-valued roots. By Theorem 7.12, the
number of real-valued roots of F is at most one more than the number of real-valued roots
of F ′. Hence, F has at most m + 1 real-valued roots, implying that G has at most m + 1
real-valued roots. ut

7.6.4 Identifiability

Recall the time-rescaling function Rη defined in (7.1). Using this function, we define the
time-rescaled population size function η̃ as

η̃(τ) = η(R−1
η (τ)).

Then, E[Tm,m] shown in (7.8), the expected time to the first coalescence for a sample of size
m, can be written as

E[Tm,m] =

∫ ∞
0

η̃(τ) e−(m2 )τdτ, (7.18)

which is the Laplace transform of η̃ evaluated at −
(
m
2

)
. By Theorem 7.8, we know that

E[τn,b] is determined by the collection E[T2,2], . . . ,E[Tn,n] of expected first coalescence times
for sample sizes 2 to n. Furthermore, one can prove that the (n − 1)-by-(n − 1) matrix
W n = (Wn,b,m) appearing in Theorem 7.8 is invertible. Therefore, there is a one-to-one
correspondence between {E[τn,b]}b=1,...,n−1 and {E[Tm,m]}m=2,...,n. Hence, the question of
identifiability is equivalent to asking under what conditions the collection {E[Tm,m]}m=2,...,n

uniquely determines the population size function. Recently Bhaskar and Song (2014) found
sufficient conditions for identifiability and their results are given in terms of the following
quantity:

Definition 7.17 (Sign change complexity). We define the sign change complexity S (F)
of a function family F as

S (F) = sup
η1,η2∈F

{σ(η̃1 − η̃2)} .
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Lemma 7.18 (Bhaskar and Song 2014). If S (F) < ∞ and n ≥ S (F) + 2, then the
collection {E[Tm,m]}m=2,...,n of expected first-coalescence times uniquely determines the pop-
ulation size function in F . In other words, for n ≥ S (F)+2, the map (E[T2,2], . . . ,E[Tn,n]) :
F → Rn−1

+ is injective.

Proof. Suppose there exist two distinct models η1, η2 ∈ F that produce exactly the same
E[Tm,m] for all 2 ≤ m ≤ n. Then, by (7.18),∫ ∞

0

[η̃1(τ)− η̃2(τ)]e−(m2 )τdτ = 0

for all 2 ≤ m ≤ n. Define the function G(x) as

G(x) =

∫ ∞
0

[η̃1(τ)− η̃2(τ)]exτdτ.

Since −
(
m
2

)
is a root of G(x) for 2 ≤ m ≤ n, we conclude Z(G) ≥ n − 1. However, by

generalized Descartes’ rule of signs (cf., Theorem 7.16),

Z(G) ≤ σ(η̃1 − η̃2) ≤ S (F),

where the second inequality the definition of S (F) (cf., Definition 7.17). Hence, we get a
contradiction if n− 1 > S (F), which is equivalent to the condition n ≥ S (F) + 2. ut

Putting together the above discussion and recalling that the unnormalized SFS is given
by

E[ζn,b] =
θ

2
E[τn,b],

we obtain the following result:

Theorem 7.19 (Sufficient conditions for identifiability). If S (F) < ∞ and n ≥
S (F) + 2, then the expected unnormalized SFS (E[ζn,1], . . . ,E[ζn,n−1]) uniquely determines
the population size function in F .

Example 7.20. The following conditions are sufficient for guaranteeing identifiability of pop-
ulation size functions from the expected unnormalized SFS:

1. n ≥ 2K for F = the set of piecewise-constant functions with K pieces.
2. n ≥ 4K − 1 for F = the set of piecewise-exponential functions with K pieces.
3. n ≥ 6K−2 for F = the set of piecewise-generalized-exponential functions with K pieces.

Consider a piecewise-defined population size function η ∈ F that produces E[Tm,m] = cm
for 2 ≤ m ≤ n. Suppose S (F) < ∞ and n ≥ S (F) + 2. Then, for every fixed s ∈ R+,
there exists a unique population size function ηs ∈ F with E[Tm,m] = s · cm for 2 ≤ m ≤ n.
Furthermore, this population size function ηs is given by ηs(t) = s · η(t/s).

Definition 7.21 (Equivalent piecewise population size functions). Given two models
η1, η2 ∈ F , we say that η1 and η2 are equivalent, and write η1 ∼ η2, if they are related by
rescaling time and population sizes as described above.

Since fn,b = E[ζn,b]/
∑n−1
k=1 E[ζn,k], we note that η and ηs produce the same fn,b. So, there

is a one-parameter family of population size functions in F that produce exactly the same
expected normalized SFS, as formalized by the following theorem (Bhaskar and Song, 2014):
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Theorem 7.22 (Identifiability from the expected SFS). If S (F) < ∞ and n ≥
S (F) + 2, then the expected normalized SFS fn = (fn,1, . . . , fn,n−1) uniquely determines a
unique equivalence class [η] of models in F/∼.

See Bhaskar and Song (2014) for results on the identifiability of population size functions
from the folded SFS. Since the folded SFS has roughly half the number of entries as the
unfolded SFS (cf., Definition 5.4), we expect to require roughly twice as large of a sample to
achieve identifiability, and this intuition turns out to be correct. More precisely, one gains
a factor of 2 in front of the sign change complexity S (F) term in the sample size lower
bound.

7.7 Minimax error for population size estimation based on the SFS

As detailed in the previous section, the expected SFS uniquely determines the population
size function η(t) provided that it has a finite number of oscillations and the sample size n
is sufficiently large. We discussed a general bound on n sufficient to guarantee identifiability
and saw that the bound depends on the type of population size function. When studying
identifiability, we assume that an infinite amount of data is available; that is, we assume
that the number s of segregating sites is unlimited so that we can obtain perfect estimates
of the expected SFS. In practice, s is finite and only a perturbed version of the expected
frequency spectrum, say f̂n, is observed. From a practical standpoint, it is important to
understand how these perturbations ultimately affect the parameter estimate η̂(t).

This question was addressed by Terhorst and Song (2015), who showed that using the
SFS to estimate the size history of a population has a minimax error of at least O(1/ log s),
where s is the number of independent segregating sites used in the analysis. This is an
information-theoretic result in nature and applies to any estimator that operates solely on
the SFS. This lower bound of O(1/ log s) on the minimax error is rather surprising in a
couple of ways:

1. The minimax error for many classical estimation problems in statistics (for example, non-
parametric regression or density estimation) decays inverse polynomially in the amount
of data. Compared with these problems, exponentially more data would be required to
estimate a population size history function to within a similar magnitude of error.

2. The bound does not depend on n, which means that, for a fixed number s of segregating
sites considered, using more individuals does not help to reduce the minimax error bound.

This minimax error result pertains to populations that have experienced a bottleneck, and
it can be expected to apply to many populations in nature.

7.8 Geometry of the SFS

Rosen et al (2018)
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Chapter 8

Multiple populations

In this chapter, we consider the structured coalescent (see also Wakeley (2008, Chapter 5) for
an introduction). This is the first example of a coalescent process in which exchangeability
is violated. The structured coalescent is appropriate when there is non-random mating, for
example by geographic isolation of individuals into distinct demes. However, a number of
other modeling assumptions have the structured coalescent as their limiting behavior.

8.1 The structured coalescent

We assume a finite number d of subpopulations, or demes, labeled 1, . . . , d, with random
mating (and hence exchangeability) within each deme, but no mating between demes. Each
deme α ∈ {1, . . . , d} is large and—for convenience—haploid, and we denote its size by Nα.
Per-generation rates of movement between demes are assumed to be low, so that migration
events occur on the same timescale as coalescence events. (The so-called strong migration
limit (Nagylaki, 1980; Notohara, 1993), in which migration events occur on a much faster
timescale than coalescence events, leads to another set of interesting dynamics which we do
not go into here.) Lineages can be thought of as carrying labels which identify the deme
in which they reside and influence their rate of coalescence. The structured coalescent will
evolve on a single timescale N , and we define the relative size of each deme by

rα =
Nα
N
.

The assumption that each deme is large corresponds to holding each rα fixed as Nα → ∞
and N → ∞. Note that there is more than one choice for the timescale N ; two natural
choices are

1. N =
∑d
α=1Nα, the total population size, and

2. N = Nα, the size of a reference deme α.

Results given in coalescent units are with respect to the chosen timescale; different authors
sometimes quote different results due to the choice of timescale. While there exist aα lineages
in deme α, the rate of coalescence of these lineages is
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aα
2

)
1

rα
.

This agrees with our intuition; smaller demes should exhibit faster rates of coalescence.
Finally, we allow migration to occur between demes at certain rates. In the discrete

model of population reproduction, let cαβ denote the probability that the parent of an
individual from deme α is from deme β one generation back in time. As with other coalescent
parameters, we hold mαβ = 2Ncαβ fixed while letting N → ∞ and cαβ → 0. Note that
these parameters are defined going backwards in time.

Our first task is to find the ancestral process. The ancestral process for the unstructured
coalescent was a death process on the natural numbers. The ancestral process for the struc-
tured coalescent, {An(t) : t ≥ 0}, applies to vectors of the form An(t) = (a1, . . . , ad) where
aα denotes the number of lineages in deme α at time t. We must have aα ≥ 0 for each α
and each t ≥ 0, and also

∑d
α=1 aα = n when t = 0.

Transition rates can be obtained by similar arguments to the unstructured case. Mim-
icking the argument given in Chapter 1, we write down the leading-order contributions to
the one-step transition probability P[AWF

n (τ + 1) = b | AWF
n (τ) = a] in the discrete-time

Wright-Fisher model:

gab = P[AWF
n (τ + 1) = b | AWF

n (τ) = a]

=



1

N
aα
mαβ

2
+O

(
1

N2

)
, if b = a− eα + eβ ,

1

N

(
aα
2

)
1

rα
+O

(
1

N2

)
, if b = a− eα,

1− 1

N

d∑
α=1

[
aα
mα

2
+

(
aα
2

)
1

rα

]
+O

(
1

N2

)
, if b = a,

O

(
1

N2

)
, otherwise,

where mα =
∑
β:β 6=αmαβ , and eα denotes a unit vector with the αth entry equal 1 and the

rest zero. As in the Kingman case, we write G = (gab) = I +Q 1
N +O( 1

N2 ), so that, for all
t ≥ 0,

GbNtc =

[
I +Q

1

N
+O

(
1

N2

)]bNtc
→ eQt,

as N → ∞. The ancestral process for the structured coalescent converges to a continuous-
time Markov process with generator Q = (qab), where
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Fig. 8.1: Two realizations of the structured coalescent for n = 10 sequences, five from each
of two demes (distinguished by the dashed line).

qab =



aα
mαβ

2
, if b = a− eα + eβ ,

(
aα
2

)
1

rα
, if b = a− eα,

−
d∑

α=1

[
aα
mα

2
+

(
aα
2

)
1

rα

]
, if b = a,

0, otherwise.

It is worth emphasizing that coalescence occurs only within demes. Unlike coalescence events,
the total number of migration events is random and unbounded. At least d− 1 are required
when initially we have aα > 0 for each α. In general, eQt does not admit simple expressions,
so, unlike in the un-structured coalescent, P(An(t) = a) is not known in closed form.

Figure 8.1 illustrates two realizations of the structured coalescent process when d = 2.
Unlike variable population size, exchangeability is violated and so both branch lengths and
topologies differ from the usual unstructured (Kingman) coalescent. The left-hand genealogy
in Figure 8.1 contains only one migration event, and so might be more typical of very low
migration rates. The branches while there exist only two ancestors can be very long while we
wait for the necessary migration event. Mutations on these branches leave a very pronounced
signature in the site frequency spectrum for the whole population; we therefore observe an
excess of variants at intermediate frequency.

8.2 Coalescence time for a pair of lineages

Here, we focus on results for a sample of size 2. Denote by T
(α)
w the time to coalescence

when both sequences are sampled from the same deme α, and denote by T
(αβ)
b the time to

coalescence when one sequence is sampled from deme α and one is sampled from deme β.
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Fig. 8.2: The symmetric island model. Subpopulation sizes are all equal, as are migration
rates between any two islands.

The subscripts “w” and “b” respectively indicate “within” and “between”. By utilizing the
Markov nature of the process and considering the most recent event back in time, we obtain
the following system of equations:

E[T (α)
w ] =

1

mα + 1
rα

+
∑
β 6=α

mαβ

mα + 1
rα

E[T
(αβ)
b ], (8.1)

E[T
(β)
b ] =

1
mα
2 +

mβ
2

+
mαβ

mα +mβ
E[T (β)

w ] +
mβα

mα +mβ
E[T (α)

w ]

+
∑
γ 6=α,β

[
mαγ

mα +mβ
E[T

(γβ)
b ] +

mβγ

mα +mβ
E[T

(αγ)
b ]

]
. (8.2)

This system does not exhibit a simple closed-form in general, and so we look at a special
case.

8.2.1 Symmetric Island Model

Suppose each island has the same size and each pair has the same migration rates (Fig-
ure 8.2), so that N = Nα and mα = m, for all α (note the different meaning of N in this
model). The migration parameter between any two demes is mαβ = m

d−1 .
The system (8.1)–(8.2) becomes

E[Tw] =
1

m+ 1
+

m

m+ 1
E[Tb],

E[Tb] =
1

m
+

1

d− 1
E[Tw] +

d− 2

d− 1
E[Tb],

which can be solved to obtain

E[Tw] = d, E[Tb] = d+
d− 1

m
.

This result deserves several remarks.

1. Time to coalescence depends on the number of demes (and is proportional to the total
population size dN).
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2. E[Tw] ≤ E[Tb], with equality as m→∞.
3. E[Tw] is independent of the migration parameter m. This at-first-sight surprising invari-

ance result is sometimes called Strobeck (1987)’s theorem. An intuition is as follows. The
time to coalescence is shorter when there is less migration to take the two lineages apart,
and there is less migration with decreasing m. On the other hand, if there is a migration
event the time to coalescence is subsequently shorter when there is more migration—so
that the two lineages can be brought back into the same deme. It turns out that these
effects on E[Tw] completely cancel out. More generally, this invariance result holds when-
ever the migration model is isotropic, that is, we have the same pattern of migration for
all demes. Formally, we may define population structure to be isotropic if for all α, β,
there exists a permutation σ ∈ Sd such that σ(α) = β and mγδ = mσ(γ)σ(δ), for each
γ, δ (Strobeck, 1987). Isotropy is a special case of conservative migration (see below).

