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Moore’s Law + Parallelism + $$
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Moore’s Law

It’s hard to think 
exponentially

But it’s also hard to stop



Dennard Scaling is Dead; Moore’s Law Will Follow
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M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp

Science 
implication: Atlas 
computing 
estimate off by $1B



Specialization: End Game for Moore’s Law
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Data Movement is Expensive
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Image: http://slideplayer.com/slide/7541288/

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost to move data off chip 
to a neighboring node

Cost to move data off chip 
into DRAM

Cost to move off-chip, 
but stay within the package (SMP)

Cost to move data 20 mm on chip

Cost of a typical floating point operation

Cost to move data 1 mm on-chip

Hierarchical energy costs.



Research for Climate Science
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The global crisis needs cross-disciplinary teams
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Michael Wehner, Prabhat, Chris Algieri, Fuyu Li, Bill Collins, Lawrence Berkeley National Laboratory;  Kevin Reed, 
University of Michigan; Andrew Gettelman, Julio Bacmeister, Richard Neale, National Center for Atmospheric Research

Faster Computers:  More Detail



Understanding Clouds

4D Stereophotogrammetry leads to new data sets, 
Rusen Okterm and David Romps

New mathematical 
models for simulation



Data Structures for Climate Modeling



Climate Domain Specific Languages

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used

near mesh boundary

(d) 5-point Jacobi stencil

Figure 4: (a) Red-black tiling allows cross-point updates simultaneously at points of the same color, so an update operation takes
only 2 passes. (b) 4-color tilings are common when each update requires the surrounding 3-by-3 neighborhood. Like red-black
tiling, all points of the same color in a 4-color tiling can be updated simultaneously. (c) An asymmetric stencil, sometimes used
near the mesh boundary of a standard 5-point stencil (d), results in odd dependency patterns. Purple points are read from, gray
points are written to.

1 top = Component("beta_x", WeightArray([[1]])

2 bot = Component("beta_x", WeightArray([[0], [1], [0]])

3 left = Component("beta_y", WeightArray([[1]]))

4 right = Component("beta_y", WeightArray([[0, 0, 1]])

5 Ax = Component("mesh", WeightArray([[0,top,0], [left, left+top+bot+right, bot], [0, bot, 0]]))

6 b = Component("rhs", WeightArray([[1]]))

7 difference = b - Ax

8 original = Component("mesh", WeightArray([[1]])

9 lambda_term = Component("lambda", WeightArray([[1]]))

10 final = original + lambda_term * difference

11 red = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2, 2), (-1, -1), (2, 2))

12 black = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2,2), (-1,-1), (2,2))

13 red_stencil = Stencil(final, "mesh", red)

14 black_stencil = Stencil(final, "mesh", black)

15 # Dirichlet zero boundary: 1 of 4 stencils shown...

16 top_boundary = Stencil("mesh", Component("mesh", WeightArray([[ 0],[ 0],[-1]])),

17 RectangularDomain((1, -1), (-1, -1), (1, 0)))

18 # ...others are rotationally equivalent

Figure 5: This complex-smoothing operation a strided colored (red-black) stencil with Dirichlet boundaries and variable coeffi-
cients.

l (lines 8–10).
Having defined the operation, we define the red and black

domains; each is defined as the union (+) of two domains
offset from each other and strided by 2 in each dimension
(lines 11–12). We can now define the main red-black stencil
by associating the operation, its output, and its domain (lines
13–14).

The last step is generating the boundary for a uniform linear
Dirichlet condition in 2 dimensions. This requires four stencils
(top, bottom, left, and right boundaries); for each one, the cell
immediately outside the boundary should be set to the negative
of the value inside the boundary, to make the boundary cell be
zero. Lines 16–17 show how to set up the stencil for the top
boundary; the others are rotationally equivalent.

Finally, the red and black stencils (lines 13–14) and the
boundary stencils (lines 16–17, plus three rotationally equiva-

lent boundary stencils omitted for brevity) can be combined
into a StencilGroup, which allows analysis to identify paral-
lelism across all these stencils as well as within each one. The
next section describes how the analysis is done.

