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Abstract

Obtaining a closed-form sampling distribution for the coalescent with recombination
is a challenging problem. In the case of two loci, a new framework based on an
asymptotic series has recently been developed to derive closed-form results when the
recombination rate is moderate to large. In this paper, an arbitrary number of loci is
considered and combinatorial approaches are employed to find closed-form expressions
for the first couple of terms in an asymptotic expansion of the multi-locus sampling
distribution. These expressions are universal in the sense that their functional form in
terms of the marginal one-locus distributions applies to all finite- and infinite-alleles
models of mutation.
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1. Introduction

Coalescent processes, first introduced by Kingman [14], [15] about three decades ago, are
widely used stochastic models in population genetics that describe the genealogical ancestry of
a sample of chromosomes randomly drawn from a population. For many applications, the key
quantity of interest is the probability of observing the sample under a given coalescent model
of evolution. In the one-locus case with special models of mutation such as the infinite-alleles
model or the finite-alleles, parent-independent mutation model, exact sampling distributions
have been known in closed-form for many years [3], [22]. In contrast, for models with two or
more loci with finite recombination rates, finding an exact, closed-form sampling distribution
has remained a challenging open problem. Therefore, most previous approaches have focused
on Monte Carlo methods, including importance sampling [4], [7], [8], [20] and Markov chain
Monte Carlo [16], [19], [21]. Such methods have led to useful tools for population genetics
analysis, but they are in general computationally intensive and their accuracy is difficult to
characterize theoretically.

Recently, Jenkins and Song [11]–[13] made progress on the long-standing problem of
finding sampling formulae for population genetics models with recombination by proposing a
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new approach based on an asymptotic expansion. That work can be summarized as follows.
Consider an exchangeable random mating model with two loci, denoted A and B. In the
standard coalescent or diffusion limit, let θA and θB denote the respective population-scaled
mutation rates at loci A and B, and let ρ denote the population-scaled recombination rate
between the two loci. Given a sample configuration n (defined later in the text), assume that ρ

is large and consider an asymptotic expansion of the sampling probability q(n | θA, θB, ρ) in
inverse powers of ρ:

q(n | θA, θB, ρ) = q0(n | θA, θB) + q1(n | θA, θB)

ρ
+ q2(n | θA, θB)

ρ2 + · · · .

Here the coefficients q0(n | θA, θB), q1(n | θA, θB), q2(n | θA, θB), . . ., etc. are independent
of ρ. The zeroth-order term q0 corresponds to the sampling probability in the ρ = ∞ case
(i.e. when the loci evolve independently), given simply by a product of marginal one-locus
sampling probabilities [1]. For either the infinite-alleles or an arbitrary finite-alleles model
of mutation at each locus, Jenkins and Song [11], [12] derived a closed-form formula for
the first-order term q1 and showed that its functional form depends on the assumed model of
mutation only through marginal one-locus sampling probabilities, a property which they termed
universality. Furthermore, they showed that the second-order term q2 can be expressed as a
sum of a closed-form formula plus another part that can be easily evaluated numerically using
dynamic programming; they also showed that, for most sample configurations, the closed-form
part of q2 dominates the part that needs to be computed numerically. More recently, the same
authors [13] utilized the diffusion process dual to the coalescent with recombination to develop
a new computational technique for computing qk for all k ≥ 1. Moreover, they proved that only
a finite number of terms in the asymptotic expansion is needed to recover (via the method of
Padé approximants) the exact two-locus sampling probability as an analytic function of ρ for all
ρ ∈ [0, ∞). An immediate application of this work would be the composite-likelihood method
[10], [17], [18] for estimating fine-scale recombination rates which is based on combining
two-locus sampling probabilities.

The main goal of this paper is to extend some of the mathematical results described above
to more than two loci. More precisely, we derive closed-form formulae for the first two terms
(q0 and q1) in an asymptotic expansion (described later in detail) of the sampling distribution
for an arbitrary number of loci. In general, the number of possible allelic combinations grows
exponentially with the number of loci, and the system of equations that we need to solve is
considerably more complex than that in the case of two loci. Note that the details of the
computational techniques developed in [11] and [12] are specific to the case of two loci, and
new methods need to be developed to handle an arbitrary number of loci. In this paper we
employ combinatorial approaches to make progress on the general case. Our work shows that
the universality property of q0 and q1 previously observed [11], [12] in the two-locus case also
applies to the case of an arbitrary number of loci.

The remainder of this paper is organized as follows. In Section 2 we introduce the multi-
locus model to be considered in this paper and describe our notational convention. Our main
results are summarized in Section 3 and an explicit example involving three loci is discussed in
Section 4. In Section 5 we provide proofs of the main theoretical results presented in this paper.

2. Preliminaries

Below we describe the model considered in this paper and lay out the notation.
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Figure 1: Illustration of L loci arranged linearly. The population-scaled recombination rate between loci
l and l + 1 is ρl/2.

2.1. Model

We consider the diffusion limit of a neutral haploid exchangeable model of random mating
with constant population size 2N . The haploid individuals in the population are referred to
as gametes, and each gamete contains L ≥ 2 loci labeled 1, 2, . . . , L and laid out linearly as
illustrated in Figure 1. The probability of mutation at locus l per gamete per generation is
denoted by ul , whereas the probability of recombination between loci l and l + 1 per gamete
per generation is denoted by cl . In the diffusion limit, as N → ∞, we let ul → 0 for 1 ≤ l ≤ L

and cl → 0 for 1 ≤ l ≤ L − 1, such that 4Nul → θl and 4Ncl → ρl , where θl and ρl are
population-scaled mutation and recombination rates, respectively.