4. Higher order moments do depend on m. For example,

Var[Tw] = d2 + 2
(d− 1)2

m
,

Var[Tb] = d2 + 2
(d− 1)2

m
+

(d− 1)2

m2
.

The mean and variance of Tw and Tb as a function of m is plotted in Figure 8.3 in the
case d = 2. Note the unusual behavior as m → 0. E[Tw] remains bounded while Var[Tw]
increases, so that the p.d.f. fTw

(t) becomes skewed as m → 0. In this limit we might
expect, but fail, to observe convergence of the moments E[Tw] and Var[Tw] to those of
the unstructured coalescent for the deme considered in isolation: We know that for m = 0
we have E[Tw] = 1 and Var[Tw] = 1. There is therefore a discontinuity in these moments
as m→ 0. In fact, we do have the following convergence result (which is nonetheless not
strong enough to ensure convergence of these moments).

Theorem 8.1 (Nath and Griffiths 1993). For d = 2,

fTw
(t)→ e−t and fTb

(t)→ 0

as m→ 0, where convergence is pointwise.

The p.d.f.s fTw(t) and fTb
(t) are plotted in Figure 8.4 for the example case d = 2.

8.2.2 Identity-by-descent (IBD) in the symmetric island model

Definition 8.2. A sample of size two is said to be identical-by-descent (IBD) if the two
samples coalesce with each other with no intervening mutations. Under the infinite-alleles
model a sample is IBD iff the samples are identical. Under more general mutation models the
samples could be identical despite having experienced (recurrent, parallel, . . .) mutations;
that is, they could be identical-by-state.

In a similar manner to coalescence times, we can calculate IBD probabilities in the restricted
setting of the symmetric island model. We recall the mutation parameter θ = 2Nu, and
denote by pw(θ) the probability that two sequences sampled from the same deme share IBD.

c©Yun S. Song. DRAFT – May 5, 2021



132 8 Multiple populations

0 1 2 3 4 5
0

1

2

3

4

5

m

E
[T

*]

 

 

E[T
w
]

E[T
b
]

0 1 2 3 4 5
0

10

20

30

40

50

m

V
a
r[

T
*]

 

 

Var[T
w
]

Var[T
b
]

Fig. 8.3: The mean and variance in the time to coalescence for two sequences drawn within
the same deme (w) or between demes (b), for a symmetric, two-island model.
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Fig. 8.4: The p.d.f.s for the time to coalescence for two sequences drawn within the same
deme (w) or between demes (b), for a symmetric, two-island model. Here, m = 1.

Similarly, denote by pb(θ) the probability that two sequences sampled from the different
demes share IBD.

Proposition 8.3. Let m̄ =
m

d− 1
and D = θ2 + θ(1 + dm̄) + m̄. Then,

pw(θ) =
θ + m̄

D
and pb(θ) =

m̄

D
.

Before proving this result, we make a couple of observations:

1. pb(θ) ≤ pw(θ), with equality only if θ = 0.

2. As m̄→∞, pw(θ) + pb(θ)→ 1

dθ + 1
.
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Each of these observations should agree with our intuition. (Why?)

Proof. By considering the most recent event back in time, we can write down the following
system of equations:

pw(θ) =
1

1 + θ +m
+

m

1 + θ +m
pb(θ),

pb(θ) =
m/(d− 1)

θ +m
pw(θ) +

m(d− 2)/(d− 1)

θ +m
pb(θ),

which can easily be solved to obtain the given expressions.

8.2.3 Wright’s FST

We can relate the parameters of the coalescent model to Wright’s classical measure of
population structure, FST , using its definition in terms of IBD:

FST =
f0 − f̄
1− f̄

,

where f0 is the probability of IBD for a sample of size 2 taken from within one deme, and f̄
is the probability of IBD for a sample of size 2 taken at random from the whole population.

The precise meaning of FST depends on the underlying demographic model. Under the
symmetric island model, f0 = pw(θ) and f̄ = 1

dpw(θ) + d−1
d pb(θ), so we can use the results

of the previous section to get

FST =
1

1 + md2

(d−1)2 + θd
d−1

≈ 1

1 + md2

(d−1)2

, when θ � 1.

A direct coalescent interpretation of FST for the symmetric island model was provided by
Slatkin (1991) when θ is small. Substituting for the approximations

pw(θ) = E[e−θTw ] ≈ 1− θE[Tw],

pb(θ) = E[e−θTb ] ≈ 1− θE[Tb],

for the symmetric island model we find

FST ≈
E[T ]− E[Tw]

E[T ]
,

where T = 1
dTw + d−1

d Tb is the coalescence time for a sample of size two drawn at random
from the whole population.

Consider the demographic model shown in Figure 8.5, depicting a clean split model. If
time is measured in units of N generations, then

E[Tb] = 2 + t,

E[Tw] = 1 + e−t,
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t

N N

2N

Fig. 8.5: A clean split model with divergence time t (in coalescent unit).

and

FST ≈
E[Tb]− E[Tw]

E[Tb] + E[Tw]
=

1 + t− e−t

3 + t+ e−t
.

8.3 Conservative migration

It is worth returning to the parameter cαβ introduced at the beginning. We ought to give
it some further justification. We interpret cαβ as the probability that the parent of an indi-
vidual in deme α came from deme β one generation ago in our discrete model of population
of reproduction, but what if these migrations occur with very high frequency, or asymmet-
rically? It seems feasible that so much migration might affect our assumption of constant
deme sizes. For concreteness assume a Wright-Fisher model in which Nα individuals have
Nα offspring in each round of reproduction and then die, with migration rates forward in
time denoted by fαβ . If each offspring then migrated independently, we can no longer guar-
antee that each Nα remains fixed. In effect, we require conservative migration: that the total
number of non-emigrants plus the number of immigrants is equal to Nα in each generation,
for each α:

Nα

1−
∑
β:β 6=α

fαβ

+
∑
β:β 6=α

Nβfβα = Nα,

which simplifies slightly to

Nα
∑
β:β 6=α

fαβ =
∑
β:β 6=α

Nβfβα.

When this holds, individuals in the population do not migrate independently. A useful way
to think of this is that a “chunk” of the offspring (of deterministically chosen size Nαfαβ) in
each deme α is chosen to move to deme β in each generation. Considering this flux backwards
in time, we see that the backwards migration parameters cαβ are related to fαβ by

cαβ =
Nβfβα
Nα

,

known as the backward migration fraction. For the symmetric island model, cαβ = fαβ = fβα.
(One might wonder what happens if we insist upon independence for the migration of

individuals in the population. An alternative formulation of the Wright-Fisher model with
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Fig. 8.6: The two-dimensional stepping-stone model. Migration occurs only between adja-
cent islands.

migration is as follows. Suppose Nα individuals each migrate independently with probability
fαβ to each deme β. After migration, deme α now has size Nα+Xα, where Xα is the random
number of net migrants. These Nα+Xα individuals then have Nα offspring and die, to form
the next generation. Notohara (1990) showed that this converges to the same structured
coalescent process as the simpler deterministic formulation given above.)

8.4 Further extensions

We have focused on simple island models to illustrate the structured coalescent process.
We briefly mention further extensions to this model which attempt to capture more biolog-
ically realistic scenarios. Perhaps the biggest restriction is the lack of a spatial component
relating the demes. Many species exhibit isolation by distance—a correlation between pair-
wise genetic differences and pairwise geographic distances. It is implicit in simple models
like the island model that the habitat limits an individual’s ability to disperse. Isolation by
distance suggests that one should also account for the physical ability of an individual to
disperse itself. As a compromise, one modification to the simple island model is to consider
a one- or two-dimensional array of islands, with non-zero migration occurring only between
adjacent islands (Figure 8.6). More ambitiously, one might model the spatial co-ordinate of
individuals as diffusion processes in R: when two diffusions collide, the individuals coalesce.
Extending this to R2 is mathematically challenging, since non-trivial diffusion processes do
not collide in R2.

Finally, we can attempt to combine population substructure and migration with variable
population size to postulate non-equilibrium models of population history. Two geographi-
cally distinct demes exhibit limited migration until some time in the past when they split,
and before which all individuals mated randomly. A well-known example is the “out-of-
Africa” expansion of modern humans. A model for this history could also include recent
population growth, a bottleneck shortly after the split, and so on. Example coalescent mod-
els incorporating many of these features simultaneously are discussed in Excoffier et al
(2013); Gravel et al (2011); Gutenkunst et al (2009); Tennessen et al (2012).
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8.5 Multi-population SFS

Kamm et al (2020, 2017)
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Recombination
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Chapter 9

The coalescent with recombination

In this chapter, we consider generalizing the coalescent to incorporate recombination, which
is an important biological process common to most forms of life. A far-reaching consequence
of recombination is that different positions in the genome can have different evolutionary
histories. Figure 9.1 illustrates why this is the case. There are two types of outcome of meiotic
recombination, namely crossover and gene-conversion; see Paigen and Petkov (2010); Sasaki
et al (2010) for reviews of recombination pathways. Here, we consider only the first type and
use the term recombination to mean crossover. The coalescent with crossover recombination
has been studied by a number of researchers in the past. Early works on the topic include
Griffiths (1981, 1991); Griffiths and Marjoram (1997); Hudson (1983). See Wiuf (2000) for
a coalescent approach to gene-conversion.

Throughout this chapter, we assume a constant population size. This assumption will be
relaxed in the next chapter, where we discuss sampling distributions.

9.1 Wright-Fisher model with recombination

The genealogical process for N diploid individuals is typically approximated by a model with
2N haploid individuals. This approximation is reasonable for describing the dynamics at a
sufficiently long evolutionary timescale. Here, we consider the Wright-Fisher model with
2N chromosomes and, for ease of description, assume that the per-generation crossover
probability is constant across the chromosome. The per-generation crossover probability for
the entire region is denoted by r.

Mathematically crossover recombination is modeled as follows: independently of all other
chromosomes in the population, with probability 1 − r each chromosome chooses only one
parent from the previous generation (corresponding to there being no recombination), or
with probability r two parents are chosen and a crossover breakpoint is introduced uniformly
at random (Figure 9.2). We refer to ρ = 4Nr as the population-scaled recombination rate
which is held fixed as N →∞ and r → 0.

139
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Generation

1

2

g

0

Fig. 9.1: Illustration of genetic material contributions from ancestors. Each circle represents
a diploid individual with two homologous chromosomes, one from their mother and the other
from their father. During meiosis, recombination takes the two homologous chromosomes of
an individual and creates a mosaic chromosome, which gets transmitted to the individual’s
child.

Fig. 9.2: The blue chromosome at the bottom inherited genetic material from two parental
chromosomes in the previous generation, which underwent recombination. Recombination
breakpoints are marked by vertical bars. One of the grandparental chromosomes (upper
left one) is not a genetic ancestor to the blue chromosome since it contributes no genetic
material.

9.2 Geneaological ancestral process

A genealogical ancestor of an individual i is any ancestor related to i through a sequence of
parent-child relationships, whereas a genetic ancestor is a genealogical ancestor who actually
contributes some genetic material to i. In Figure 9.2, one of the grandparents (upper left
one) is a genealogical ancestor but not a genetic ancestor.
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1 2 3 4

x

1 2 3 4 1 2 3 4

T (x−) T (x+)ARG

Fig. 9.3: An ancestral recombination graph (ARG) and the embedded marginal trees for a
sample of size 4. The ARG has a single recombination event with breakpoint at position x
along the chromosome. When there is a recombination event, a lineage splits into two, going
backwards in time. The marginal coalescent tree for positions to the left of the breakpoint
x is T (x−) and that to the right of x is T (x+).

Definition 9.1 (Genealogical ancestral process). In the Wright-Fisher model described

in Section 9.1, let A
(N,ρ)
n (τ) denote the number of genealogical ancestors in generation τ for a

sample of size n taken in generation 0. As usual, τ runs backwards in time. The genealogical

ancestral process {A(N,ρ)
n (τ), τ = 0, 1, . . .} is a birth-death process with state space N and

transition probabilities

P(A(N,ρ)
n (τ + 1) = j | A(N,ρ)

n (τ) = k) =


1− 1

2N

(
k
2

)
− 1

2N
kρ
2 +O( 1

N2 ), if j = k,
1

2N

(
k
2

)
+O( 1

N2 ), if j = k − 1,
1

2N
kρ
2 , if j = k + 1,

O( 1
N2 ), otherwise.

Taking the usual coalescent limit by rescaling time and sending N →∞, the genealogical
ancestral process converges to a continuous-time process. Specifically, for all t ∈ R≥0,

A(N,ρ)
n (b2Ntc) d→ A(ρ)

n (t).

The state space of {A(ρ)
n (t), t ≥ 0} is also N and state 1 is reached with probability 1 since,

when there are k lineages, the coalescence rate is quadratic in k while the recombination
rate is linear in k. A sample path from the process can be represented a data structure called
the ancestral recombination graph (ARG), illustrated in Figure 9.3.

9.2.1 Grand MRCA

The time to the grand most recent common ancestor (GMRCA) of a sample is defined as

W (ρ)
n = inf{t ≥ 0 | A(ρ)

n (t) = 1}.
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Griffiths (1991) obtained the following result on the expectation of W
(ρ)
n :

Theorem 9.2 (Expected time to the GMRCA). The expected value of the waiting time
until the GMRCA is

E[W (ρ)
n ] =

2

ρ

∫ 1

0

1− xn−1

1− x

[
eρ(1−x) − 1

]
dx. (9.1)

Remark 9.3. Before presenting a proof of the above result, we first make a few observations:

1. E[W
(ρ)
n ] is a monotonically increasing function of ρ.

2. As ρ→ 0, E[W
(ρ)
n ]→ 2

(
1− 1

n

)
, which is the correct answer for ρ = 0 (c.f., (1.11)).