3. Analysis
One major goal of the Snowflake DSL was to make analysis
of stencils easier in order to ensure correctness and ease the
burden on the optimization process. Given the highly regular
access patterns of stencils and stencil groups, the inherent
parallelism is statically determinable in many nontrivial cases
[10]. These dependencies reduce to a system of Diophantine
equations that determine whether or not a stencil interferes
with itself and other stencils. Diophantine equations are equa-
tions where integer solutions are sought. For example, the
equation x2 + y2 = 1 has an infinite number of general solu-
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Analytics vs. Simulation Kernels: 
7 Dwarfs of Simulation 7 Giants of Big Data
Particle methods Generalized N-Body
Unstructured meshes Graph-theory
Dense Linear Algebra Linear algebra
Sparse Linear Algebra Optimization
Spectral methods Integrations
Structured Meshes Alignment
Monte Carlo methods Basic Statistics

NRC Report + our paperPhil Colella 

Hashing
Sorting

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020



Mitigation
Energy Efficiency

Renewable Energy

Carbon Capture

Economic Drivers

Adaptation
Extreme Climate Events

Resilient Infrastructure

Economic Impacts

Planning for Migration



Opportunities to Reduce Energy Use
Where are biggest impacts in 
reducing energy consumption?

Role of computing and data:
u Modeling engines, manufacturing 

processes, building materials
u Designing urban systems, transportation, 

and the power grid
u Use of reinforcement learning in 

optimizing these systems

Data from IEA based on 2019 data

(Quadrillion Btu) 

Global energy consumption by sector

Transportation
28%

Industry
26%Residential

12%

Commercial
10%

Electrical System 
Losses
24%



Energy Efficiency in Industry
Paper industry is 4th Largest Energy Consumer in US

Chombo-Pulp: Apply adaptive embedded 
boundary solver to resolve flow around pulp 
fibers and in felt pore space

Adaptive mesh refinement and interface tracking



Reinforcement Learning for traffic

u 30% of U.S. energy use is in transportation
u Optimize for travel time, reduced fuel consumption, and improved air quality
u Smooth traffic flow is more energy efficient
u Adversarial multi-agent transfer learning used even with mixed autonomy traffic 

to smooth traffic
Alex Bayen, Civil and Environmental Engineering, EECS, UC Berkeley, Director of the Institute for Transportation Studies



Reinforcement Learning in Buildings

u Survey of  73 studies on RL in building 
energy systems

u Various papers control HVAC, hot 
water, windows, lighting and more

Zhe Wang, Tianzhen Hong  Energy Technologies Area, LBNL  DOI: 10.1016/j.apenergy.2020.115036 

 
Figure 2. Reinforcement learning for building controls 

 
Given the RL framework, we can better understand the concept of delayed feedback. Because the feedback is 
delayed, the control problem becomes complicated. Under the context of RL, any action leads to two 
consequences, receiving an immediate reward and arriving at a new state. The control agent could not simply 
select the action corresponding to the highest reward; instead, it needs to consider the delayed future rewards 
corresponding to the new state. For instance, the action of pre-cooling might lead to higher immediate energy 
consumption, but in the long term, the new state saves utility costs. The strength of RL lies in its ability to 
optimize the trade-off between short-term and long-term benefits. To differentiate the long-term benefits from 
the short-term ones, the concept of Value is introduced. Value is defined as the accumulated ‘benefits’ of future 
multiple steps. On the contrary, reward is defined as the immediate ‘benefits’ of taking the selected action at 
the current time step. In other words, value is the accumulated rewards of multiple future steps until the end. 
As observed in Figure 2, there are five major components in RL settings: controller, states, actions, rewards, 
and the environment. Varieties in the five components (such as different algorithms or different states to 
represent the environment) lead to different RL implementation, which results in different control performance. 
The ultimate goal of this study is to conduct a tutorial survey and a comprehensive review of existing studies 
using RL for building controls. By surveying how current researchers select state and action variables, 
determine reward function, and choose algorithms, we aim to present an overview of the current applications 
of RL for building controls. 
 