Given a positive integer k, we use [k] to denote the k-set {1, . . . , k}. At locus l, we assume
that there are Kl distinct possible allele types, labeled by [Kl]. Mutation events at locus l

occur according to a Poisson process with rate θl/2, and allelic changes are described by an
ergodic Markov chain with transition matrix P (l) = (P

(l)
ab ), i.e. when a mutation occurs to allele

a ∈ [Kl], it mutates to allele b ∈ [Kl] with probability P
(l)
ab . The stationary distribution of P (l)

is given by π (l), with the ath entry denoted by π
(l)
a .

Recombination events between loci l and l + 1 occur at rate ρl/2. In our work, we are
interested in the case where ρl � 1 for all l ∈ [L − 1], with the ρl having similar orders of
magnitude. Specifically, we re-express the recombination rates as ρl = rlρ, where the rl are
scaling constants, and consider an asymptotic expansion as ρ → ∞.

2.2. Notation

As detailed later, the standard coalescent with recombination implies a closed system of
recursion relations satisfied by sampling probabilities. To obtain such a closed system of
recursions, the allelic-type space must be extended to allow gametes to be unspecified at some
loci. We use an asterisk to denote an unspecified allele and define the L-locus haplotype set H as

H = (([K1] ∪ {∗}) × · · · × ([KL] ∪ {∗})) \ {∗L}.
Given a haplotype h ∈ H , we use hl ∈ [Kl] ∪ {∗} to denote the allelic state of h at locus l. In
what follows, we introduce definitions that are used throughout the paper.

The following two definitions explain how we denote samples.

Definition 1. (n and eh, sample configurations.) A sample configuration is denoted by n =
(nh)h∈H , where nh is the number of times haplotype h occurs in the sample, and the same letter
n in nonboldface is used to denote the total sample size of n, i.e. n = ∑

h∈H nh. The notation
eh is used to denote a sample configuration of size 1 for which nh = 1 and nh′ = 0 for all
h′ 
= h. Note that we can write n = ∑

h∈H nheh.

Definition 2. (n(l) and σ(n), marginal sample configurations.) Let n = (nh)h∈H be an
L-locus sample configuration. For 1 ≤ l ≤ L, the marginal sample size for locus l and allele
a ∈ [Kl] is defined as n

(l)
a = ∑

{h∈H : hl=a} nh, and the marginal sample size for locus l is
defined as n(l) = ∑

a∈[Kl ] n
(l)
a (i.e. the total number of haplotypes with specified alleles at
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locus l). Furthermore, we use n(l) = (n
(l)
a )a∈[Kl ] to denote the Kl-dimensional vector specifying

the marginal sample configuration for locus l, and use σ(n) = (n(1), . . . ,n(L)) to denote the
L-tuple of marginal sample configurations. Also, note that ifhl = ∗ then e

(l)
h is aKl-dimensional

zero vector.

The sets described in the following two definitions specify where mutations or recombina-
tions can occur in a given haplotype.

Definition 3. (S(h), specified loci.) For each locus l, the alleles labeled by [Kl] are called
specified alleles. Furthermore, given a haplotype h ∈ H , we use S(h) ⊂ [L] to denote the set
of loci at which h has specified alleles (i.e. not ∗).

Definition 4. (B(h), break intervals.) When considering recombination, a given haplotype
h ∈ H can be broken up between loci l and l + 1 if min(S(h)) ≤ l < l + 1 ≤ max(S(h)). The
index l is used to refer to the break interval (l, l + 1), and the set of valid break intervals for
haplotype h is denoted by B(h) = {min(S(h)), . . . , max(S(h)) − 1}.

The two relations described below compare haplotypes. When two haplotypes satisfy either
relation, then their corresponding lineages are allowed to coalesce.

Definition 5. (�, compatibility.) Given a pair of haplotypes h, h′ ∈ H , if hl = h′
l for all

l ∈ S(h) ∩ S(h′) then we say that they are compatible and write h � h′.

Definition 6. (, containment.) Given a pair of haplotypes h, h′ ∈ H , we write h  h′ if
S(h) ⊇ S(h′) and hl = h′

l for all l ∈ S(h′).

Corresponding to the types of event that may occur in the coalescent with recombination,
we define the following operations on haplotypes.

Mutate. Given a locus l ∈ [L] and an allele a ∈ [Kl], define Ma
l (h) as the haplotype derived

from h ∈ H by substituting the allele at locus l with a.

Coalesce. If h � h′, define C(h, h′) as the haplotype h′′ constructed as follows:

h′′
l =

⎧⎪⎨
⎪⎩

hl if hl 
= ∗ and h′
l = ∗,

h′
l if hl = ∗ and h′

l 
= ∗,

hl = h′
l otherwise.

Break. Given a break interval l ∈ B(h), we use R−
l (h) = (h1, . . . , hl, ∗, . . . , ∗) to denote the

haplotype obtained from h by replacing hj with ‘∗’ for all j ≥ l + 1, and R+
l (h) =

(∗, . . . , ∗, hl+1, . . . , hL) to denote the haplotype obtained from h by replacing hj with
‘∗’ for all j ≤ l.