3. For n = 2,

E[W
(ρ)
2 ] =

2

ρ2
[eρ − 1− ρ].

The expectation E[W
(ρ)
2 ] grows very fast with ρ, reaching above 400 for ρ = 10.

Proof. By conditioning on the first event back in time, we obtain the recursion

E[W (ρ)
n ] =

1(
n
2

)
+ nρ

2

+
n− 1

n− 1 + ρ
E[W

(ρ)
n−1] +

ρ

n− 1 + ρ
E[W

(ρ)
n+1], (9.2)

where the first term corresponds to the expected waiting time until the first event. When

n = 1, the GMRCA has been reached already, so E[W
(ρ)
1 ] = 0. However, the recursion in

(9.2) is not bounded from above (i.e., the index n will keep increasing), so it cannot be
solved directly. Griffiths (1991) suggested a clever trick of considering a related process with

a reflecting barrier at b > n. Let W
(ρ,b)
n denote the time to the GMRCA in this new process.

Then E[W
(ρ,b)
n ] satisfies (9.2) for 2 ≤ n ≤ b− 1, while for n = b

E[W
(ρ,b)
b ] = E[W

(ρ)
b−1].

With this boundary condition, (9.2) can be solved in closed form:

E[W (ρ,b)
n ] = 2

n∑
k=2

(k − 2)!

b−k−1∑
j=0

ρj

(j + k)!
,

where 2 ≤ n ≤ b− 1. Then, taking the limit as the reflecting barrier b→∞, we get

lim
b→∞

E[W (ρ,b)
n ] = E[W (ρ)

n ] = 2

n∑
k=2

(k − 2)!

∞∑
j=0

ρj

(j + k)!
,

which can be shown to be equal to the integral representation shown in (9.1). See Griffiths
(1991) for further details. ut

Theorem 9.4 (Expected time while j lineages). Let W
(ρ)
n,j denote the total waiting time

while there are j lineages until the GMRCA is reached. Then,
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E[W
(ρ)
n,j ] = 2

min(j,n)∑
k=2

(k − 2)!
ρj−k

j!
,

for j = 2, 3, . . ..

Proof. As noted by Griffiths (1991), this result can be obtained by simply modifying the
recursion (9.2) as

E[W
(ρ)
n,j ] =

δn,j(
n
2

)
+ nρ

2

+
n− 1

n− 1 + ρ
E[W

(ρ)
n−1,j ] +

ρ

n− 1 + ρ
E[W

(ρ)
n+1,j ],

and using the same trick of introducing a reflecting barrier. ut

9.2.2 The width of a genealogical ARG

In the previous section, we considered the expected height of a genealogical ARG (Fig-
ure 9.4). Here, we consider its width; more precisely, the maximum number of genealogical
ancestors for a sample of size n before the GMRCA is reached. We use Amax(n, ρ) to denote
this number.

Theorem 9.5. For m ≥ n,

P(Amax(n, ρ) ≤ m) =

m−1∑
j=n−1

j!

ρj

/
m−1∑
k=0

k!

ρk
.

Proof. Define cn(m) = P(Amax(n, ρ) ≤ m). After observing that c1(m) = 1 for all m ≥ 1 and
cn(m) = 0 for all m < n, we may construct a recurrence relation for cn(m) by conditioning
on the first event (coalescence or recombination) back in time:

cn(m) =
n− 1

n− 1 + ρ
cn−1(m) +

ρ

n− 1 + ρ
cn+1(m),

1 2 43

W
(ρ)
n

1 2 3 4

A
(ρ)
n (t) = 7

Fig. 9.4: Ancestral recombination graphs illustrating height and width. The figure on the
right shows how recombination can cause the graph to get much wider than the sample size.
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for 2 ≤ n ≤ m. We now detail how to solve this recursion. First, rewrite the left-hand side
as ( n− 1

n− 1 + ρ
+

ρ

n− 1 + ρ

)
cn(m) =

n− 1

n− 1 + ρ
cn−1(m) +

ρ

n− 1 + ρ
cn+1(m).

Then, letting dn(m) = cn(m)− cn−1(m), we obtain

n− 1

n− 1 + ρ
dn(m) =

ρ

n− 1 + ρ
dn+1(m),

=⇒ dn+1(m) =
n− 1

ρ
dn(m),

=⇒ dj+1(m) =
(j − 1)!

ρj−1
d2(m), for 1 ≤ j ≤ m.

Now, by telescoping,

cn+1(m)− c1(m) = [cn+1(m)− cn(m)] + [cn(m)− cn−1(m)] + · · ·+ [c2(m)− c1(m)]

= dn+1(m) + dn(m) + · · ·+ d2(m)

=

n+1∑
j=2

dj(m) = d2(m)

n−1∑
j=0

j!

ρj
. (9.3)

To solve for d2(m), set n = m in (9.3), and plug in cm+1(m) = 0 and c1(m) = 1 to obtain

d2(m) = −

[
m−1∑
j=0

j!

ρj

]−1

.

Using this result in (9.3), we get

cn(m) = c1(m) + d2(m)

n−2∑
j=0

j!

ρj
= 1−

n−2∑
j=0

j!

ρj

/
m−1∑
j=0

j!

ρj
=

m−1∑
j=n−1

j!

ρj

/
m−1∑
j=0

j!

ρj
,

which is the desired result. ut

Finally, it bears mentioning that

Amax(n, ρ)

n

p→ 1 as n→∞.

Intuitively this is because the rate of coalescence is quadratic in n while the rate of recom-
bination is linear in n.

9.3 Unreduced and reduced ancestral processes for ARGs

Consider the genealogical ancestral recombination graph G shown on the left of Figure 9.5,
where four of the edges resulting from recombination are labeled (e1, e2, e3, e4). For simplic-
ity, we consider just two loci in the subsequent discussion:

c©Yun S. Song. DRAFT – May 5, 2021



9.3 Unreduced and reduced ancestral processes for ARGs 145

ti
m

e

0
1

e1
a b

e2

2

e4

a b
e3

3 4

G

1

e1

2 3 4

TA

1 2

e2

e3

3 4

TB

Fig. 9.5: A genealogical ancestral recombination graph G with two marginal coalescent trees.

Locus A Locus B

At each of the two recombination events displayed in Figure 9.5, we assume that the parent
on the left supplies Locus A, while the parent on the right supplies Locus B. This induces
coalescent trees for the two locus, TA and TB (Figure 9.5, center and right), that are of
different topologies. The more recent of the two recombination events can be depicted this
way:

A filled ball denotes an ancestral locus — one that contributes genetic material to at least
one of the descendants in the sample. A star denotes a non-ancestral locus — one that
contributes no genetic material to the sample. The diagram shows that the child has two
ancestral loci, whereas each parent has one ancestral and one non-ancestral locus.

Let E(G) denoted the set of vertical edges of G. (Horizontal edges have no biological
meaning.) We can partition E(G) into four types, depending on whether each locus is
ancestral or non-ancestral.

Type A ( ): A(G) = {e ∈ E(G) | e ∈ E(TA) and e /∈ E(TB)} = {e1}
Type B ( ): B(G) = {e ∈ E(G) | e /∈ E(TA) and e ∈ E(TB)} = {e2, e3}
Type C ( ): C(G) = {e ∈ E(G) | e ∈ E(TA) and e ∈ E(TB)} = E(G) \ {e1, e2, e3, e4}
Type D ( ): D(G) = {e ∈ E(G) | e /∈ E(TA) and e /∈ E(TB)} = {e4}

We can now define the unreduced Markov chain for an ancestral recombination graph G
with two loci.

Definition 9.6 (Unreduced ancestral process). Partition the edge set E(G) into
A(G),B(G), C(G),D(G) as above, and let NA(t) denote the number of edges in A(G) at
time t, and let NB(t), NC(t), and ND(t) be defined analogously for B(G), C(G), and D(G).
The unreduced ancestral process for G is:{

Ut =
(
NA(t), NB(t), NC(t), ND(t)

)
, t ≥ 0

}
.

Remark 9.7. We first note a few facts:

c©Yun S. Song. DRAFT – May 5, 2021



146 9 The coalescent with recombination

1. NA(t) + NB(t) + NC(t) + ND(t) = A
(ρ)
n (t), the genealogical ancestral process, i.e., the

number of genealogical ancestors at time t of a sample of size n.
2. NA(t) +NC(t) is the marginal ancestral process of Locus A.
3. NB(t) +NC(t) is the marginal ancestral process of Locus B.
4. We have a closed-form formula for P(CAn (t) = α), where Cn(t) is the marginal n-coalescent

and α ∈ P[n], but we lack a closed-form formula for the joint distribution for two loci
P(CAn (t) = α,CBn (t) = β), where α, β ∈ P[n], except when ρ = 0 or ρ =∞. When ρ = 0,
the two loci are never separated and

P(CAn (t) = α,CBn (t) = β) =

{
P(CAn (t) = α), if α = β,

0, otherwise.

When ρ =∞, the two loci are completely independent and

P(CAn (t) = α,CBn (t) = β) = P(CAn (t) = α)P(CBn (t) = β).

We can obtain the transition rates for Ut by enumerating the various kinds of coalescence
and recombination events. There are ten kinds of coalescence events:

(a, b, c, d)→ (a, b, c−1, d)

Rate:
(
c
2

) (a, b, c, d)→ (a−1, b−1, c+1, d)

Rate: ab

(a, b, c, d)→ (a−1, b, c, d)

Rate:
(
a
2

) (a, b, c, d)→ (a− 1, b, c, d)

Rate: ac

(a, b, c, d)→ (a, b−1, c, d)

Rate:
(
b
2

) (a, b, c, d)→ (a, b− 1, c, d)

Rate: bc

(a, b, c, d)→ (a, b, c, d−1)

Rate:
(
d
2

) (a, b, c, d)→ (a, b, c, d− 1)

Rate: ad

(a, b, c, d)→ (a, b, c, d−1)

Rate: bd

(a, b, c, d)→ (a, b, c, d− 1)

Rate: cd

There are four kinds of recombination events:
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(a, b, c, d)→ (a+1, b+1, c−1, d)

Rate: cρ
2

(a, b, c, d)→ (a, b, c, d+ 1)

Rate: aρ
2

(a, b, c, d)→ (a, b, c, d+ 1)

Rate: bρ
2

(a, b, c, d)→ (a, b, c, d+ 1)

Rate: dρ
2

Grouping together transitions of the same type yields

(a, b, c, d)→



(a, b, c− 1, d) at rate
(
c
2

)
,

(a− 1, b− 1, c+ 1, d) at rate ab,

(a− 1, b, c, d) at rate
(
a
2

)
+ ac,

(a, b− 1, c, d) at rate
(
b
2

)
+ bc,

(a, b, c, d− 1) at rate (a+ b+ c)d+
(
d
2

)
,

(a+ 1, b+ 1, c− 1, d) at rate cρ
2 ,

(a, b, c, d+ 1) at rate (a+b+d)ρ
2 .

The total transition rate is
(
m
2

)
+ mρ

2 , where m = a+ b+ c+ d.
For most questions of interest, note that it is unnecessary to keep track of Type D edges

( ), since what happens to them does not affect the sample. If we take the unreduced
Markov chain Ut and delete the fourth element, which is the count of Type D edges, we
obtain the following reduced Markov chain:

Definition 9.8 (Reduced ancestral process). Let NA(t), NB(t), and NC(t) be defined
as for Ut. The reduced ancestral process is:{

Rt =
(
NA(t), NB(t), NC(t)

)
, t ≥ 0

}
.

The transitions for Rt are the same as for Ut, without the two that involve a change in the
fourth element of Ut.

(a, b, c)→



(a, b, c− 1) at rate
(
c
2

)
,

(a− 1, b− 1, c+ 1) at rate ab,

(a− 1, b, c) at rate
(
a
2

)
+ ac,

(a, b− 1, c) at rate
(
b
2

)
+ bc,

(a+ 1, b+ 1, c− 1) at rate cρ
2 .

The total transition rate for this reduced Markov chain is
(
a+b+c

2

)
+ cρ

2 . This is a much more
efficient representation of the genealogical process compared to Ut.

9.4 Covariance of marginal TMRCAs at a pair of loci.

The TMRCA for loci A and B may be different, as shown in Figure 9.6. The following
theorem characterizes how they covary as a function of ρ:
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a 1 b a 2 b

TMRCAB

TMRCAA

Fig. 9.6: An ancestral recombination graph showing how marginal TMRCAs can differ.

Theorem 9.9 (Griffiths 1981, 1991). Let Rt be a reduced ancestral process. Suppose
R0 = (a, b, c), where a+c = 2 and b+c = 2. Let WA and WB denote the marginal TMRCAs
for loci A and B, respectively. Then,

Cov(WA,WB | R0 = (0, 0, 2)) =
ρ+ 18

ρ2 + 13ρ+ 18
,

Cov(WA,WB | R0 = (1, 1, 1)) =
6

ρ2 + 13ρ+ 18
,

Cov(WA,WB | R0 = (2, 2, 0)) =
4

ρ2 + 13ρ+ 18
.

Remark 9.10. Some remarks before proving this result:

1. The ∗ symbols in type A and B lineages at time 0 (i.e., in the sample) should be interpreted
as missing data.

2. As one might expect, in each case, covariance goes to zero as ρ→∞.
3. Even when R0 = (2, 2, 0), it is possible for the TMRCAs to be the same if each Type A

taxon coalesces with a Type B taxon before doing anything else.
4. Cov(WA,WB | R0 = (0, 0, 2)) is the largest and Cov(WA,WB | R0 = (2, 2, 0)) is the

smallest, which makes intuitive sense.