2.2 Literature search 
We conducted a literature search on the academic search platform Web of Science using the topic structure and 
keywords shown in Equation 1, where the symbol “*” is used to search for terms in both singular and plural 
forms. The Web of Science platform could retrieve papers from both the traditional built environment field and 
the computer science field. We did not down select or filter out any papers that applied Reinforcement Learning 
in the buildings field.  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  (𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑙𝑙) AND [(𝑏𝑏𝑏𝑏𝑡𝑡𝑙𝑙𝑏𝑏𝑡𝑡𝑟𝑟𝑙𝑙 ∗ OR ℎ𝑡𝑡𝑏𝑏𝑠𝑠𝑟𝑟 ∗
OR ℎ𝑡𝑡𝑟𝑟𝑟𝑟 OR 𝑟𝑟𝑟𝑟𝑠𝑠𝑡𝑡𝑏𝑏𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 ∗) AND 𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡𝑙𝑙]    (Eq. 1) 
 
The literature search was conducted in December of 2019. With the search structure and keywords listed in 
Equation 1, 77 articles on this topic were found and reviewed. The 77 studies examined in this paper are listed 
in Table A1 of the Appendix. Figure 3 summarizes the papers based on their publication journals and the 
control subjects.  
 

Smart gridOnsite 
renewable

Energy 
storage

Environment 
(𝑷:𝐴, 𝑆 → 𝑆’
𝑹:𝐴, 𝑆 → 𝑅)
• Real building
• Simulation

Control actions ( A )
• Subject of control
• Number of control points

Rewards ( R )
• Energy
• Flexibility & costs
• Comfort

RL Controller
( 𝝅𝝅:𝑆 → 𝐴)
• Model free

• Value based
• Policy Gradient
• Actor Critic

• Model based

Real buildings

Simulation environmentStates ( S )
• Current 
• Previous
• Predicted

HVAC

Hot water

Algorithm Popularity

Model-
free

Policy Gradient 3 of 73
Value-Based 56 of 73
Actor-Critic 11 of 73

Model-based 3 of 73



Opportunities to Reduce Carbon in Production
Renewable sources still play 
a modest role 

Role of computing and data
u Design of solar materials, wind 

turbines, hydrogen fuel cells
u Design and impact analysis of 

carbon capture and sequestration
u Understanding economic drivers

Data from IEA based on 2019 data

(Quadrillion Btu) 

Petroleum
37%

Natural gas
32%

Renewable 
energy

11%

Coal
11%

Nuclear
9%



Materials Design for Renewables + Storage
Design of Materials for Batteries, Solar Panels and More

> 40,000 UsersSoftware Supercomputers Screening

Data

NANOPOROUS MATERIALS 530,243

INORGANIC COMPOUNDS 131,613

BAND STRUCTURES 76,194

MOLECULES 49,705

Kristin Persson, Material Science and Engineering, UC Berkeley and LBNL, Materials Project PI

u Use of Bayesian optimization 
for layered materials

u [Bassman et al, npj
Computational Materials 
2018]



Inverse Design with ML
Designing materials, proteins, and small molecules with ML

High-dimensional 
design using 
machine learning

Clara Fannjiang and Jennifer Listgarten at NeurIPS ‘20

Search for a molecules using an 
autofocusing generative model: 
moves around the design space, 
guided by an oracle



Importance of Energy Storage

u Grid-scale storage is critical for use 
of renewables (solar, wind, etc.)

u Better data collection and methods 
could inform policies and 
economics.

u Need  to predict adoption rates 
and  develop infrastructure of 
various technologies. 

Technology readiness of grid-scale energy storage

Dan Kammen, Energy Resource Group, UC Berkeley

Updated from Schmidt et al. (2017).