Given a haplotype h ∈ H and a set X ⊆ [L], we define H(h, X) as the set of haplotypes that
contain h and are specified at the loci in X, i.e.

H(h, X) = {h′ ∈ H | S(h′) ⊇ X and h′  h}. (1)

Lastly, for a given subset X ⊂ [L], we define r(X) as

r(X) = rmin(X) + rmin(X)+1 + · · · + rmax(X)−1,

which corresponds to the total recombination rate (relative to ρ) between the first and the last
loci in X.
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3. Main results on multi-locus asymptotic sampling distributions

For ease of notation, in most cases we suppress the dependence on the parameters {rl}L−1
l=1

and {θl, P
(l)}Ll=1 when writing sampling probabilities. By exchangeability, the probability of

any ordered configuration corresponding to sample n is invariant under all permutations of the
sampling order. Hence, we use q(n) without ambiguity to denote the stationary sampling
probability of any particular ordered configuration consistent with n. From the standard
coalescent with recombination [2], [5], [6], [7], [9],we can derive a closed system of recursions
and boundary conditions for which q(n) is the unique solution. Specifically, q(n) satisfies the
system of linear equations

∑
h∈H

nh

[
(n − 1) +

∑
l∈S(h)

θl +
∑

l∈B(h)

ρl

]
q(n)

=
∑
h∈H

nh

[
(nh − 1)q(n − eh) +

∑
{h′∈H : h �h′, h
=h′}

nh′q(n − eh − eh′ + eC(h,h′))

+
∑

l∈S(h)

θl

∑
a∈[Kl ]

P
(l)
a,hl

q(n − eh + eMa
l (h))

+
∑

l∈B(h)

ρlq(n − eh + eR−
l (h) + eR+

l (h))

]
, (2)

with boundary conditions

q(eh) =
∏

l∈S(h)

π
(l)
hl

for all h ∈ H .

We define q(n) = 0 if nh < 0 for any h ∈ H .
The above closed system of equations is a full-rank linear system in the variables q(m) for

all samples m reachable from the given sample n through repeated application of (2). Since
ρl = rlρ, the entries of the matrix associated with the linear system are linear in ρ. Hence, the
entries in the inverse matrix are rational functions of ρ, thus implying that q(n) is a rational
function of ρ, say f (ρ)/g(ρ), where f and g are polynomials that depend on n and rl . Also,
for every sample configuration n, since 0 < q(n) < 1 as ρ → ∞, f and g must be of the
same degree in ρ. Hence, it follows that q(n) is also a rational function of ρ−1 with both the
numerator and the denominator having nonzero constant terms. Hence, the Taylor series of
q(n) about ρ = ∞ gives the following asymptotic expansion in inverse powers of ρ:

q(n) = q0(n) + q1(n)

ρ
+ q2(n)

ρ2 + O

(
1

ρ3

)
. (3)

The coefficients q0(n), q1(n), q2(n), etc. are uniquely determined, and they depend on the
sample configuration n and the model parameters {θl, P

(l)}Ll=1 and {rl}L−1
l=1 , but not on ρ. Note

that q0(n) corresponds to the sampling probability when ρ is infinitely large, in which case
all haplotypes instantly break up into one-locus fragments and evolve independently back in
time. Hence, as proved by Ethier [1] in the case of two loci, we expect q0(n) to be given by
the product of marginal one-locus sampling probabilities. The following result formalizes this
intuition.
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Proposition 1. For all L-locus sample configurations n,

q0(n) =
L∏

l=1

p(n(l) | θl, P
(l)), (4)

where p denotes the marginal one-locus sampling distribution.

Remark. An exact, closed-form expression for the one-locus sampling distribution p(n(l) | θl,

P (l)) is not known for general finite-alleles mutation models. However, if a finite-alleles,
parent-independent mutation model is assumed at each locus (i.e. for each locus l ∈ [L], the
mutation transition matrix satisfies P

(l)
ab = π

(l)
b for all a, b ∈ [Kl]), then in (4) we can use

Wright’s [22] one-locus sampling formula

p(n(l) | θl, P
(l)) = 1

(θ)n(l)

Kl∏
a=1

(θπ(l)
a )

n
(l)
a

,

where (x)n = x(x + 1) · · · (x + n − 1).

A proof of Proposition 1 is provided in Section 5.1. Since q0(n) depends only on the
marginal sample configuration σ(n) = (n(1), . . . , n(L)), henceforth we use q0(n) and q0(σ (n))

interchangeably.
In Section 5.2 we apply the inclusion–exclusion principle to derive the following key result.

Proposition 2. The q1(n) term in the asymptotic expansion (3) of q(n) is the unique solution
to the recursion∑

h∈H

nh

∑
l∈B(h)

rl[q1(n) − q1(n − eh + eR−
l (h) + eR+

l (h))]

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
∑

{X : |X|≥2, S(h)⊆X⊆[L]}
(−1)|X−S(h)|

( ∑
h′∈H(h,X)

nh′
)( ∑

h′′∈H(h,X)

nh′′ − 1

)
,

(5)

with boundary conditions
q1(eh) = 0 for all h ∈ H . (6)

We define q0(σ (n)) = 0 if n
(l)
a < 0 for any l ∈ [L] and a ∈ [Kl].