Proof. First note that

Cov(WA,WB | R0 = R) = ER(WAWB)− ER(WA)ER(WB) = ER(WAWB)− 1,

where ER denotes the conditional expectation given that the process starts in state R. Let
T ∼ Exp(

(
a+b+c

2

)
+ cρ

2 ) denote the time of the first jump, and let R′ = (a′, b′, c′) be the
resulting state. Then,

ER(WAWB | T,R′)
= ER((WA − T + T )(WB − T + T ) | T,R′)
= ER((WA − T )(WB − T ) | T,R′) + T [ER(WA − T | T,R′) + ER(WB − T | T,R′)] + T 2

= ER′(WAWB) + T [ER′(WA) + ER′(WB)] + T 2,

where we have used the Markov property in the last line. Now, note that T and R′ are
independent, and take the expectation with respect to T and R′ to obtain

f(R) = ER[f(R′)] + ER(T )ER[ER′(WA) + ER′(WB)] + ER(T 2), (9.4)
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where we have introduced the notation f(R) := ER(WAWB). The expectations ER(T ) and
ER(T 2) are given by

ER(T ) =
1(

a+b+c
2

)
+ cρ

2

and ER(T 2) =
2

[
(
a+b+c

2

)
+ cρ

2 ]2
,

while

ER′(WA) =

{
1, if a′ + c′ = 2,

0, if a′ + c′ = 1
and ER′(WB) =

{
1, if b′ + c′ = 2,

0, if b′ + c′ = 1
.

Using these identities in (9.4), we obtain the following system of coupled linear equations:

f(0, 0, 2) =
ρ

ρ+ 1
f(1, 1, 1) +

2

ρ+ 1
,

f(1, 1, 1) =
2

ρ+ 6
f(0, 0, 2) +

ρ

ρ+ 6
f(2, 2, 0) +

4

ρ+ 6
,

f(2, 2, 0) =
2

3
f(1, 1, 1) +

1

3
,

which can be solved for f(0, 0, 2), f(1, 1, 1), f(2, 2, 0). These results can then be used to
determine Cov(WA,WB | R0 = R) = f(R)− 1. ut
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9.5 Estimation of pairwise coalescence times

Regev Schweiger and Richard Durbin (private communication) recently observed that the
posterior mean of TMRCA in PSMC (Li and Durbin, 2011) is biased, and that the extent
of bias depends on the true TMRCA as well as mutation and recombination rates. In what
follows, we try to explain this phenomenon theoretically. For simplicity, we do not consider
a full hidden Markov model, but the analysis carried out below captures the essence of the
issue. Indeed, the theoretical predictions (Figure 9.7–Figure 9.9) derived below agree well
with the empirical results that Schweiger and Durbin obtained using PSMC.

9.5.1 Preliminaries

Assume a constant-size, panmictic population and the infinite-sites model where mutations
arrive according to a Poisson Point Process with rate θ/2. Let T denote the TMRCA for a
sample of size 2 and let M denote the number of mutations on the 2-leaved coalescent tree.
Then, we have

P[M = m | T = t] =
1

m!
(θt)me−θt, (9.5)

while the posterior density of T given M = m ∈ N0 is (see Proposition 3.5)

f(t |M = m) =
1

m!
(1 + θ)m+1tme−(1+θ)t. (9.6)

Hence, if θ is known and we are given the observation M = m, then we can construct the
following estimators of T :

1. Maximum likelihood: By maximizing (9.5), we get

T̂ML =
m

θ
.

2. Maximum a posteriori: By maximizing (9.6), we get

T̂MAP =
m

1 + θ
.

3. Posterior mean: By taking the expectation with respect to (9.6), we get

T̂PM =
m+ 1

1 + θ
.

Now, we note that the parameter θ is in fact a random variable and that it depends on the
size (or width) W of the genomic region that supports the coalescent tree with TMRCA T .
More precisely,

θ = θ0W,

where θ0 = 4Neµ with µ being the per-base per-generation mutation rate. The distribution
of W depends on the TMRCA T and the recombination rate. Assume that the recombination
rate is constant over the region of interest and define ρ = 4Ner, where r corresponds to the
per-generation recombination rate between two consecutive bases. Then,
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P[W = w | T = t] = [1− p(ρ, t)]w−1p(ρ, t),

where p(ρ, t) denotes the success probability of changing the TMRCA in one-base transition
step. Under SMC′ (Marjoram and Wall, 2006), a generalized version of the sequentially
Markov coalescent, p(ρ, t) can be found as (Hobolth and Jensen, 2014)

p(ρ, t) = 1− [etQ]1,1, where Q =

−ρ ρ 0
1 −2 1
0 0 0

 . (9.7)

9.5.2 Bias

Putting everything together, the conditional expectation of an estimator T̂ given T = t can
be found as

E[T̂ (M,W ) | T = t] =

∞∑
w=1

∞∑
m=0

T̂ (m,w)P[M = m | T = t,W = w]P[W = w | T = t]

=

∞∑
w=1

∞∑
m=0

T̂ (m,w)

[
1

m!
(θ0wt)

me−θ0wt
]

[1− p(ρ, t)]w−1p(ρ, t). (9.8)

For T̂ = T̂ML, the above computation can be carried out in closed-form and one obtains

E[T̂ML(M,W ) | T = t] = t. (9.9)

For T̂ = T̂MAP, we obtain

E[T̂MAP(M,W ) | T = t] =
θ0t

1 + θ0
2F1

(
1,

1

θ0
; 2 +

1

θ0
; 1− p

)
, (9.10)

where 2F1 denotes the ordinary hypergeometric function. Finally, for T̂ = T̂PM, we get

E[T̂PM(M,W ) | T = t] =
θ0t

1 + θ0
2F1

(
1,

1

θ0
; 2 +

1

θ0
; 1− p

)
+

p

θ0
Φ
(

1− p, 1, 1 +
1

θ0

)
, (9.11)

where Φ denotes the Hurwitz-Lerch transcendent.
We see from (9.9) that T̂ML is an unbiased estimator of T , whereas (9.10) and (9.11)

imply that T̂MAP and T̂PM are biased. Figures 9.7 and 9.8 respectively illustrate how
E[T̂MAP(M,W ) | T = t] and E[T̂PM(M,W ) | T = t] deviate from t, for various values

of r and µ. In general, T̂PM appears less biased than T̂MAP.

9.5.3 Mean squared error

We saw in the previous section that the maximum likelihood estimator T̂ML is unbiased,
while T̂MAP and T̂PM are biased. Does this imply that T̂ML is a better estimator than are
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Fig. 9.7: E[T̂MAP(M,W ) | T = t] as a function of t for various values of r and µ, with
Ne = 104. Dotted lines correspond to y = x.
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Fig. 9.8: E[T̂PM(M,W ) | T = t] as a function of t for various values of r and µ, with
Ne = 104. Dotted lines correspond to y = x.
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Fig. 9.9: Mean squared error (MSE) as a function of t for various values of r and µ, with
Ne = 104.

T̂MAP and T̂PM? Not necessarily! To see why, consider a quadratic loss function, in which case
the risk R(t, T̂ ) corresponds to the mean squared error (MSE), which can be decomposed
as

R(t, T̂ ) = MSE[T̂ ] = E[(T̂ − t)2] = Var(T̂ ) + [bias(T̂ )]2,

where bias(T̂ ) = E[T̂ (M,W ) | T = t] − t. So, the key question is how Var(T̂ML) compares

with Var(T̂MAP) and Var(T̂PM). We can compute E[(T̂ − t)2 | T = t] in a similar vein as in
(9.8), yielding

R(t, T̂ML) =
−tp log(p)

(1− p)θ0
,

R(t, T̂MAP) =
pt

θ2
0

[
θ0Φ

(
1− p, 1, 1 +

1

θ0

)
+ (t− 1)Φ

(
1− p, 2, 1 +

1

θ0

)]
,

R(t, T̂PM) =
p

θ2
0

[
θ0tΦ

(
1− p, 1, 1 +

1

θ0

)
+ [1 + t(t− 3)]Φ

(
1− p, 2, 1 +

1

θ0

)]
,

where p depends on the population-scaled recombination rate ρ and the true TMRCA t as
shown in (9.7). As illustrated in Figure 9.9, it turns out that Var(T̂ML) can be substantially

larger than Var(T̂MAP) and Var(T̂PM) if t� 0, thereby leading to much larger expected loss

R(t, T̂ML) compared to R(t, T̂MAP) and R(t, T̂PM).
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Chapter 10

Exact and approximate likelihoods under the
coalescent with recombination

As discussed in earlier chapters, the probability of observing a sample of DNA sequences
plays a fundamental role in various applications, including parameter estimation and ances-
tral inference. In this chapter, we address the problem of finding such sampling probabilities
under the coalescent with recombination. Because it involves integrating out latent vari-
ables (genealogical histories) that live in extremely high dimensions, finding the sampling
distribution under the full model is a difficult problem. Deriving closed-form formulas is
notoriously challenging, while numerical and Monte Carlo approaches are in general compu-
tationally intensive and tend to not scale well with data size. To address this challenge, it is
important to consider making principled approximations to arrive at a simpler model that
accurately captures the essential features of the full model, while facilitating computation.
We will discuss some recent work along this line of research.

10.1 Two-locus sampling distributions

For simplicity, we consider a two-locus model with recombination. The two loci are denoted
by A and B, and their population-scaled mutation rates are θA

2 and θB
2 , respectively. In the

case of a finite-alleles model, we define K and L as the number of possible allele types at loci
A and B, respectively, while for an infinite-alleles model, K and L correspond to the number
of distinct allele types observed at the two loci. The population-scaled recombination rate
is denoted by ρ

2 .
Going backwards in time, a recombination event breaks up a haplotype into two frag-

ments. Therefore, when we think about a sample’s genealogical history and try to obtain a
closed system of recursion for the sampling distribution, the two-locus type space must be
extended to allow some haplotypes to be specified at only one of the two loci.

Definition 10.1 (Two-locus sample configuration). The two-locus sample configura-
tion is denoted by n = (a, b, c), where

• a = (ai)i∈[K], with ai being the number of haplotypes with allele i at locus A and
unspecified alleles at locus B,

• b = (bj)j∈[L], with bj being the number of haplotypes with unspecified alleles at locus A
and allele j at locus B,
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156 10 Exact and approximate likelihoods under the coalescent with recombination

• c = (cij)i,j∈[K]×[L], with cij being the multiplicity of haplotypes with allele i at locus A
and allele j at locus B.

Even if we observe both alleles of every haplotype in a sample (in the form (0,0, c)),
the vectors a and b are still needed when describing the sample’s ancestry. An ancestral
haplotype might transmit genetic material to extant haplotypes in the sample at only one
of the two loci, whereupon we use a or b to avoid specifying the allele at the non-ancestral
locus. Throughout, we use the following notation:

|a| =
K∑
i=1

ai, ci· =

L∑
j=1

cij , |c| =
K∑
i=1

L∑
j=1

cij ,

|b| =
L∑
j=1

bj , c·j =

K∑
i=1

cij , |n| = |a|+ |b|+ |c|.

10.1.1 Probability recursion for an arbitrary finite-alleles model

For fixed a, b, c ∈ Z≥0, let pa,b,c(a, b, c) denote the probability of observing an unordered
sample with configuration n = (a, b, c), conditioned on |a| = a, |b| = b, and |c| = c. The
sampling distribution pa,b,c is normalized so that∑

a:|a|=a

∑
b:|b|=b

∑
c:|c|=c

pa,b,c(a, b, c) = 1.

We use qa,b,c(a, b, c) to denote the sampling probability of an ordered sample with config-
uration (a, b, c). As in the one-locus case, it is easier to work with ordered samples than
unordered samples.

For a finite-alleles model, the distribution qa,b,c is related to pa,b,c as

pa,b,c(a, b, c) =

(
|a|

a1, a2, . . . , aK

)(
|b|

b1, b2, . . . , aL

)(
|c|

c11, c1,2, . . . , cKL

)
qa,b,c(a, b, c).

Let PA = (PA
ij) and PB = (PB

ij ) denote the mutation transition matrices at the two loci.
Then, qa,b,c(a, b, c) satisfies the following recursion at stationarity:

[n(n− 1) + θA(a+ c) + θB(b+ c) + ρc]qa,b,c(a, b, c) =

K∑
i=1

ai(ai − 1 + 2ci·)qa−1,b,c(a− ei, b, c) +

L∑
j=1

bj(bj − 1 + 2c·j)qa,b−1,c(a, b− ej , c)

+

K∑
i=1

L∑
j=1

[cij(cij − 1)qa,b,c−1(a, b, c− eij) + 2aibjqa−1,b−1,c+1(a− ei, b− ej , c+ eij)]

+θA

K∑
i=1

 L∑
j=1

cij

K∑
t=1

PA

tiqa,b,c(a, b, c− eij + etj) + ai

K∑
t=1

PA

tiqa,b,c(a− ei + et, b, c)
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+θB

L∑
j=1

[
K∑
i=1

cij

L∑
t=1

PB

tjqa,b,c(a, b, c− eij + eit) + bj

L∑
t=1

PB

tjqa,b,c(a, b− ej + et, c)

]

+ρ

K∑
i=1

L∑
j=1

cijqa+1,b+1,c−1(a+ ei, b+ ej , c− eij),

with boundary conditions q1,0,0(ei,0,0) = πAi for all i ∈ [K], q0,1,0(0, ej ,0) = πBj for all

j ∈ [L]}, and q0,0,1(0,0, eij) = πAi π
B
j for all (i, j) ∈ [K]× [L], where (πAi )i∈[K] and (πBj )j∈[L]

are stationary distributions corresponding to PA and PB, respectively. As we have seen
for one-locus sampling distributions, one can derive the above recursion by considering the
probabilities of the first event back in time in the coalescent with recombination. Alterna-
tively, the recursion can be obtained from the Wright-Fisher diffusion process dual to the
coalescent (Ethier and Griffiths, 1990; Griffiths and Tavaré, 1994).