Scrub Carbon with Metal Organic Frameworks

u Metal Organic Frameworks (MOFs) to 
capture carbon in natural gas plants.

u Uses steam to regenerate the MOF for repeated use, 
reducing energy required for carbon capture.

u Latest design removes >90% of CO2 from flue gas  
and 6X more than current (amine) technology.

u Exploring MOF design space
u Traditionally explore MOF design with expensive 

Density Functional Theory (DFT)

u Accelerate exploration using ML (graph NNs, etc.) with 
Gonzalez group (EECS)

Jeff Long College of Chemistry / UC Berkeley and LBNL



Learning from graphical structure

Nicolas Swenson, Aditi S Krishnapriyan, Aydin Buluc, Dmitriy Morozov, Katherine Yelick



Parallelism in Graph Neural Nets

u GNN models are huge; sampling has large number of edges

u Treat as sparse linear algebra problem

Name Vertices Edges Features Labels
Amazon 9.4M 231M 300 24
Reddit 232K 114M 300 41
Protein 8.7M 1.05B 128 256

Tripathy, Yelick, Buluc, Reducing Communication 
in Graph Neural Network Training, SC’20



Communication-Avoiding Matrix Multiply

x
z

z

y

x
y • 2D algorithm: never chop k dim

• 3D: Assume + is associative; 
chop k, which is à replication 
of C matrix

k

j

i Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
for j

for k
B[k,j]  …A[i,k] … C[i,j] …

- 26 -



Economics of renewable energy

u Cannibalization effect: Increasing market penetration of solar and wind reduces 
their own unit revenues and value factors (VF).

u Wind market penetration reduces solar VF, but solar penetration increases wind VF.

Wind: Up to 17.4% of electricity in CA

Solar: Up to 23.5% of electricity in CA

David Zilberman, Department of Agricultural and Resource Economics, UC Berkeley



Carbon Sequestration on Working Lands

u Over 57 million acres of grassland in 
California mostly used for ranching

u Organic addition can sequester 9 metric 
tons of CO2 per acre per year

u May save 28 million tons of CO2e annually 
using just 5% of California’s rangelands

u Community data sets
u Models to reduce uncertainty 
u Predict scaling potential

Whendee Silver / CNR UC Berkeley

Scenario  Input
Land 

Management
Land Cover 

Change Wildfire
Climate

Ecosystem 
Carbon Flux Mortality

Carbon Input

Greenhouse Gasses



First-Time Science Analysis with MetaHipMer

What happens to microbes after a wildfire? 
(1.5TB)

What at the seasonal fluctuations in a 
wetland mangrove? (1.6 TB)

How do microbes affect disease and growth of 
switchgrass for biofuels (4TB)

What are the microbial dynamics of 
soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved 
functional understanding (8TB)

JGI-NERSC-KBase FICUS projects 



KmerProf comparing metagenomes
reads

k-mers

1) K-mer Analysis
K-mer histogram

2) Distance metrics
Count-based: Jaccard Index
Abundance: Bray-Curtis

k-mer
counts or 
abundance

Migun Shakya  LANL and Steve Hofmeyr LBNL



Distributed Hashing / Histogramming
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......
P1

Repeat while more to read and/or exchange

Repeat while more to read and/or 
exchange

......

Input read 
partition

Outgoing 
k-mers & 
metadata

Local k-mer 
set

Hash table 
partition

PN-1
load & parse 
block

store

Input read 
partition

Outgoing 
k-mers & 
metadata

Local k-mer
set

Hash table 
partition

P0
load & parse 
block store

Alltoallv

Repeat while more to read and/or exchange

Done bulk-synchronously in MPI (all2allv)
Or asynchronously with remote put/get/RPC

Marquita Ellis (alignment), Steve Hofmeyr (k-mer counting), et al



K-mer counting now in UPC++

• New version in UPC++ avoids barriers
• And it’s simpler!

MPI with bloom filter 
UPC++ with bloom 
filter
UPC++ without

Steve Hofmeyr, Rob Egan, Evangelos Gerganas, leads on MetaHipMer software



K-mer Counting

64 nodes (2688 CPU cores) 64 notes (384 GPUs)

K-mer counter on Summit. (Note scales -- red k-mer exchange time is roughly equal.)
● Over 100x speedup (including communication); results expected to be data- and

machine-dependent
Israt Nisa, et al



Mitigation
Energy Efficiency

Renewable Energy

Carbon Capture

Economic Drivers

Adaptation
Extreme Climate Events

Resilient Infrastructure

Economic Impacts

Planning for Migration



Profound Impacts of Climate Change

Integrated models of climate and the 
environment combine features learned 
from data and known physical laws