In Section 5.3 we prove that the closed-form expression for q1(n) in the following theorem
is the unique solution to (5) and (6).

Theorem 1. Recursion (5) and boundary conditions (6) admit the following unique solution
for q1(n):

q1(n) =
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
∑

{X : |X|≥2, S(h)⊆X⊆[L]}

(−1)|X−S(h)|

r(X)

(∑
h′∈H(h,X) nh′

2

)
. (7)

Here q0 is given by a product of marginal one-locus sampling distributions as described in
Proposition 1.
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The intuition behind Proposition 2 and Theorem 1 is as follows. In [12], a formula for q1(n) in
the two-locus case was obtained by deriving a recursion satisfied by q1(n) and by solving it using
a probabilistic interpretation based on multivariate hypergeometric distributions. The correct
multi-locus generalization of the two-locus recursion for q1(n) used in [12] turns out to be the
inclusion–exclusion-type expression shown in Proposition 2, and an appropriate generalization
of the associated probabilistic interpretation is based on Wallenius’ noncentral hypergeometric
distributions. For ease of exposition, however, in Section 5.3 we provide a purely combinatorial
proof of Theorem 1. For two loci, we show in Section 4 that the general multi-locus solution
for q1(n) in (7) reduces to the solution found in [12].

In summary, Proposition 1 and Theorem 1 imply the following asymptotic expansion of the
L-locus sampling distribution.

Corollary 1. For an arbitrary L-locus sample configuration n, the sampling probability q(n)

in the limit ρ → ∞ has the following asymptotic expansion:

q(n) =
L∏

l=1

p(n(l)) + 1

ρ

∑
h∈H∪{∗L}

[ L∏
l=1

p(n(l) − e
(l)
h )

]

×
∑

{X : |X|≥2, S(h)⊆X⊆[L]}

(−1)|X−S(h)|

r(X)

(∑
h′∈H(h,X) nh′

2

)

+ O

(
1

ρ2

)
.

Here p(n(l)) denotes the marginal one-locus sampling probability for locus l with parameters
θl and P (l).

Note that the formulae for q0(n) and q1(n) respectively given in Proposition 1 and Theorem 1
do not have any explicit dependence on the mutation parameters. More precisely, the depen-
dence on the assumed mutation model arises only implicitly through the one-locus sampling
probabilities p(n(l)), and the formulae in Proposition 1 and Theorem 1 apply to all finite-alleles
mutation models. In fact, by carrying out a similar line of derivation as that presented in this
paper, it can be shown that the formulae in Proposition 1 and Theorem 1 also apply to the
case of the infinite-alleles model of mutation at each locus; the marginal one-locus sampling
probabilities p(n(l)) in that case are given by the Ewens sampling formula [3]. Jenkins and
Song [11] observed this universality property of q0 and q1 earlier in the case of two loci. Our
results imply that the universality property extends to an arbitrary number L of loci.

4. An explicit example: the three-locus case

Below we provide an explicit formula for q1(n) in the case of L = 3. For ease of notation,
we adopt the convention that the indices i, j , and k denote specified alleles which range over
[K1], [K2], and [K3], respectively. Hence, nijk denotes the number of fully specified haplotypes
(i, j, k). As in the rest of this paper, an asterisk represents an unspecified allele. Finally, a dot
represents a summation over all the alleles in [Kl] for the index corresponding to locus l, while
a filled circle denotes a summation over [Kl] ∪ {∗}. For example,

ni∗· =
∑

k∈[K3]
ni∗k
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and

ni·· =
∑

j∈[K2]

∑
k∈[K3]

nijk,

whereas ni•· = ni∗· +ni··. In this notation, Theorem 1 implies that q1(n) for L = 3 is given by

q1(n) = q0(σ (n))

[
1

r1

(
n··•
2

)
+ 1

r2

(
n•··
2

)
+ 1

r1 + r2

(
n·•·
2

)
− 1

r1 + r2

(
n···
2

)]

+
∑

i

q0(σ (n) − σ(ei∗∗))
[

1

r1 + r2

(
ni··
2

)
− 1

r1 + r2

(
ni•·
2

)
− 1

r1

(
ni·•
2

)]

+
∑
j

q0(σ (n) − σ(e∗j∗))
[

1

r1 + r2

(
n·j ·
2

)
− 1

r1

(
n·j•

2

)
− 1

r2

(
n•j ·

2

)]

+
∑

k

q0(σ (n) − σ(e∗∗k))

[
1

r1 + r2

(
n··k
2

)
− 1

r1 + r2

(
n·•k

2

)
− 1

r2

(
n•·k

2

)]

+
∑
i,j

q0(σ (n) − σ(eij∗))
[

1

r1

(
nij•

2

)
− 1

r1 + r2

(
nij ·
2

)]

+
∑
j,k

q0(σ (n) − σ(e∗jk))

[
1

r2

(
n•jk

2

)
− 1

r1 + r2

(
n·jk

2

)]

+
∑
i,k

q0(σ (n) − σ(ei∗k))

[
1

r1 + r2

(
ni•k

2

)
− 1

r1 + r2

(
ni·k
2

)]