10.1.2 Probability recursion for the infinite-alleles model

Suppose that each locus evolves according to the infinite-alleles model. Golding (1984) first
considered generalizing the infinite-alleles model to include recombination, and Ethier and
Griffiths (1990) later undertook a more mathematical analysis of the model and provided
several interesting theoretical results. Given a two-locus sample configuration n = (a, b, c)
with |a| = a, |b| = b, |c| = c, the ordered sampling probability qa,b,c(a, b, c) under the
infinite-alleles model satisfies the following recursion at stationarity (Ethier and Griffiths,
1990; Golding, 1984):

[n(n− 1) + θA(a+ c) + θB(b+ c) + ρc]qa,b,c(a, b, c) =

K∑
i=1

ai(ai − 1 + 2ci·)qa−1,b,c(a− ei, b, c) +

L∑
j=1

bj(bj − 1 + 2c·j)qa,b−1,c(a, b− ej , c)

+

K∑
i=1

L∑
j=1

[cij(cij − 1)qa,b,c−1(a, b, c− eij) + 2aibjqa−1,b−1,c+1(a− ei, b− ej , c+ eij)]

+θA

K∑
i=1

 L∑
j=1

δai+ci·,1δcij ,1qa,b+1,c−1(a, b+ ej , c− eij) + δai,1δci·,0qa−1,b,c(a− ei, b, c)


+θB

L∑
j=1

[
K∑
i=1

δbj+c·j ,1δcij ,1qa+1,b,c−1(a+ ei, b, c− eij) + δbj ,1δc·j ,0qa,b−1,c(a, b− ej , c)

]

+ρ

K∑
i=1

L∑
j=1

cijqa+1,b+1,c−1(a+ ei, b+ ej , c− eij),

with boundary conditions q1,0,0(ei,0,0) = q0,1,0(0, ej ,0) = q0,0,1(0,0, eij) = 1 for all i ∈
[K] and j ∈ [L]. We define qa,b,c(a, b, c) = 0 whenever any entry in a, b, or c is negative.
For notational convenience, we deviate from Ethier and Griffiths (1990) and allow each
summation to range over all allelic types.
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158 10 Exact and approximate likelihoods under the coalescent with recombination

Remark 10.2. Note that the mutation terms in (10.2) are simpler than that in (10.1). Specif-
ically, as in the one-locus coalescent with killing (cf., Chapter 4.3), a lineage can be treated
as being lost when mutation occurs in the infinite-alleles model. This fact facilitates compu-
tation substantially when solving the recursion numerically. The same simplification occurs
in (10.1) under a parent-independent mutation model.

The ordered and the unordered sampling distributions under the infinite-alleles model
are related as

pa,b,c(a, b, c) =
1

σ(a, b, c)

(
|a|

a1, a2, . . . , aK

)(
|b|

b1, b2, . . . , aL

)(
|c|

c11, c1,2, . . . , cKL

)
qa,b,c(a, b, c),

where σ(a, b, c) denotes the number of pairs of permutations (α, β) ∈ SK ×SL of the allele
labels that leave the sample configuration (a, b, c) invariant.

10.2 Asymptotic sampling distributions

Unfortunately there are no known closed-form solutions to (10.1) or (10.2). These recursions
can be solved numerically, but computation quickly becomes intractable with growing sample
size. A more scalable approach is to employ importance sampling (Fearnhead and Donnelly,
2001; Griffiths et al, 2008), generalizing the one-locus case discussed in Chapter 6.4. For large
recombination rates, the genealogies sampled by Monte Carlo methods are typically very
complicated, containing many recombination events. In contrast to this increased complexity
in the coalescent, however, we in fact expect the dynamics to be easier to study for large
recombination rates, since the loci under consideration would then be less dependent. That
is, there may exist a simpler stochastic process that provides an effective description of the
dynamics for large recombination rates.

10.2.1 Two loci

Motivated by the above intuition, Jenkins and Song (2009, 2010, 2012) developed a new
approach to computing the two-locus sampling probability when the recombination rate is
moderate to large. Specifically, for ρ large, they proposed to find an asymptotic expansion
of the form

q(n) = Q0(n) +
1

ρ
Q1(n) +

1

ρ2
Q2(n) +O

( 1

ρ3

)
, (10.3)

where Qk(n) are coefficients independent of ρ. (For ease of notation, we henceforth write
q instead of qa,b,c.) Using the above perspective, it turns out that it is possible to obtain
useful analytic results. We first need to define some notation before presenting these results.

Definition 10.3 (Marginal sampling configuration). Let cA = (ci·) and cB = (c·j)
denote the marginal sample configurations of c restricted to loci A and B, respectively.

Note the distinction between the vectors a and b, which represent haplotypes with alleles
specified at only one of the two loci, and the vectors cA and cB, which represent the one-locus
marginal configurations of haplotypes with both alleles observed.
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Now, note that Q0(a, b, c) is the exact sampling distribution when the two loci are un-
linked (ρ =∞):

lim
ρ→∞

q(a, b, c) = Q0(a, b, c) = qA(a+ cA)qB(b+ cB), (10.4)

where qA and qB are one-locus sampling distributions for loci A and B, respectively. The
functional form of Q0(a, b, c) in (10.4) is universal in the sense that it holds true to all
mutation models. Surprising, Q1 also satisfies such a universality property:

Theorem 10.4 (Jenkins and Song 2009, 2010). For both the infinite-alleles model and
an arbitrary finite-alleles model, the first-order term Q1(a, b, c) in the asymptotic expansion
(10.3) is given by

Q1(a, b, c) =

(
c

2

)
qA(a+ cA)qB(b+ cB)

− qB(b+ cB)

K∑
i=1

(
ci·
2

)
qA(a+ cA − ei)

− qA(a+ cA)

L∑
j=1

(
c·j
2

)
qB(b+ cB − ej)

+

K∑
i=1

L∑
j=1

qA(a+ cA − ei)qB(b+ cB − ej),

where c = |c| and ei is a unit vector with a 1 at entry i and 0 otherwise.

Remark 10.5. The expression (10.5) for Q1(a, b, c) has an interesting application. Using the
definition of the asymptotic series, Jenkins and Song (2012) obtained the following result:

Theorem 10.6 (A sufficient condition for the MLE to be finite). Suppose q(a, b, c)
is used to estimate ρ. If Q1(a, b, c) > 0, then the maximum likelihood estimate of ρ is finite.

The converse is not true in general; Jenkins and Song constructed an explicit counterexam-
ple.

We now outline an overall strategy for proving Theorem 10.4; the interested reader is
referred to Jenkins and Song (2009, 2010) for further details. As shown in (10.1) and (10.2),
the full sampling distribution q(a, b, c) satisfies a recursion relation. Plugging in the proposed
expansion (10.3) into the recursion and matching the coefficients of 1

ρ , one can show that

Q1(a, b, c) satisfies

Q1(a, b, c) = f1(a, b, c) +

K∑
i=1

L∑
j=1

cij
c
Q1(a+ ei, b+ ej , c− eij), (10.6)

where f1(a, b, c) is a function of the zeroth-order term Q0, which depends on the marginal
one-locus sampling distributions qA and qB. Repeatedly applying (10.6), one can show that
it admits a probabilistic interpretation:

Q1(a, b, c) =

c∑
m=1

E[f1(A(m),B(m),C(m))], (10.7)
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a b c

(a)

a b c−C(5) C(5)

(b)

A(5) B(5) C(5)

(c)

Fig. 10.1: A random sampling procedure leading to random vectorsA(k) andB(k) specifying
left and right half fragments, respectively, and a random matrix C(k) specifying full haplo-
types. (a) A sample (a, b, c), with full haplotypes in an urn. (b) k haplotypes are randomly
drawn from the urn and this random sample is denoted by C(k). In this example, k = 5.
(c) Break apart every haplotype remaining in the urn, and then add the half fragments to
a and b appropriately.

where C(m) = (C
(m)
ij ) is a multivariate hypergeometric(|c|, c,m) random variable, and A(m)

and B(m) depend on a, b, c, and C(m) as described in Figure 10.1. The expectation in
(10.7) is with respective to the random sampling procedure described in the figure, and this
expectation can be evaluated analytically, leading to (10.5).

More generally, the Mth order term QM can be written as

QM (a, b, c) = QM (a+ cA, b+ cB,0) +

|c|∑
k=1

E[fM (A(k),B(k),C(k))], (10.8)

where fM is a degree-2M polynomial in the entries of the matrix C(k), and the random
vectors A(k),B(k) and the random matrix C(k) are defined as above. Finding fM and
evaluating the expectation is cumbersome. For M = 2, Jenkins and Song (2009, 2010)

found a closed-form formula for
∑|c|
k=1 E[fM (A(k),B(k),C(k))] for both an arbitrary finite-
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alleles model and the infinite-alleles model. The first term QM (a + cA, b + cB,0) in (10.8)
is either zero or negligibly small. When it is non-zero, it can be computed using dynamic
programming, but its burden in computational time increases with sample size.

The above results raise a few follow-up questions.

1. Is it possible to compute the higher-order coefficients qM (a, b, c) for M > 2?
2. For a given finite ρ > 0, does the series converge as more terms are added?
3. If not, how should one make use of the expansion in practice?
4. Can we incorporate other important mechanisms of evolution such as natural selection?

To answer the first question, Jenkins and Song (2012) developed a new approach based on the
diffusion process; the key idea is to utilize the diffusion generator to organize computation in
a simple, transparent fashion. The same basic procedure, which is purely algebraic, applies
to all orders and the computation can be completely automated. It turns out that the
asymptotic series (10.3) diverges in general, but Jenkins and Song (2012) came up with
a solution to this problem. More precisely, they proposed to approximate q(a, b, c) by a
rational function known as the Padé approximant:

q
[U/V ]
Padé (a, b, c) =

A0 +A1

(
1
ρ

)
+ · · ·+AU

(
1
ρ

)U
1 +B1

(
1
ρ

)
+ · · ·+BV

(
1
ρ

)V .

The coefficients are chosen so that the first U + V + 1 terms in a Maclaurin series of
q

[U/V ]
Padé (a, b, c) agree with the first M + 1 terms in a Maclaurin series of q(a, b, c), which is

just our partial sum:

q(M)(a, b, c) = Q0(a, b, c) +
Q1(a, b, c)

ρ
+ · · ·+ QM (a, b, c)

ρM
,

where M = U + V . The Padé approximant is a natural method to employ because of the
following result:

Proposition 10.7 (Characterization of the exact sampling distribution, Jenkins
and Song 2012). The exact sampling distribution q(a, b, c) is a rational function of 1/ρ,
and the degree of the numerator is equal to the degree of the denominator:

q(a, b, c) =
α0 + α1

(
1
ρ

)
+ · · ·+ αd

(
1
ρ

)d
1 + β1

(
1
ρ

)
+ · · ·+ βd

(
1
ρ

)d .

Finally, for any given sample configuration n = (a, b, c), the following theorem guarantees
that the exact two-locus sampling distribution can be obtained as an analytic function of ρ
via the method of the Padé approximant:

Theorem 10.8 (Convergence to the exact distribution, Jenkins and Song 2012).
For every two-locus sample configuration n = (a, b, c), there exists a positive integer C(n)

such that for all U ≥ C(n) and V ≥ C(n), the Padé approximant q
[U/V ]
Padé (n) is exactly equal

to q(n) for all ρ ∈ [0,∞).

Now suppose the alleles at locus A have different fitnesses. The effect of natural selection
on genealogies is complicated (cf., the ancestral selection graph (Krone and Neuhauser, 1997;
Neuhauser and Krone, 1997)), while the effect on the diffusion process is relatively simple.

c©Yun S. Song. DRAFT – May 5, 2021
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Jenkins and Song (2012) showed that their method extends naturally to incorporate weak
selection at one locus. (“Weak” selection here means selection well-modeled by a diffusion
process.) In particular, the universality property of Q0 and Q1 still holds in the presence of
selection. More precisely, Q0 and Q1 are given by (10.4) and (10.5), respectively, with qA

corresponding the one-locus sampling distribution under selection.
We now return to the motivating remark made in the beginning of this section, namely

that there may exist a simpler stochastic process that describes the important dynamics of
the ARG for large recombination rates. Recently, Jenkins et al (2015) actually found such a
simpler genealogical process with a closed-form sampling distribution that agrees with the
“truth” up to O(1/ρ2): Q0(n) + Q1(n)/ρ. Furthermore, they were able to make a similar
statement about the Wright-Fisher diffusion dual to the coalescent with recombination.
Hence, both the ARG and the Wright-Fisher diffusion with recombination exhibit a deep
and regular structure when the recombination rate increases, and this structure can be
exploited to derive simple approximations to these models.

10.2.2 Multiple loci

Bhaskar and Song (2012) extended some of the analytical results described above to more
than two loci. More precisely, they obtained closed-form formulas for the first two terms
(analogous to Q0 and Q1 in the two-locus case) in an asymptotic expansion of the sampling
distribution for an arbitrary number of loci. In the case of L loci, there are L − 1 possible
recombination breakpoints each with its own rate. The number of possible allelic combina-
tions grows exponentially with the number of loci, and the system of equations that needs
to be solved is considerably more complex than that in the two-locus case. The authors
employed combinatorial techniques (particularly the inclusion-exclusion principle) to make
progress on this general case. Their work showed that the universality property of Q0 and
Q1 previously observed in the two-locus case also applies to the case of an arbitrary number
of loci. We refer the reader to Bhaskar and Song (2012) for the details.

10.3 Two-locus likelihoods under variable population size

Kamm et al (2016), Ragsdale and Gutenkunst (2017)

10.4 Application of two-locus likelihoods: fine-scale recombination
rate estimation

Myers et al (2005), Chan et al (2012), Spence and Song (2019)
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Chapter 11

Accuracy of the coalescent when the sample is
very large

As discussed in Chapter 1.3, the coalescent provides a good approximation to the genealog-
ical process of a discrete-time random mating model only if the population size N of the
discrete-time model is sufficiently large compared to the sample size n. Since study sample
sizes in population genomics are growing rapidly, it is important to examine the accuracy
of the standard coalescent approximation, which underlies many commonly-used analytical
tools. To this end, Bhaskar et al (2014) developed a method to perform exact computation in
the discrete-time Wright-Fisher model and compared several key genealogical quantities of
interest with the corresponding quantities under the coalescent. In particular, they studied
the number of multiple- and simultaneous-merger events under the discrete-time WF model,
which are absent in the coalescent by construction, and also examined the resulting distor-
tion in the expected sample frequency spectrum. The goal of this chapter is to present the
computational details of this work. In the subsequent chapters, we will discuss extensions
of the coalescent process that allow multiple- and simultaneous-merger events.