Data-driven models produce new insights into 
carbon cycling

u ML methods bridge the scales to quantify the effect 
of CO2 on vegetation and ecosystem function

u E.g., Increase in biomass by 2100 shown based on 
increase in CO2 levels

N
or

m
al

ize
d

 B
ia

s

u ML methods measure influence of soil moisture 
on photosynthesis.

u Show previous models of photosynthesis activity 
based on satellite data are ~15% too high

Trevor Keenan, Dept. of Environmental Science, Policy and Management / UC Berkeley and EESA / LBNL



Big Data, Big Model, and Big Iron

• Deep learning results are smoother than heuristic labels
• Achieved over 1 EF peak on OLCF Summit: Gordon Bell Prize in 2018

Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur 
Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston

Predicted Extreme Weather Ground Truth Extreme Weather

AI for Science- 37 -



Data Analytics via Supervised Learning

- 38 -

Slide source  Prabhat

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

AI for Science

Classification Classification
+ Localization Object Detection Instance 

Segmentation



Identifying Extreme Climate Events

• Risser et al. 2020
• Paciorek et al. in prep

New statistical models to 
characterize extreme weather

Detect atmospheric rivers and 
quantifying uncertainty using ML 
and Bayesian statistics

Implementing a new jet stream 
detector in TECA (Toolkit for Extreme 
Climate Analysis)

• O’Brien et al. 2020
Loring, O'Brien & Elbashandy

Uses of machine learning to robustly identify extreme events without 
heuristics or thresholds for specific data sets

Bill Collins, LBNL and Earth and Planetary Science, UC Berkeley, Cascade Project PI 



Reduce Environmental Impact in Ag

u Iterative random forests used for spatial interpolation needed for high resolution models
u Multi-model data (left) from a farm in Arkansas (satellite, multispectral UAV, fertilizer, 

water, temperature, etc.)
u Sensors data for regional precipitation (right)  uses Sequential Imputation Algorithm 

for time-series data Improves quality by including stations with incomplete data

Soil	Types EC	
(soil/salinity/moisture) P K

USDS	Soil	Map Geophysics Soil	sampling	+	EC	mapHighly instrumented farm à 4D virtual farm model Sparse precipitation data à ecosystem model

James Ben Brown, Statistics, UC Berkeley and Biosciences, LBNL



ML for detailed ecosystem models 

u Use of Random Forest ML to determine role of water in ecosystem productivity
u Find early summer water is critical to ecosystem productivity throughout

u Specific impact dependent on vegetation type (grassland, deciduous, evergreen)

Haruko Wainwright,  Nuclear Engineering, UC Berkeley and LBNL

Peak vegetation                            standard deviation              early summer drought sensitivity

Environ. Res. Lett. 15 (2020) 084018 H MWainwright et al

Figure 2. Landsat-derived annual peak NDVI as a function of (a) June Palmer Drought Severity Index (PDSI), (b) first
bare-ground date, and (c) average June temperature at the long-term observation plots in (Sloat et al 2015). In (a)–(c), the line is
based on linear regression. In (a), PDSI less than−4.0 is extreme drought,−3.0 to−2.0 is severe to moderate drought,−1.9 to
+1.9 is normal, and+2.0 above is unusual to extreme moist conditions. The correlation coefficients are shown in table S3.

Figure 3. (A) Average of the annual peak NDVI, (b) standard deviation (SD), and (c) foresummer drought sensitivity (the slope
of peak NDVI as a linear function of June PDSI) between 1992–2010. The black lines are the boundaries of the four watersheds.

plant types, particularly at lower elevation, and also
has larger spatial heterogeneity across the domain.
Elevation dependency (figure 4(d)) in the grassland
region is much more apparent than in the SD map
(figure S6(d)). Evergreen forests exhibit the lowest
sensitivity to the foresummer drought, although the
sensitivity is still positive in 92.6%of the area. In addi-
tion, sensitivity is spatially less heterogeneouswithout
significant elevation dependency (figure 4(f)).