+
∑
i,j,k

q0(σ (n) − σ(eijk))
1

r1 + r2

(
nijk

2

)
, (8)

where q0 is given by a product of marginal one-locus sampling probabilities. If the sample
does not contain any haplotype with an unspecified allele ∗, (8) reduces to the following:

q1(n) =
(

1

r1
+ 1

r2

)
q0(σ (n))

(
n···
2

)
− 1

r1

∑
i

q0(σ (n) − σ(ei∗∗))
(

ni··
2

)

−
(

1

r1
+ 1

r2
− 1

r1 + r2

) ∑
j

q0(σ (n) − σ(e∗j∗))
(

n·j ·
2

)

− 1

r2

∑
k

q0(σ (n) − σ(e∗∗k))

(
n··k
2

)

+
(

1

r1
− 1

r1 + r2

) ∑
i,j

q0(σ (n) − σ(eij∗))
(

nij ·
2

)

+
(

1

r2
− 1

r1 + r2

) ∑
j,k

q0(σ (n) − σ(e∗jk))

(
n·jk

2

)

+ 1

r1 + r2

∑
i,j,k

q0(σ (n) − σ(eijk))

(
nijk

2

)
.
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If the second locus is ignored, or, equivalently, if every haplotype in the sample has an
unspecified allele ∗ at the second locus, (8) becomes

q1(n) = 1

r1 + r2

[
q0(σ (n))

(
n·∗·
2

)
−

∑
i

q0(σ (n) − σ(ei∗∗))
(

ni∗·
2

)

−
∑

k

q0(σ (n) − σ(e∗∗k))

(
n·∗k

2

)

+
∑
i,k

q0(σ (n) − σ(ei∗k))

(
ni∗k

2

)]
,

which coincides with the formula found by Jenkins and Song [11], [12] in the case of L = 2.

5. Proofs of the main results

In this section we provide proofs of the results described in Section 3. For a given locus
l ∈ [L] and an allele a ∈ [Kl], we use ul

a to denote the Kl-dimensional unit vector where the
j th component is 1 if j = a and 0 otherwise.

5.1. Proof of Proposition 1

By substituting the asymptotic expansion (3) into recursion (2), dividing by ρ, and letting
ρ → ∞, we obtain the following recursion for q0(n):

[∑
h∈H

nh

∑
l∈B(h)

rl

]
q0(n) =

∑
h∈H

nh

∑
l∈B(h)

rlq0(n − eh + eR−
l (h) + eR+

l (h)). (9)

We first establish the following lemma.

Lemma 1. For every L-locus sample configuration n, q0(n) depends only on the marginal
sample configurations σ(n) = (n(1), . . . ,n(L)), i.e.

q0(n) = q0(σ (n)), (10)

where σ(n) is viewed as a sample configuration containing
∑

h∈H nh|S(h)| haplotypes, each
with a specified allele at exactly one locus and unspecified alleles elsewhere.

Proof. We use induction on the number of recombination events needed to transform a given
sample configuration n into the configuration σ(n) that contains

∑
h∈H nh|S(h)| haplotypes,

each specified at exactly one locus. The base case corresponds to a sample n consisting of
haplotypes, each specified at only one locus, in which case n = σ(n), and (10) is trivially
true. Given a sample configuration n, consider the right-hand side of (9). For any haplotype
h ∈ H satisfying nh > 0 and any l ∈ B(h), let m = n − eh + eR−

l (h) + eR+
l (h). The sample

configuration m needs one less recombination event to be transformed to σ(m) than n needs
to be transformed to σ(n). Hence, applying the induction hypothesis to m, we have q0(m) =
q0(σ (m)). Noting that σ(m) = σ(n) and using (9), we have

[∑
h∈H

nh

∑
l∈B(h)

rl

]
q0(n) =

∑
h∈H

nh

∑
l∈B(h)

rlq0(σ (n)),

which simplifies to (10).
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Now, let m denote a sample configuration such that mh = 0 for all h with more than one
specified locus (i.e. |S(h)| > 1). Substituting the asymptotic expansion (3) for n = m into (2),
using (9) to simplify, letting ρ → ∞, and utilizing Lemma 1, we obtain the recursion

L∑
l=1

[m(l)(m(l) − 1) + θlm
(l)]q0(m

(1), . . . ,m(L))

=
L∑

l=1

∑
a∈[Kl ]

m(l)
a (m(l)

a − 1)q0(m
(1), . . . , m(l−1), m(l) − ul

a, m
(l+1), . . . , m(L))

+
L∑

l=1

θl

∑
a,b∈[Kl ]

P
(l)
ab m

(l)
b q0(m

(1), . . . , m(l−1), m(l) − ul
b + ul

a, m
(l+1), . . . , m(L)),

(11)

and boundary conditions

q0(0(1), . . . , 0(l−1), ul
al

, 0(l+1), . . . , 0(L)) = π(l)
al

for all l ∈ [L] and al ∈ [Kl], (12)

where 0(j) denotes the Kj -dimensional zero vector. Note that recursion (11) is the sum of L

one-locus recursions of the form

[m(l)(m(l) − 1) + θlm
(l)]p(m(l)) =

∑
a∈[Kl ]

m(l)
a (m(l)

a − 1)p(m(l) − ul
a)

+ θl

∑
a,b∈[Kl ]

P
(l)
ab n

(l)
b p(m(l) − ul

b + ul
a),

while boundary conditions (12) are a product of one-locus boundary conditions p(ul
a) = π

(l)
a

and p(0(l)) = 1 for all l ∈ [L] and a ∈ [Kl]. Hence, it follows that q0(m
(1), . . . ,m(L)) =∏L

l=1 p(m(l)). Finally, together with Lemma 1, letting m(l) = n(l) for all 1 ≤ l ≤ L in the
above result implies that q0(n) = q0(n

(1), . . . , n(L)) = ∏L
l=1 p(n(l)).