11.1 Computing the expected number of multiple- and
simultaneous-mergers

As in (1.1), let p
(g)
kj denote the probability that k particular labeled individuals at generation

g have j distinct ancestors at generation g + 1. For an algorithmic reason that will become
clear presently, we assume that there is a critical generation gc such that Ng = N (some
constant) for all g > gc. This assumption is not so restrictive since for sufficiently large g,
there will be only 1 lineage left with high probability, and the genealogical properties we
study will not be affected. For g > gc, we drop the dependence on g in the probabilities

p
(g)
n,m, and simply write them as pn,m.

Let X
(g)
n,k denote the number of k-mergers that occur in a random genealogical tree for

a sample of n individuals from generation g. The expectation of X
(0)
n,k can be computed by

using the recursion

E[X
(g)
n,k] =

(
n

k

) n∑
m=k+1

p
(g)
k,1p

(g)
n−k,m−k

Ng+1 −m+ k

Ng+1
+

n∑
m=1

p(g)
n,mE[X

(g+1)
m,k ],
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for k < n, with the boundary condition E[X
(g)
k,k] = p

(g)
k,1 + p

(g)
k,kE[X

(g+1)
k,k ]. This recursion

follows from conditioning on the mergers that occur between generations g and g+ 1. If the
population size remains constant (e.g., for generation g > gc), we can drop the dependence

on g in the notation E[X
(g)
n,k], and obtain the following recursion for E[Xn,k]:

E[Xn,k] =

(
n

k

) n∑
m=k+1

pk,1pn−k,m−k
1− pn,n

N −m+ k

N
+

n−1∑
m=1

pn,m
1− pn,n

E[Xm,k],

for k < n, with the boundary condition E[Xk,k] =
pk,1

1−pk,k .

One can write similar recursions for the expected number of simultaneous mergers by
conditioning on the mergers that occur during each generation of reproduction.

11.2 Computing the expected SFS in a discrete-time model

For a given set of n individuals sampled at present, the ancestral process in the discrete-time
WF model generates a genealogical tree with n leaves, with the individuals in the sample
forming the leaves of the tree. Let τWF

n,b denote the total length (in number of generations) of
all branches each subtending exactly b leaves. We can use dynamic programming to compute

E[τWF

n,b ] efficiently as follows. Let γ
(g)
a,b be a random variable denoting the total branch length

of a subtree that subtends a particular set of a labeled individuals in a larger set of a + b
individuals observed at generation g. Then, the exchangeability of the individuals in the
sample implies

E[τWF

n,b ] =

(
n

b

)
E[γ

(0)
b,n−b], (11.1)

since there are
(
n
b

)
subsamples of b individuals out of the n individuals in the original

sample. The expected unnormalized SFS is then given by (µE[τWF
n,1 ], . . . , µE[τWF

n,n−1]), where
µ corresponds to the mutation probability per generation.

By conditioning on the mergers between lineages that take place between generations g

and g + 1, we obtain the following recursion for E[γ
(g)
a,b ]:

E[γ
(g)
a,b ] =



a∑
j=1

b∑
k=1

p
(g)
a,jp

(g)
b,k

(Ng+1 − j)k↓
(Ng+1)k↓

E[γ
(g+1)
j,k ], if a > 1,

1 +

b∑
m=1

Ng+1 −m
Ng+1

p
(g)
b,mE[γ

(g+1)
1,m ], if a = 1 and b > 1,

1 + p
(g)
2,2E[γ

(g+1)
1,1 ], if a = b = 1.

(11.2)

If the population size remains constant (e.g., for generation g > gc), we can drop the

dependence on g in the notation γ
(g)
a,b , and by conditioning on the previous genealogical

event, we can derive the following recursion and boundary condition for E[γa,b]:
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E[γa,b] =



a∑
j=1

b∑
k=1

(1− δj,aδk,b)
pa,jpb,k

1− pa+b,a+b

(N − j)k↓
(N)k↓

E[γj,k], if a > 1,

1

1− pb+1,b+1
+

b−1∑
m=1

N −m
N

pb,m
1− pb+1,b+1

E[γ1,m], if a = 1 and b > 1,

N, if a = b = 1.

(11.3)

From recursions (11.2) and (11.3), the expected unnormalized SFS for a sample of size
n can be computed in O(n4) and O(n4gc) time for the constant and variable population
cases, respectively. However, if one truncates the summation range for the indices j and k

in (11.2) and (11.3) to only those j, k values where p
(g)
a,j and p

(g)
b,k (respectively, pa,j and pb,k)

are greater than some small tolerance parameter ε > 0, the time complexity of the above
dynamic programs can be improved to Õ(n2) and Õ(n2gc), where the Õ notation signifies
the dependence of the quantities on the truncation parameter ε.

Bhaskar et al (2014) used (11.1) along with a truncation parameter of ε = 10−120 to
compute the expected SFS.

11.3 Comparison between the discrete-time WF model and the
coalescent

11.3.1 Multiple and simultaneous mergers

11.3.2 Ancestral process

11.3.3 Expected SFS

11.4 A two-phase hybrid approach
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Chapter 12

Λ-coalescents

Kingman’s coalescent models the ancestry of a sample of genes in a randomly-mating, selec-
tively neutral, constant-sized population (Kingman, 1982a,b,c). We have seen that many of
the constraints of the model can be relaxed in turn, and here we consider generalizing the
coalescent process to allow two or more lineages to merge in a single coalescence event. A
motivation for this is, for example, to model an organism in which the variance in offspring
numbers is large (Eldon and Wakeley, 2006; Möhle and Sagitov, 2001), a condition we make
precise below. Other relevant contexts include models of recurrent selective sweeps (Durrett
and Schweinsberg, 2004, 2005) and populations undergoing continuous strong selection (Ne-
her and Hallatschek, 2013; Schweinsberg, 2015). The resulting coalescent process is known
as the coalescent with multiple mergers, or the Λ-coalescent, and was introduced by Pitman
(1999) and Sagitov (1999). Recent reviews are in Berestycki (2009) and Birkner and Blath
(2009). For now, we will still prohibit simultaneous mergers, which result in an even more
general class of coalescent processes (Möhle and Sagitov, 2001; Schweinsberg, 2000).

12.1 Characterizing a consistent collection of multiple-merger rates

We first recall some facts about Kingman’s coalescent. It is a unique time-homogeneous
Markov process {C∞(t), t ≥ 0} on the space of partitions of N with the following properties,
the first two of which are sufficient to ensure uniqueness (Kingman, 1982a):

1. C∞(0) = {{1}, {2}, . . .}, the partition consisting of only singletons. (Coalescents with
this initial condition are referred to as standard).

2. For each n, the restriction (Cn(t), t ≥ 0) of (C∞(t), t ≥ 0) to [n] is a Markov chain with
càdlàg paths and transition rates specified by saying that while there are b blocks in
the partition, each of the

(
b
2

)
pairs of blocks is merging independently at rate one. The

process (Cn(t), t ≥ 0) is referred to as an n-coalescent.
3. For each t ≥ 0, C∞(t) is an exchangeable random partition of N.
4. C∞(t) is consistent in a temporal sense: if Cn(s) = {B1, . . . , Bm}, where Bi ⊆ [n], then

the subsequent process on the indices of these blocks is an m-coalescent, for all s ≥ 0 and
all n ∈ N.

5. C∞(t) is consistent in a spatial sense: for all n ∈ N, the restriction of {Cn(t), t ≥ 0} to
m, where m < n, is an m-coalescent.

171
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Notice that the rates of merging do not depend on the sizes of the blocks involved. We seek
to generalize these merger rates beyond just binary mergers.

Definition 12.1. While there are |Cn(t)| = b blocks, let λb,k denote the rate at which each
k-tuple of blocks of Cn(t) is merging to form a single block.

In Kingman’s coalescent, we have λb,k = δk,2 (the Kronecker delta). How can we define
the collection {λb,k, 2 ≤ k ≤ b ≤ ∞} in a consistent way? For example, we could not have
λ3,3 = 1 and λ2,2 = 0, since the restriction of a process with three blocks to two should still
have the possibility of a two-merger. Obviously we need λb,k ≥ 0, and a moment’s thought
tells us we also require that

λb,k = λb+1,k + λb+1,k+1, (12.1)

for each 2 ≤ k ≤ b. We see this by the following argument: We have b blocks, in which
a particular k-tuple is merging at rate λb,k. Now reveal a (b + 1)th block. Either it was
also secretly participating in this merger (rate λb+1,k+1) or it was not (rate λb+1,k), and so
the sum of these two possibilities must equal the original rate. It turns out that the rates
(λb,k) satisfying (12.1) can be completely characterized (Pitman, 1999). We now detail the
argument, which is closely related to de Finetti’s theorem:

Theorem 12.2 (De Finetti). Let (Z1, Z2, . . .) be an infinite sequence of exchangeable
Bernoulli random variables. Then there exists a probability distribution F on [0, 1] such
that

pn,k := P(Z1 = 1, . . . , Zk = 1, Zk+1 = 0, . . . , Zn = 0) = E[Xk(1−X)n−k],

where X is distributed according to F . That is, conditionally given X = x, the Zi are i.i.d.
Bernoulli(x) random variables, and we must have

Z1 + Z2 + · · ·+ Zn
n

→ X ∼ F

almost surely as n→∞.

By exchangeability, pn,k is equal to the probability of any sequence (Z1, . . . , Zn) with
exactly k ones and n − k zeros. Using a similar consistency argument as that we used for
(12.1), we conclude

pn−1,k = pn,k + pn,k+1, (12.2)

for k = 0, . . . , n− 1. To prove de Finetti’s theorem, we will utilize the following result:

Theorem 12.3 (Hausdorff moment problem). The sequence (c0, c1, . . .) is a sequence
of moments of a probability distribution on [0, 1] (i.e., cn = E[Xn] for all n ∈ N0), if and
only if c0 = 1 and it is completely monotonic:

(−1)k∆kcn ≥ 0,

for all n, k ≥ 0, where ∆ denotes the difference operator defined as ∆cn := cn+1 − cn.

We now define c0 = 1 and cn = pn,n, and show that the sequence (ci) satisfies the
necessary and sufficient condition in Theorem 12.3. The trick is to express the pn,k in terms
of the (ci). Setting k = n− 1 in (12.2) and rearranging terms, we obtain

pn,n−1 = pn−1,n−1 − pn,n = cn−1 − cn = −∆cn−1.
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Similarly, setting k = n− 2 in (12.2), we obtain

pn,n−2 = pn−1,n−2 − pn,n−1 = −∆cn−2 +∆cn−1 = ∆2cn−2,

and continuing by induction we get

pn,k = pn−1,k − pn,k+1 = (−1)n−k∆n−kck ≥ 0.

The right-hand inequality holds because pn,k is a probability. Moreover, it tells us that (by
definition) the sequence (cn) is completely monotonic. Hence, by Theorem 12.3, we conclude
that there exists a random variable X distributed according to some probability measure
on [0, 1] such that cn = E[Xn], for all n ∈ N0. Furthermore, since

∆mck =

m∑
j=0

(
m

j

)
(−1)j+mck+j ,

pn,k can be written as
∑n−k
j=0

(
n−k
j

)
(−1)jck+j , from which we conclude

pn,k = E[Xk(1−X)n−k].

We have essentially just proved de Finetti’s theorem (this is the approach of Feller 1966,
Chapter VII.4), but the reason for going through the details is that we notice the similarity
between the relationship (12.2) for pn,k and (12.1) for λb,k. Can we apply de Finetti’s
theorem to (λb,k)? There are two issues before we can: First, the indices for λb,k start from
2 rather than from 0. Second, the λb,k are rates rather than probabilities. We deal with
these by defining un,j = λn+2,j+2/λ2,2. Now, applying de Finetti’s theorem to the (un,j),
we conclude that there exists a probability distribution F such that

un,j =

∫ 1

0

xj(1− x)n−jF (dx),

and therefore

λb,k =

∫ 1

0

xk(1− x)b−k
Λ(dx)

x2
, (12.3)

where Λ = λ2,2F is a finite (but not necessarily probability) measure on [0, 1]. Since F is
a probability measure, note that Λ([0, 1]) = λ2,2. This remarkable result provides a corre-
spondence between consistent collections of coalescence rates and finite measures on [0, 1].
The notation explains the nomenclature “Λ-coalescent”. Moreover, using Kolmogorov’s ex-
tension theorem in the same way that it was used to construct Kingman’s coalescent, we
can get away with speaking of “the” Λ-coalescent, a unique partition-valued Markov process
(CΛ∞(t), t ≥ 0) whose restriction to [n] is an n-Λ-coalescent, for each n.

Example 12.4. We consider a few concrete examples.

1. Λ = δ0, a unit mass at 0, recovers Kingman’s coalescent.
2. Λ = Beta(2−α, α), a one-parameter subfamily of beta distributions, where α ∈ (0, 2). This

is known as the beta coalescent. It arises as the limit from a finite Cannings model (see
below) in which the tails of the offspring distributions decay like P(ν1 > Nx) ∼ Cx−α,
when α ≥ 1.
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174 12 Λ-coalescents

3. The special case α = 1 gives Λ = Uniform[0, 1]. This is known as the Bolthausen-Sznitman
coalescent.

4. Λ = δ1, a unit mass at 1. This is a curious degenerate case in which λb,b = 1 and λb,k
is zero for any other k. Thus, the coalescent process waits an exponential(1) amount of
time before all blocks coalesce. Drawing the resulting phylogeny explains the name: the
star-shaped coalescent.

12.2 Poisson point process construction

The relationship (12.3) can be well understood by constructing the Λ-coalescent from a
Poisson point process on (0, 1]×(0,∞) with intensity measure Λ(dx)x−2⊗dt (Pitman, 1999).
(We see that we are in trouble if Λ has mass at zero, so for now we exclude this possibility.)
It is straightforward to see that we can recover a realization of the Λ-coalescent if, at a point
(x, t) of the point process, we independently include each block in the merger by coin toss,
with probability x. The term xk(1−x)b−k in (12.3) is then seen to be the probability of the
outcomes of these b Bernoulli trials. The correspondence between this point process and the
Λ-coalescent is illustrated in Figure 12.1. In fact, one could even incorporate the coin tosses
into the definition of the point process by instead defining it on the space {0, 1}∞ × (0,∞)

with intensity measure L(dχ)⊗dt, where L(dχ) =
∫ 1

0
Λ(dx)x−2Px. Here, Px determines the

outcomes of χ = (χ1, χ2, . . .) ∈ {0, 1}∞, an infinite sequence of independent Bernoulli trials
such that Px(χi = 1) = x for each i (Pitman, 1999).