We applied the RF analysis to foresummer
drought sensitivity within the grassland region.
Although we have the results in other plant types
(table S5 and figures S7 and S8), we focus our
discussion on the grassland region, because the
grassland region has (1) higher spatial heterogen-
eity than other plant types, (2) the locations cor-
responding to the long-term plots in (Sloat et al
2015), and (3) the ground-based LAI-NDVI rela-
tionship (figure S2). The coefficient of determina-
tion (R-square) is 0.58, with the p-value less than
10–15. In the importance ranking (table 1), elevation
is the strongest predictor for foresummer drought

Table 1. Parameter importance ranking from the random forest
analysis; the parameters influencing the spatial heterogeneity of
foresummer drought sensitivity within the grassland region. The
importance measure (i.e. %MSE) is normalized by one for
elevation, so that it represents relative importance compared to
elevation. The shaded cells indicate the top four in the importance
ranking.

Normalized %MSE

Elevation 1.00
Slope 0.44
Curvature 0.24
TWI 0.28
Geology 0.56
Radiation 0.63
TPI 0.61
UAAB 0.24

sensitivity, which is consistent with the clear depend-
ency on elevation (figure 4(e)). Net potential radi-
ation, topography position index (TPI), geology, and
slope follow in the ranking. The three topographic
metrics (TWI, UAAB and curvature) are relatively

5



Earth systems are nonstationary and nonlinear. How to 
predict the future?

And how to properly represent critical interactions and 
feedbacks in our models?



Hydrology: physics and data models

Laurel Larsen, Geography and Civil and Environmental Engineering, UC Berkeley

Observational data from USGS stream flow sensors

Learning through data
u Regression, support vector machine, NNs

Physical models
u First principles, lumped or distributed

• Information theory for causal inference and delineation of critical time and spatial scales
• Sparse regression to “discover” governing equations from data
• Formulate empirical forecasts constrained by physics

Complex models with feedback, conservation laws, etc. 



Watershed decision support

Decision constrained by regulations, 
climate predictions, agriculture and 
urban demands, etc.

Reference: California Water Commission

Conservative
G.W. 

pumping

Crop Loss $$$

• High fidelity physics models + observations are 
computationally expensive

• Using DL-based surrogates for in-the-field decisions
• LSTM-RNN for long term groundwater predictions

Julianne Mueller, Computational Research Division, LBNL

2018 Snow Water Equivalent (SWE)
Median SWE (‘81-’10)
Current Precipitation Accumulation 
Average Precipitation Accumulation (‘81-’10) 



Measuring Climate Change Impacts

Maximilian Auffhammer , International Sustainable Development, UC Berkeley

Sector Estimates Adaptation 
Addressed

Global 
Coverage

Agriculture Yes Yes Yes
Forestry No No No
Species loss No No No
Sea-level rise Yes Yes No
Energy Yes Yes No
Human amenity Yes ~Yes No
Morbidity and mortality Yes Yes Yes
Migration Yes No No
Crime and conflict Yes No Maybe
Productivity Yes No No
Water consumption No No No
Pollution Yes Maybe No
Storms Yes No No

“Quantifying Economic 
Damages from Climate 
Change” Journal of 
Economic Perspectives, 
Fall 2018

https://pubs.aeaweb.org/doi/pdf/10.1257/jep.32.4.33



Inequality and the Social Cost of Carbon

Assess the economic impact of 
climatic change on agriculture, 
health, energy use, etc.
u Basis for “zero-emission credits” (NY, IL)
u Electric utilities planning (CO, MN, WA)
u Policy analysis (Mexico and Canada)

Inequity impacts
u SCC increases ~2-3x when inequality 

over time is disentangled from 
inequality between regions 

u Based on two known models

David Anthoff, Energy & Resources Group, UC Berkeley



Understand economic impacts of climate
u Help decision makers understand the 

economic impacts of climate change
u Productivity and income are negatively 

impacted by heat
u Poorest 60% of people in the world will 

bear the brunt of economics impacts

Lights as an indication of wealth with and without warming

Sol Hsiang, Goldman School of Public Policy, UC Berkeley



SIML: Satellite Imagery with ML

u Remotely estimating socioeconomic and environmental conditions 
u A single sharable encoding of satellite imagery 

u Generalizes across prediction tasks (e.g. forest cover, house price, road length)

u Accuracy competitive with deep neural networks

u Orders of magnitude lower computational cost

u Others need only fit a linear regression to their own ground truth data in order to 
achieve state- of-the-art SIML performance. 