5.2. Proof of Proposition 2

By an induction argument similar to that in the proof of Lemma 1, we can see that recursion (5)
and boundary conditions (6) have a unique solution. Substituting (3) into both sides of (2),
using (9), and taking the limit as ρ → ∞, we obtain

∑
h∈H

nh

[
(n − 1) +

∑
l∈S(h)

θl

]
q0(n) +

∑
h∈H

nh

∑
l∈B(h)

rlq1(n)

=
∑
h∈H

nh

[
(nh − 1)q0(n − eh) +

∑
{h′∈H : h �h′, h
=h′}

nh′q0(n − eh − eh′ + eC(h,h′))

+
∑

l∈S(h)

θl

∑
a∈[Kl ]

P
(l)
a,hl

q0(n − eh + eMa
l (h))

+
∑

l∈B(h)

rlq1(n − eh + eR−
l (h) + eR+

l (h))

]
. (13)
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The terms that depend on mutation parameters can be eliminated by setting m = σ(n) in (11),
subtracting it from (13), and using the property of q0(n) that it depends only on the marginal
sample configuration at each locus. As a consequence, the following simpler recursion can be
obtained:

∑
h∈H

nh

∑
l∈B(h)

rl[q1(n) − q1(n − eh + eR−
l (h) + eR+

l (h))]

=
∑

{h,h′∈H : h �h′, h
=h′}
nhnh′q0(n − eh − eh′ + eC(h,h′))

+
∑
h∈H

nh(nh − 1)q0(n − eh) −
[
n(n − 1) −

L∑
l=1

n(l)(n(l) − 1)

]
q0(n)

−
L∑

l=1

∑
a∈[Kl ]

n(l)
a (n(l)

a − 1)q0(n
(1), . . . , n(l−1), n(l) − ul

a, n
(l+1), . . . ,n(L)). (14)

We also have the boundary conditions q1(eh) = 0 for all h ∈ H since q(eh) = q0(eh).
As the left-hand side and boundary conditions of (14) are identical to those of (5), it suffices

to establish that their right-hand sides are also identical to show equivalence. Note that the
right-hand side of (5) can be written as

∑
h∈H∪{∗L}

q0(σ (n) − σ(eh))

×
∑

{X : |X|≥2, S(h)⊆X⊆[L]}
(−1)|X−S(h)|

( ∑
h′∈H(h,X)

nh′
)( ∑

h′′∈H(h,X)

nh′′ − 1

)

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
[ ∑

{X : |X|≥2, S(h)⊆X⊆[L]}
(−1)|X−S(h)|

( ∑
h′,h′′∈H(h,X)

nh′nh′′
)]

−
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
[ ∑

{X : |X|≥2, S(h)⊆X⊆[L]}
(−1)|X−S(h)|

( ∑
h′∈H(h,X)

nh′
)]

. (15)

The first term on the right-hand side of (15) can be rewritten as

∑
h∈H∪{∗L}

q0(σ (n) − σ(eh))

[ ∑
{X : |X|≥2, S(h)⊆X⊆[L]}

(−1)|X−S(h)|
( ∑

h′,h′′∈H(h,X)

nh′nh′′
)]

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
[ ∑

h′,h′′h

nh′nh′′
( ∑

X : |X|≥2, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

)]
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=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
{ ∑

h′,h′′h

nh′nh′′
[ ∑

{X : S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

−
∑

{X : |X|=0, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

−
∑

{X : |X|=1, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

]}
, (16)

where the first equality follows because, by definition (1), the condition that h′ ∈ H(h, X) is
equivalent to h′  h and X ⊂ S(h′), and similarly for h′′. Now, by the inclusion–exclusion
principle, ∑

{X : S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)| = δS(h′)∩S(h′′),S(h),

where, for any sets A and B, δA,B = 1 if A = B and δA,B = 0 otherwise. Then the third-to-last
line of (16) simplifies to

∑
h∈H∪{∗L}

q0(σ (n) − σ(eh))

[ ∑
h′,h′′h

nh′nh′′
( ∑

{X : S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

)]

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

[ ∑
h′,h′′h

nh′nh′′δS(h′)∩S(h′′),S(h)

]

=
∑

{h′,h′′ : h′ �h′′}
nh′nh′′q0(σ (n) − σ(eh′) − σ(eh′′) + σ(eC(h′,h′′)))

=
∑

{h′,h′′ : h′ �h′′}
nh′nh′′q0(n − eh′ − eh′′ + eC(h′,h′′))

=
∑

{h′,h′′ : h′ �h′′, h′ 
=h′′}
nh′nh′′q0(n − eh′ − eh′′ + eC(h′,h′′)) +

∑
h∈H

n2
hq0(n − eh),

where the second equality follows because S(h) = S(h′) ∩ S(h′′) and h′, h′′  h imply that h′
and h′′ are compatible by definition, and, hence,

σ(eh) = σ(eh′) + σ(eh′′) − σ(eC(h′,h′′)).