For Λ({0}) = 0, it is useful to think of Λ(dx)/x2 as the rate at which a fraction x of all
blocks coalesce (Berestycki, 2009). However, there is a slight subtlety here: this is only true
if there are an infinite number of blocks. Pitman’s solution is to make precise statements

6

�x
01

t

5 1 4 2 6 3
C6(0) = {{1}, {2}, {3}, {4}, {5}, {6}}

C6(t1) = {{1, 4}, {2}, {3}, {5}, {6}}

C6(t2) = {{1, 4}, {2, 3, 6}, {5}}

C6(t) = {{1, 4, 5}, {2, 3, 6}}

C6(t) = {{1, 2, 3, 4, 5, 6}}

t
(x1, t1)

t
(x2, t2)

t
(x3, t3)

Fig. 12.1: A realization of a Λ-coalescent, together with a realization of a Poisson point
process (with an unmarked, independent Kingman component) that gives rise to it. The
Kingman component means that binary mergers may (as in {1} and {4} merging) or may
not (as in {1, 4} and {5} merging) correspond to points of the point process. Also note that
a point – e.g., see (x3, t3) – in the Poisson Point Process may not lead to any merger event.
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like this only for Λ-coalescents which stay infinite (Pitman, 1999). Otherwise, we are tacitly
assuming that the blocks reside in an otherwise unobserved infinite population of blocks.
This is of course the natural way of thinking of them in a biological setting.

To incorporate mass at zero, we can simply write Λ = ρδ0 + Λ̂ where Λ̂ has no mass
at zero. We then apply the Poisson point process construction to Λ̂ and say that pairs of
blocks also independently merge at rate ρ. A more satisfying construction can be found in
Schweinsberg (2000).

12.3 Interpretation of the measure Λ

The Poisson point process construction (for Λ({0}) = 0) gives an intuitive interpretation
for Λ(dx)x−2. An interpretation of Λ(dx) itself is as follows. Let ti,j , which are equal in
distribution to t1,2, be the coalescence time for integers i and j; that is, i and j reside in the
same block of C∞(ti,j) and not of C∞(ti,j−). Notice that ti,j ∼ Exp(λ2,2) = Exp(Λ([0, 1])).
At a point (x, t) of the point process, i and j merge with probability P(χi = χj = 1) =
x2. Thus, thinning the point process so that each point is retained independently with
probability x2 results (by the standard theory of Poisson processes) in another Poisson
point process, this time with intensity Λ(dx)dt. Thus, two particular integers coalesce at rate
Λ([0, 1]), and Λ(dx)/Λ([0, 1]) gives the distribution of the fraction of blocks which participate
in their merger (again, the merger is understood to occur in an infinite population of blocks).

12.4 When can we apply a Λ-coalescent to biology?

We need to address two issues if the Λ-coalescent is to be an appropriate model for the gene
genealogy of some organism—first, does it come down from infinity? And second, when does
the (time-rescaled) limit of the finite-population dynamics converge to a Λ-coalescent as the
population size N →∞?

12.4.1 Coming down from infinity

One should expect that the entire population of an organism has a finite time to the most
recent common ancestor. In our notation, for a standard coalescent this is defined as

TMRCA := inf{t ≥ 0 : |C∞(t)| = 1}.

A necessary and sufficient condition for E[TMRCA] < ∞ is that the coalescent comes down
from infinity, defined as follows.

Definition 12.5. The coalescent is said to come down from infinity if for all t > 0, |C∞(t)| <
∞ almost surely. It is said to stay infinite if for all t ≥ 0, |C∞(t)| =∞.

Notice that we opt for a stronger definition than simply “there exists” some time for which
the number of blocks is finite. This is because, with the sole exception of the star-shaped
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coalescent (or indeed any coalescent with a star-shaped component, Λ({1}) > 0), a coalescent
either comes down from infinity almost surely or stays infinite almost surely (Pitman, 1999).
The star-shaped coalescent with all its mass at 1 neither comes down from infinity (in this
stronger sense) nor does it stay infinite.

As discussed in Section 2.11, Kingman’s coalescent comes down from infinity. The
Bolthausen-Sznitman coalescent stays infinite, but only just: for the family of Beta(2−α, α)-
coalescents, α ∈ (0, 2), of which the Bolthausen-Sznitman coalescent is a member (α = 1),
the process comes down from infinity if α < 1 and stays infinite if α ≥ 1. There exist a
number of conditions on Λ related to whether the coalescent comes down from infinity (Pit-
man, 1999, and references therein); we content ourselves with stating a concise necessary
and sufficient condition:

Theorem 12.6. The Λ-coalescent comes down from infinity if and only if

∞∑
b=2

[
b∑

k=2

(k − 1)

(
b

k

)
λb,k

]−1

<∞.

12.4.2 Convergence to the coalescent

When does the genealogical process of a finite population converge to a Λ-coalescent as
the population size N → ∞? We will state necessary and sufficient conditions for conver-
gence for Cannings exchangeable models, defined in Section 2.8. Recall the offspring vector
(ν1, . . . , νN ), where νi denotes the number of offspring of individual i. As discussed in Sec-
tion 2.10, the crucial parameter for determining convergence to a coalescent process is the
probability that two individuals shared a common ancestor in the previous generation (c.f.,
Definition 2.22):

cN := E

[
N∑
i=1

νi(νi − 1)

N(N − 1)

]
=

E[ν1(ν1 − 1)]

N − 1
,

where the first equality follows by summing over the possible parent labels for the parent
of the two coalescing individuals and taking expectation over (ν1, . . . , νN ), and the second
equality follows from exchangeability. Sagitov (1999) (see also Möhle and Sagitov 2001) es-
tablished the following necessary and sufficient conditions for convergence to a Λ-coalescent:

Theorem 12.7 (Sagitov 1999). Let q
(N)
αβ denote the transition rate from partition α to

partition β in the genealogical process of a Cannings model with population size N . The

rates q
(N)
αβ converge to those of a Λ-coalescent on a timescale of cN if and only if

1. cN → 0,

2.
1

cN

E[ν1(ν1 − 1)ν2(ν2 − 1)]

N2
→ 0, and

3.
NP(ν1 > Nx)

cN
→
∫

(x,1]

F (dy)

y2
, at all points x with F ({x}) = 0, where F is a probability

distribution on [0, 1],

as N →∞.
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Each condition has a natural interpretation. The first tells us that the rate of coalescence
must go to zero if we are to get a continuous-time approximation in the limit. The second
tells us that the rate of simultaneous multiple mergers, compared to that of binary mergers,
must go to zero, and the third provides an explicit relationship between the distribution F
and the distribution of offspring of an individual when they replace a substantial (x > 0)
fraction of the population. In the Kingman case, condition 2 is analogous to E[ν1(ν1−1)(ν1−
2)]/(N2cN ) → 0, which tells us that the rate of 3-mergers relative to binary mergers goes
to zero in the limit.

This convergence result is in fact much more general than the original conditions of King-
man (1982a), who required that E[ν1(ν1 − 1)] tended to a positive constant. This condition
does not include, for example, the Moran model, for which cN = 2/[N(N − 1)]→ 0.

Example 12.8. Condition 3 of Theorem 12.7 shows us when a Λ-coalescent might be ap-
plicable: when the distribution of offspring is highly skewed, such that there is a positive
probability that the offspring of a single individual might replace a substantial fraction of
the population in a single generation. One such reproductive model that fits this category is
those species that undergo broadcast spawning. A nice discussion is in Eldon and Wakeley
(2006), who suggest that Λ-coalescents might be suitable for the Pacific oyster, the Ameri-
can lobster, and the Atlantic cod. They test the fit of a model in which F = aδ0 + (1−a)δψ,
a ∈ [0, 1], a mixture of a Kingman coalescent and rare events in which a single individual
replaces a fraction ψ of the population.
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Chapter 13

The site frequency spectrum for general
coalescent models

In Chapter 12, we saw that Kingman’s coalescent can be viewed as a special case of Λ-
coalescents (Pitman, 1999; Sagitov, 1999). Λ-coalescents can in turn be seen as special cases
of a broader class of models called Ξ-coalescents (Schweinsberg, 2000), in which more than
one multiple merger event can occur simultaneously. Such events can arise in certain models
of selection (Huillet, 2014), models of selective sweeps (Durrett and Schweinsberg, 2005),
models with repeated strong bottlenecks (Birkner et al, 2009), and certain diploid mating
models (Möhle and Sagitov, 2003). In this chapter, we discuss the problem of computing
the expected site frequency spectrum (SFS) for general Ξ-coalescents. The exposition here
closely follows Spence et al (2016).

13.1 A brief introduction to Ξ-coalescents

Formally, time-homogeneous Ξ-coalescents are governed by a measure Ξ(dx) on the set
{(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0 and

∑∞
i=1 xi ≤ 1}. Following Spence et al (2016), we con-

sider a general time-inhomogeneous Ξ-coalescent governed by a measure of the form Ξ(dx)
ζ(t) ,

where Ξ(dx) is a time-independent measure and ζ : R≥0 → R+ is a strictly positive function
of time representing (for historical reasons) the inverse intensity. For example, for Kingman’s
coalescent, Ξ(dx) = δ0(dx), the point mass at zero, and ζ(t) corresponds to the scaled ef-
fective population size at time t. For other models, ζ(t) does not necessarily correspond to
the population size, but has an interpretation specific to the model. For example, Neher and
Hallatschek (2013) showed empirically that the rate of coalescence in a model of continuous
strong selection is a nonlinear function of the population size and the first two moments of
the distribution of mutational effects.

We use Q to denote the rate matrix of the ancestral process (also known as the block-
counting process) of the time-homogeneous coalescent corresponding to Ξ(dx). More specif-
ically, Q is a lower triangular matrix where (Q)ij is the instantaneous rate at which i unla-
beled lineages merge to form j unlabeled lineages when ζ ≡ 1. For example, for Kingman’s
coalescent,

(Q)ij =


(
i
2

)
, j = i− 1,

−
(
i
2

)
, j = i,

0, otherwise.

179
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For Λ-coalescents,

(Q)ij =

(
i

i− j + 1

)
λi,i−j+1,

where λb,k are defined in (12.3). In what follows, we define qi :=
∑i−1
k=1(Q)ik = −(Q)ii.

See Schweinsberg (2000) for a more detailed description of Ξ-coalescents. For an al-
ternative perspective based on a lookdown construction of particle systems with general
reproduction mechanisms, see Donnelly et al (1999) and Birkner et al (2009).

13.2 Previous work on the expected SFS for Ξ-coalescents

As discussion in Chapter 7, the expected SFS for Kingman’s coalescent is well understood,
and can, in fact, be computed for an arbitrary ζ in O(n2) time (Bhaskar et al, 2015; Polanski
and Kimmel, 2003) for a sample of size n. For the special case of constant ζ, Birkner et al
(2013) and Blath et al (2016) developed methods to compute the expected SFS for Λ-
and Ξ-coalescents, respectively. Birkner et al’s method for Λ-coalescents takes O(n4) time
and Blath et al’s method for Ξ-coalescents takes time exponential in n, since it requires
performing a sum over partitions of n numbers.

Berestycki et al (2007, 2014) studied the asymptotic behavior of the expected SFS as
n→∞. Specifically, they derived simple formulae for time-homogeneous Λ-coalescents that
come down from infinity. These asymptotic formulae can be rather inaccurate for finite
n, however. Indeed, Birkner et al (2013) showed that, even for n = 10, 000, there is a
substantial discrepancy between the asymptotic formulae for some Λ-coalescents and the SFS
obtained by simulation, illustrating the need for finite-sample computation. Nevertheless,
such asymptotic results highlight some interesting properties of Λ-coalescents, as reviewed
in Berestycki (2009).

In this chapter, we discuss the work of Spence et al (2016), who devised a method
that can compute the expected SFS for time-inhomogeneous Λ- and Ξ-coalescents with
arbitrary ζ in O(n3) time. In the case where ζ is a constant function, their method can
compute the expected SFS in O(n2) time given the rate matrix Q of the ancestral pro-
cess. Briefly, recall that the expected unnormalized SFS for a sample of size n is given by
θ
2 (E[τn,1], . . . ,E[τn,n−1]), where θ

2 denotes the population-scaled mutation rate and τn,b
denote the sum of the lengths of all edges each subtending exactly b leaves (cf., Defini-
tion 5.9). Spence et al (2016) used subsampling arguments to show that the expectations
E[τn,1], . . . ,E[τn,n−1] can be computed from ETMRCA

2 , . . . ,ETMRCA
n , where ETMRCA

k denotes
the expected time to the most recent common ancestor for sample size k ∈ {2, . . . , n}. Then,
they showed how to compute ETMRCA

k using a spectral decomposition of the rate matrix Q.
We detail these two steps in the ensuing sections.

13.3 Relating the SFS to the TMRCAs

The expression for E[τn,b] in Theorem 5.10 and the recursion for expected inter-coalescence
times E[Tn−1,k] in Lemma 7.7 apply to Kingman’s coalescent, but in general they do not hold
for other Ξ-coalescent models. However, using exchangeability and a subsampling argument
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similar to that in the proof of Lemma 7.7, one can obtain the following recursion for E[τn−1,k],
where k < n− 1, for an arbitrary Ξ-coalescent:

E[τn−1,k] =
k + 1

n
E[τn,k+1] +

n− k
n

E[τn,k], (13.1)

which follows from removing a leaf uniformly at random from a sample of size k. Using (13.1),
we show in the lemma below how the expectations E[τn,1],E[τn,2], . . . ,E[τn,n−1] for a fixed
sample size n are related to the “anti-singleton” expectations E[τ2,1],E[τ3,2], . . . ,E[τn,n−1] for
sample sizes 2, . . . , n. (The name follows from the fact that θ

2E[τ2,1], θ2E[τ3,2], . . . , θ2E[τn,n−1]
correspond to the anti-singleton entries — i.e., entries where exactly one haplotype has the
ancestral allele and all other haplotypes have the derived allele — of the expected SFS for
sample sizes 2, . . . , n.)