Esther Rolf, Jonathan Proctor, Tamma Carleton, Ian Bolliger, Vaishaal Shankaf, Miyabi Ishihara, Benjamin Recht, 
Solomon Hsiang. arXiv preprint, 2020.

Labels          Predictions Labels          Predictions Labels          Predictions



Data-Intensive Development

u Understand impacts and targeting microloans and other aid
u Real-time measure of poverty based on cell phone data and satellite imagery
u Changing labor markets, migration, conflict and violence
u Welfare-aware ML:  a framework for multi-objective optimization with noisy data, 

balancing social welfare maximization with traditional loss minimization

Josh Blumenstock, School of Information, UC Berkeley
ML paper by Esther Rolf, Max Simchowitz, Sarah Dea, Lydia T. Liu, 
Daniel Bjorkegren, Moritz Hardt, Joshua Blumenstock ArXiv 2020 



Need for an Integrated ML Climate Platform

Behavioral 
changes

Technical 
solutions

Economics 
constraints

Physical 
laws

Geopolitical 
factors



Three ingredients for machine learning
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Data

Algorithms

Machines
Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3 ⇥ 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for
the final output computation.

architecture uses dilated convolutions. A dilated convolution
Dh,s with dilation s2 Z+ uses a dilated filter h that is nonzero
only at distances that are a multiple of s pixels from the center.⇤
Recently, it was shown that dilated convolutions are able to cap-
ture additional features in DCNNs that use the traditional scal-
ing approach (23). Furthermore, instead of having each layer
operate at a certain scale as in existing DCNNs, in the mixed-
scale approach each individual channel of a feature map within a
single layer operates at different scale. Specifically, we associate
the convolution operations for each channel of the output image
of a certain layer with a different dilation:

gij (zi�1)=

ci�1X

k=0

Dhijk ,sij zki�1. [3]

The proposed mixed-scale approach alleviates many of the dis-
advantages of the standard downscaling and upscaling approach.
First, large-scale information about the image quickly becomes
available in early layers of the network through relatively large
dilations, making it possible to use this information to improve
the results of deeper layers. Furthermore, information at a cer-
tain scale can be used directly to inform decisions at other scales
without having to pass through layers at intermediate scales. Sim-
ilar advantages were recently found when training large multi-
grid architectures (24). No additional parameters have to be
learned during training, since the mixed-scale approach does not
include learned upscaling operations. This results in smaller net-
works that are easier to train. Finally, although dilations sij must
be chosen in advance, the network can learn which combina-
tions of dilations to use during training, making identical mixed-
scale DCNNs applicable across different problems (experi-
ments below).

Dense Connections. When using convolutions with reflective
boundaries, the mixed-scale approach has an additional advan-
tage compared with standard scaling: All network feature maps
have the same number of rows and columns as the input and
output image, i.e., mi =m and ni =n for all layers i , and hence,
when computing a feature map for a specific layer, we are not
restricted to using only the output of the previous layer. Instead,
all previously computed feature maps {z0, . . ., zi�1}, including
the input image x, can be used to compute the layer output zi .
Thus, we change the channel image computation 1 and the con-
volutional operation 3 to

zji = � (gij ({z0, . . ., zi�1}) + bij )

gij ({z0, . . ., zi�1}) =
i�1X

l=0

cl�1X

k=0

Dhijkl ,sij zkl . [4]

⇤Alternatively, dilated convolutions can be defined without using dilated filters by
changing the convolution operation itself; see ref. 23 for a detailed explanation.

Similarly, to produce the final output image y, all feature maps
can be used instead of only those of the last layer. We call this
approach of using all previously computed feature maps densely
connecting a network.