The third equality holds because q0 depends only on the marginal sample configurations, and
the last equality follows because when h′ = h′′ = h, C(h′, h′′) = h. The terms in the last two
lines of (16) can be simplified as

∑
h∈H∪{∗L}

q0(σ (n) − σ(eh))

[ ∑
h′,h′′h

nh′nh′′
∑

{X : |X|=0, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

]

= n2q0(n),
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since the only h, h′, h′′, and X that satisfy the conditions of the inner summation over X are
h = {∗L}, h′, h′′ ∈ H and X = ∅. Furthermore, we can also see that

∑
h∈H∪{∗L}

q0(σ (n) − σ(eh))

[ ∑
h′,h′′h

nh′nh′′
( ∑

{X : |X|=1, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

)]

=
L∑

l=1

∑
a∈[Kl ]

(n(l)
a )2q0(n

(1), . . . ,n(l−1), n(l) − ul
a, n

(l+1), . . . , n(L)) −
L∑

l=1

(n(l))2q0(n),

since the only h, h′, h′′, and X that satisfy the conditions of the summation over X are the
following.

• X = {l} for some l ∈ [L] and h = {∗L}. Owing to the condition that X ⊆ (S(h′)∩S(h′′)),
h′ and h′′ range over all haplotypes that are specified at locus l.

• X = {l} for some l ∈ [L], and h such that hl = a for some a ∈ [Kl] and hl′ = ∗ for all
l′ 
= l. Because h′, h′′  h and X ⊆ (S(h′)∩S(h′′)), h′ and h′′ range over all haplotypes
with allele a at locus l.

In summary, (16), which corresponds to the first term on the right-hand side of (15), can be
written as

∑
h∈H∪{∗L}

q0(σ (n) − σ(eh))

[ ∑
{X : |X|≥2, S(h)⊆X⊆[L]}

(−1)|X−S(h)|
( ∑

h′,h′′∈H(h,X)

nh′nh′′
)]

=
∑

{h′,h′′ : h′ �h′′, h′ 
=h′′}
nh′nh′′q0(n − eh′ + eh′′ − eC(h′,h′′)) +

∑
h∈H

n2
hq0(n − eh)

−
[
n2 −

L∑
l=1

(n(l))2
]
q0(n)

−
L∑

l=1

∑
a∈[Kl ]

(n(l)
a )2q0(n

(1), . . . ,n(l−1), n(l) − ul
a, n

(l+1), . . . , n(L)). (17)

By following similar steps as above, the second term on the right-hand side of (15) can be
written as∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

[ ∑
{X : |X|≥2, S(h)⊆X⊆[L]}

(−1)|X−S(h)|
( ∑

h′∈H(h,X)

nh′
)]

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
[∑

h′h

nh′
( ∑

{X : S(h)⊆X⊆S(h′)}
(−1)|X−S(h)|

−
∑

{X : |X|=0, S(h)⊆X⊆S(h′)}
(−1)|X−S(h)|

−
∑

{X : |X|=1, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

)]
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=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
[∑

h′h

nh′
(

δS(h′),S(h) −
∑

{X : |X|=0, S(h)⊆X⊆S(h′)}
(−1)|X−S(h)|

−
∑

{X : |X|=1, S(h)⊆X⊆(S(h′)∩S(h′′))}
(−1)|X−S(h)|

)]

=
∑
h∈H

nhq0(n − eh) − nq0(n) +
L∑

l=1

n(l)q0(n)

−
L∑

l=1

∑
a∈[Kl ]

n(l)
a q0(n

(1), . . . ,n(l−1), n(l) − ul
a, n

(l+1), . . . ,n(L)), (18)

where the second equality follows from the inclusion–exclusion principle. Finally, subtracting
(18) from (17), we see that the right-hand side of (5) is equal to the right-hand side of (14).

5.3. Proof of Theorem 1

We first show that the boundary conditions (6) are satisfied by (7). If n = eg for some g ∈ H
then on the right-hand side of (7) the only h that can potentially contribute to the summation
are those satisfying g  h, since otherwise q0(σ (eg) − σ(eh)) = 0. However, for g  h, if
S(h) ⊆ X ⊆ S(g) then

∑
h′′∈H(h,X) nh′′ − 1 = 0 since g ∈ H(h, X), and if X 
⊂ S(g) then∑

h′∈H(h,X) nh′ = 0 since g /∈ H(h, X). Therefore, on the right-hand side of (7),

(∑
h′∈H(h,X) nh′

2

)
= 1

2

( ∑
h′∈H(h,X)

nh′
)( ∑

h′′∈H(h,X)

nh′′ − 1

)
= 0,

and so q1(eg) = 0 for all g ∈ H .
We now show that recursion (5) is satisfied by (7). Substituting (7) into the left hand side

of (5), we obtain

∑
g∈H

ng

∑
l∈B(g)

rl[q1(n) − q1(n − eg + eR−
l (g) + eR+

l (g))]

=
∑
g∈H

ng

∑
l∈B(g)

rl
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
{ ∑

{X : |X|≥2,
S(h)⊆X⊆[L]}

(−1)|X−S(h)|

r(X)