Lemma 13.1. For an arbitrary time-inhomogeneous Ξ-coalescent governed by a measure
Ξ(dx)
ζ(t) , we have 

E[τn,1]
E[τn,2]

...
E[τn,n−1]

 = B


E[τ2,1]
E[τ3,2]

...
E[τn,n−1]

 , for all n ≥ 2, (13.2)

where B is an (n− 1)-by-(n− 1) matrix that does not depend on the measure. Specifically,
the entries of B are given by

(B)ij =

{
(−1)i−j 1

j+1

(
n−i−1
j−i

)(
n
i

)
, i ≤ j,

0, i > j.

Proof. Define the level of E[τn,i] as n − i. We use induction on the level to show that, for
all n ≥ 2 and 1 ≤ i ≤ n− 1,

E[τn,i] =

(
n

i

) n−1∑
j=i

(−1)i−j
1

j + 1

(
n− i− 1

j − i

)
E[τj+1,j ]. (13.3)

First, note that (13.3) holds for level 1, i.e., for i = n− 1. Assume that (13.3) holds for level
n− i− 1. Then,

E[τn,i] =
n

n− i
E[τn−1,i]−

i+ 1

n− i
E[τn,i+1]

=
n

n− i

[(
n− 1

i

) n−2∑
j=i

(−1)i−j
1

j + 1

(
n− i− 2

j − i

)
E[τj+1,j ]

]

− i+ 1

n− i

[(
n

i+ 1

) n−1∑
j=i+1

(−1)i+1−j 1

j + 1

(
n− i− 2

j − i− 1

)
E[τj+1,j ]

]

=

(
n

i

){
1

i+ 1
E[τi+1,i] + (−1)n−1−i 1

n
E[τn,n−1]
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+

n−2∑
j=i+1

(−1)i−j
1

j + 1

[(
n− i− 2

j − i

)
+

(
n− i− 2

j − i− 1

)]
E[τj+1,j ]

}

=

(
n

i

) n−1∑
j=i

(−1)j−i
1

j + 1

(
n− i− 1

j − i

)
E[τj+1,j ],

where the first equality holds by the recursion (13.1) and the second equality holds by
the inductive hypothesis, by noting that E[τn−1,i] and E[τn,i+1] are both one level below
E[τn,i]. ut

The following lemma shows that the anti-singleton expectation E[τk,k−1] on the right
hand side of (13.2) can be written has a linear combination of the expected TMRCAs for
samples sizes 2, . . . , n, with coefficients independent of the measure of the Ξ-coalescent:

Lemma 13.2. For an arbitrary time-inhomogeneous Ξ-coalescent governed by a measure
Ξ(dx)
ζ(t) , we have 

E[τ2,1]
E[τ3,2]

...
E[τn,n−1]

 = C


E[TMRCA

2 ]
E[TMRCA

3 ]
...

E[TMRCA
n ]

 , for all n ≥ 2,

where C is an (n− 1)-by-(n− 1) bi-diagonal matrix with entries

(C)ij =


i+ 1, for i = j,

−(i+ 1), for i = j + 1,

0, otherwise.

Proof. As in (13.1), we employ a subsampling argument. Consider a sample of size k+1. The
only way that a subsample of size k can have a different time to most recent common ancestor
is if the removed individual is a singleton after all of the other lineages have coalesced. The
probability that we remove that singleton to form our subsample is 1

k+1 . Then, the expected
amount of time during which there is one singleton and all of the other individuals have
coalesced scaled by the mutation rate is exactly the anti-singleton entry. Thus,

1

k + 1
E[τk+1,k] = E[TMRCA

k+1 ]− E[TMRCA

k ]

for k > 1. When k = 1, there are only 2 lineages, so the total branch length is the
anti-singleton entry. Thus, τ2,1 = 2E[TMRCA

2 ]. Rewriting this as a matrix equation for
k ∈ {1, . . . , n− 1} completes the proof. ut

By combining Lemmas 13.1 and 13.2, we obtain the following result:

Theorem 13.3. For an arbitrary time-inhomogeneous Ξ-coalescent governed by a measure
Ξ(dx)
ζ(t) , there exists a universal (n − 1)-by-(n − 1) matrix A that does not depend on the

measure such that
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E[τn,1]
E[τn,2]

...
E[τn,n−1]

 = A


E[TMRCA

2 ]
E[TMRCA

3 ]
...

E[TMRCA
n ]

 .

More precisely, A = BC, where B and C are defined in Lemmas 13.1 and 13.2, respectively.

As in the case of Kingman’s coalescent (cf., Chapter 7.3), the expected first coalescence
times E[T2,2], . . . ,E[Tn,n] play an important role in computing the SFS for general coalescent
models. These expected coalescence times can be computed as (Bhaskar et al, 2015; Polanski
and Kimmel, 2003)

E[Tk,k] =

∫ ∞
0

P {time of first coalescence for k individuals > t} dt

=

∫ ∞
0

e(Q)kk
∫ t
0

1
ζ(s)

dsdt.

For the general time-inhomogeneous case, we discuss in the next section how to compute
E[TMRCA

2 ], . . . ,E[TMRCA
n ] using E[T2,2], . . . ,E[Tn,n] in O(n3) time. When ζ is a constant func-

tion, it is possible to do this in O(n2) time using the following lemma:

Lemma 13.4. For a Ξ-coalescent governed by a measure of the form Ξ(dx)
ζ(t) where ζ is a con-

stant function, E[TMRCA
2 ], . . . ,E[TMRCA

n ] can be computed recursively from E[T2,2], . . . ,E[Tn,n]
and Q as follows:

E[TMRCA

2 ] = E[T2,2],

E[TMRCA

k ] = E[Tk,k] +

k−1∑
l=2

(Q)kl
qk

E[TMRCA

l ], for k > 2.

Proof. The formulae follow immediately from the homogeneity of the process, recursing on
the sample size, and noting that the probability that the first coalescence event for a sample

of size k results in k lineages merging down to l lineages is (Q)kl
qk

. ut

13.4 Relating the TMRCAs to the first coalescence times

In this section, we relate the expected TMRCAs E[TMRCA
2 ], . . . ,E[TMRCA

n ] to the expected first
coalescence times E[T2,2], . . . ,E[Tn,n] for sample sizes 2, . . . , n. First, we establish a useful
result on the spectral decomposition of the rate matrix Q; this result was also obtained by
Möhle and Pitters (2014, Equation 2.3) for the Bolthausen-Sznitman coalescent.

Lemma 13.5. Fix an arbitrary Ξ-coalescent with qi 6= qj for i 6= j, where qi :=
∑i−1
k=1(Q)ik =

−(Q)ii. Let Q ∈ Rn×n denote the rate matrix of the ancestral process corresponding to Ξ(dx)
(i.e., the process counting the number of extant lineages at time t). Then,

Q = UEU−1,

where (E)ij = δij(Q)ii, and
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(U)ij =


1, i = j,

1
qi−qj

∑i−1
k=j(Q)ik(U)kj , i > j,

0, otherwise.

Proof. By the construction of U,

(U)ij(Q)jj =

i∑
k=j

(Q)ik(U)kj ,

which implies that UE = QU. Then, since U is triangular and has strictly positive diagonal
entries, it is invertible. Therefore, Q = UEU−1. ut

The following result relates E[TMRCA
2 ], . . . ,E[TMRCA

n ] and E[T2,2], . . . ,E[Tn,n]:

Lemma 13.6. Fix an arbitrary Ξ measure and a strictly positive function ζ. Now consider

a time-inhomogeneous coalescent governed by Ξ(dx)
ζ(t) . If E[Tk,k] <∞, for 2 ≤ k ≤ n, then

E[TMRCA
2 ]

E[TMRCA
3 ]
...

E[TMRCA
n ]

 = −(UD)2:n,2:n


E[T2,2]
E[T3,3]

...
E[Tn,n]

 ,

where D ∈ Rn×n is the diagonal matrix diag([U−1]·,1), with [U−1]·,1 denoting the first
column of U−1, and (UD)2:n,2:n denotes the submatrix of UD in rows and columns 2
through n.

Proof. Note that ETMRCA

k =
∫∞

0
P {TMRCA

k > t} dt. Therefore,

ETMRCA

k =

∫ ∞
0

P {TMRCA

k > t} dt =

∫ ∞
0

k∑
l=2

[
eQ

∫ t
0

1
ζ(s)

ds]
kl
dt

=

∫ ∞
0

n∑
l=2

[
eQ

∫ t
0

1
ζ(s)

ds]
kl
dt

=

∫ ∞
0

n∑
l=2

[
UeE

∫ t
0

1
ζ(s)

dsU−1
]
kl
dt,

where the third equality follows from the fact that Q is lower triangular and hence so is
its exponential. Now, since U is lower triangular, its inverse is as well. Therefore, we may

ignore the value of [eE
∫ t
0

1
ζ(s)

ds]1,1. Letting F(t) := eE
∫ t
0

1
ζ(s)

ds but with F1,1(t) := 0, note
that

∫∞
0

F(t)dt = diag(0,E[T2,2],E[T3,3], . . . ,E[Tn,n]). Then we have

ETMRCA

k =

∫ ∞
0

n∑
l=2

[UF(t)U−1]kldt =

n∑
l=2

[U diag(0,E[T2,2], . . . ,E[Tn,n])U−1]kl.

Now, note that (U)i,1 = 1 for all i by Lemma 13.5 and induction. This implies
∑n
l=1[U−1]il =

δi1, or
∑n
l=2[U−1]il = δi1− [U−1]i1. Using this identity, we can rewrite the above expression

for ETMRCA

k as
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ETMRCA

k = −
n∑
j=2

[(UD)2:n,2:n]k−1,jE[Tj,j ],

where D = diag([U−1]·,1). Collecting these equations over k ∈ {2, . . . , n} in matrix form
leads to the desired result. ut

Lemma 13.5 provides a recursion to compute U, and D may be computed by noting that
(U−1)11 = 1 and then since UU−1 = I we have

U−1
i1 = −

i−1∑
j=1

(U)ij(U
−1)j1.

Since the matrices A in Theorem 13.3 and UD in Lemma 13.6 do not depend on ζ, note
that the SFS depends on time and the inhomogeneity of the coalescent process only through
the expected first coalescence times.

Combining the results discussed so far, we obtain the following main result:

Theorem 13.7. For an arbitrary time-inhomogeneous Ξ-coalescent governed by a measure
Ξ(dx)
ζ(t) , the expected SFS for a sample of size n can be computed in O(n3) time.

Proof. Theorem 13.3 and Lemma 13.6 describe how to compute E[τn,1], . . . ,E[τn,n−1] from
E[T2,2], . . . ,E[Tn,n]. For the runtime, note that each of the O(n2) entries of U requires O(n)
computations, and so computing U is O(n3). The matrices composing A are known in
closed form, however, and constructing D only requires filling O(n) entries, each requiring
O(n) computations for a total of O(n2). To then obtain the SFS from E[T2,2], . . . ,E[Tn,n]
simply requires iterated matrix vector products taking O(n2) time. The overall procedure
thus requires O(n3). ut

Remark 13.8. Other than computing U, the algorithm presented above for computing the
SFS is O(n2). Thus, for the Bolthausen-Sznitman Coalescent (Bolthausen and Sznitman,
1998) or Kingman’s coalescent, where U is known in closed form (Möhle and Pitters, 2014,
Theorem 1.1 and Appendix), the SFS can be computed in O(n2) time even for non-constant
ζ.
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Blath J, Cronjäger MC, Eldon B, Hammer M (2016) The site-frequency spectrum associated
with ξ-coalescents. Theoretical Population Biology 110:36–50

Bolthausen E, Sznitman AS (1998) On Ruelle’s probability cascades and an abstract cavity
method. Commun Math Phys 197:247–276

Donnelly P, Kurtz TG, et al (1999) Particle representations for measure-valued population
models. The Annals of Probability 27(1):166–205

Durrett R, Schweinsberg J (2005) A coalescent model for the effect of advantageous muta-
tions on the genealogy of a population. Stochastic Processes Appl 115:1628–1657

Huillet TE (2014) Pareto genealogies arising from a poisson branching evolution model with
selection. Journal of Mathematical Biology 68(3):727–761
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conditional sampling distribution (CSD), 96
continuous-time ancestral process, 8
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discrete-time ancestral process, 6
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falling factorial, 5
first coalescence, 112
folded site frequency spectrum, 68
Fu and Li’s estimator of θ, 76

GEM distribution, 61
gene tree, 83
generating function, 41, 42
generating functional, 62
graphical model, 93

haplotype, 67
history, 92
Hoppe’s urn model, 54, 70

identifiability, 119
importance sampling, 92

importance weight, 93
infinite-alleles model, 47
infinite-sites model, 67

jump chain, 16

Moran models, 32
most recent common ancestor (MRCA), 10
mutation transition matrix, 87

normalized site frequency spectrum, 69

offspring number, 29
optimal proposal distribution, 93

parent-independent mutation (PIM), 63, 89
perfect phylogeny, 81
Poisson Random Field (PRF), 116
Poisson-Dirichlet distribution, 62
Poisson-Dirichlet point process, 62
precedes, 15
probability generating functional, 62

relative population size, 109
reverse transition probability, 95
rising factorial, 5
Rolle’s theorem, 121
rooted binary tree topology, 24

sampling probability recursion, 49, 52, 84, 88
segregating site, 67
sequential importance sampling (SIS), 92
site frequency spectrum (SFS), 68
size-biased representation, 60
stick breaking process, 60
Stirling numbers of the second kind, 6

Tajima’s D, 78
Tajima’s estimator of θ, 76
time rescaling, 110
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ultrametric, 4
unnormalized site frequency spectrum, 68
unsigned Stirling numbers of the first kind, 58
urn model, 25, 27, 54, 70, 96, 99

variable population size, 109

Watterson’s estimator of θ, 75

Wright-Fisher model, 4

Yule-Harding process, 25
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