×
[
−

( ∑
h′∈H(h,X)

nh′
)( ∑

h′′∈H(h,X)

(δh′′,R−
l (g) + δh′′,R+

l (g) − δh′′,g)

)

−
(∑

h′∈H(h,X)(δh′,R−
l (g) + δh′,R+

l (g) − δh′,g)

2

)]}
,

where, for any haplotypes g and h, δg,h = 1 if g = h and δg,h = 0 otherwise. Also, in the
above equation, by

(
x
2

)
we mean x(x − 1)/2 for all x ∈ R. Note that if g /∈ H(h, X) then
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1 2 3 4 5 6 7 8 9

min(X) max(X)

l = 1

1 2 3 4 5 6 7 8 9

min(X) max(X)

l = 1

(a) (b)

Figure 2: An illustration of the subcases considered in the proof of Theorem 1. Here X ⊆ S(g), where
g  h. Squares denote the loci in S(g), while shaded squares denote the loci in X (and, hence, also in S(g)).
Circles denote the loci not in S(g) (and, hence, not in X). A squiggle denotes the recombination break
interval l considered in each case. The squares to the left and to the right of the squiggle respectively denote
the loci in S(R−

l (g)) and S(R+
l (g)). (a) Case with l < min(X). (b) Case with min(X) ≤ l < max(X).

R−
l (g), R+

l (g) /∈ H(h, X), and so
∑

h′∈H(h,X)

(δh′,R−
l (g) + δh′,R+

l (g) − δh′,g) = 0.

Interchanging the summation over g, l, and X, and introducing the restriction that g ∈ H(h, X)

(i.e. S(g) ⊇ X and g  h), we obtain∑
g∈H

ng

∑
l∈B(g)

rl[q1(n) − q1(n − eg + eR−
l (g) + eR+

l (g))]

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
{ ∑

{X : |X|≥2, S(h)⊆X⊆[L]}

(−1)|X−S(h)|

r(X)

∑
g∈H(h,X)

ng

∑
l∈B(g)

rl

×
[
−

( ∑
h′∈H(h,X)

nh′
)( ∑

h′′∈H(h,X)

(δh′′,R−
l (g) + δh′′,R+

l (g) − δh′′,g)

)

−
(∑

h′∈H(h,X)(δh′,R−
l (g) + δh′,R+

l (g) − δh′,g)

2

)]}
. (19)

Now, for g ∈ H(h, X), note that ∑
h′∈H(h,X)

δh′,g = 1. (20)

We utilize this identity in the ensuing discussion. There are three cases for the recombination
break interval l ∈ B(g) on the right-hand side of (19).

Case 1: l < min(X). This case is illustrated in Figure 2(a). Note that
∑

h′∈H(h,X) δh′,R−
l (g) = 0

since S(R−
l (g))∩X = ∅ and, hence, R−

l (g) /∈ H(h, X). Also,
∑

h′∈H(h,X) δh′,R+
l (g) = 1

since g  h and S(R+
l (g)) ⊇ X ⊇ S(h), and so R+

l (g)  h and R+
l (g) ∈ H(h, X).

Hence, together with (20), we conclude that∑
h′∈H(h,X)

(δh′,R−
l (g)+ δh′,R+

l (g)− δh′,g) = 0.
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Case 2: max(X) ≤ l. By a similar argument, we see that

∑
h′∈H(h,X)

(δh′,R−
l (g) + δh′,R+

l (g) − δh′,g) = 0.

Case 3: min(X) ≤ l < max(X). This case is illustrated in Figure 2(b). Note that

∑
h′∈H(h,X)

δh′,R−
l (g) = 0

since max(X) /∈ S(R−
l (g)) and, hence, R−

l (g) /∈ H(h, X). Similarly,

∑
h′∈H(h,X)

δh′,R+
l (g) = 0

since min(X) /∈ S(R+
l (g)) and, hence, R+

l (g) /∈ H(h, X). Therefore, upon using (20),
we conclude that

∑
h′∈H(h,X)

(δh′,R−
l (g) + δh′,R+

l (g) − δh′,g) = −1.

Partitioning the summation over l ∈ B(g) on the right-hand side of (19) into the above three
cases and noting that only the third case gives a nonzero value for the

∑
h′∈H(h,X)(δh′,R−

l (g) +
δh′,R+

l (g) − δh′,g) term, we obtain
∑
g∈H

ng

∑
l∈B(g)

rl[q1(n) − q1(n − eg + eR−
l (g) + eR+

l (g))]

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
∑

{X : |X|≥2,
S(h)⊆X⊆[L]}

{
(−1)|X−S(h)|

r(X)

∑
g∈H(h,X)

ng

max(X)−1∑
l=min(X)

rl

[( ∑
h′∈H(h,X)

nh′
)

− 1

]}

=
∑

h∈H∪{∗L}
q0(σ (n) − σ(eh))

×
∑

{X : |X|≥2, S(h)⊆X⊆[L]}
(−1)|X−S(h)|

( ∑
h′∈H(h,X)

n′
h

)( ∑
h′′∈H(h,X)

nh′′ − 1

)
.

This is the expression on the right-hand side of (5), and, thus, we have shown that (7) satisfies (5).
Hence, the proposed solution for q1(n) in Theorem 1 is the unique solution to recursion (5) and
boundary conditions (6).
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