In a densely connected network, all feature maps are maxi-
mally (re)used: If a certain useful feature is detected in a fea-
ture map, it does not have to be replicated in other layers to
be used deeper in the network, as in other DCNN architec-
tures. As a result, significantly fewer feature maps and train-
able parameters are required to achieve the same accuracy in
densely connected networks compared with standard networks.
The smaller number of maps and parameters makes it easier to
train densely connected networks, reducing the risk of overfitting
and enabling effective training with relatively small training sets.
Recently, a similar dense-connection architecture was proposed
which relied on a relatively small number of parameters (25);
however, in ref. 25 the dense connections were used only within
small sets of layers at a single scale, with traditional downscal-
ing and upscaling operations to acquire information at different
scales. Here, we combine dense connections with the mixed-scale
approach, enabling dense connections between the feature maps
of the entire network, resulting in more efficient use of all feature
maps and an even larger reduction of the number of required
parameters.

MS-D Neural Networks. By combining mixed-scale dilated convo-
lutions and dense connections, we can define a DCNN archi-
tecture that we call the MS-D network architecture. Similar to
existing architectures, an MS-D network consists of several lay-
ers of feature maps. Each feature map is the result of apply-
ing the same set of operations given by Eq. 4 to all previous
feature maps: dilated convolutions with 3 ⇥ 3 pixel filters and
a channel-specific dilation, summing resulting images pixel by
pixel, adding a constant bias to each pixel, and finally apply-
ing a ReLU activation function. The final network output is
computed with the same set of operations applied to all fea-
ture maps, using 1 ⇥ 1 pixel filters instead of 3 ⇥ 3 pixel fil-
ters. In other words, channels of the final output image are com-
puted by taking linear combinations of all channels of all feature
maps and applying an application-specific activation function to
the result:

yk =�0

 
X

i,j

wijk zji + b0k

!
. [5]

Different ways of choosing the number of channels per layer are
possible. Here, we use a simple approach with each layer hav-
ing the same number of channels, denoted by the network width
w , and the number of noninput and nonoutput layers of the net-
work denoted by the network depth d . A graphical representa-
tion of an MS-D network with w =2 and d =3 is shown in Fig. 3.
The parameters that have to be learned during training are the
convolution filters hijkl and biases bij of Eq. 4 and the weights

Fig. 4. (A–C) Example of the segmentation problem of the simulated
dataset, with (A) the single-channel input image, (B) the correct segmen-
tation with labels indicated by color, and (C) the output of a trained MS-D
network with 200 layers.

256 | www.pnas.org/cgi/doi/10.1073/pnas.1715832114 Pelt and Sethian



Interactive Data Science for Earth

Jupyter meets the Earth
u Large-Scale Hydrologic Modeling
u CMIP6 climate data analysis: The World Climate 

Research Program’s Coupled Model 
Intercomparison Project

u Geophysical inversions

Runs in browser

Text

Laptops to 
Supercomputers

Code

Output

Fernando Pérez, Joseph Hamman, Laurel Larsen, Kevin Paul, Lindsey Heagy, Christopher Holdgraf, Yuvi Panda

Part of the EarthCube NSF program

https://www.wcrp-climate.org/wgcm-cmip




Is deep learning the only application?

- 54 -

Cautionary tale from HPL



Computing and Data 
Facilities

Embedded 
Sensors

User Community

Experimental 
Facilities

Interconnected facilities 
where data is acquired, 
stored, analyzed and served

Sequencers

Light Sources

Telescopes

Particle 
Detectors

Environmental 
Sensors

Integrated Facilities for Science

AI for Science

Edge Computing 
for Science

Microscopes



Profound Impacts of Climate Change

“We are the first generation to feel the effect 
of climate change and the last generation who 
can do something about it.”
Barack Obama, Former US President



Extra Slides



Specialization, Yes            Accelerators, No!

- 58 -

More cores More data 
parallelism

Narrow data 
types

More 
memory 
spaces

CPUs in 
control

CPUs 
communicate

Memory

CPUGPU

Memory

CPU GPU



Vision for the Future and Role of Data Science

•ML-designed materials used in 
renewables, grid storage

•ML-designed materials 
capture carbon before 
emission

•ML controls factories to 
residences

•Manages the renewal-
dominated grid

•Data-informed policies 
encourage carbon farming / 
ranching

•Reduces wildfire risk, ocean 
impacts, and ensures fair 
water access with ML-
optimized  interventions

•Data-driven decision making 
encourages mitigation and 
smooths adaptation

•Data informs governments 
worldwide to anticipate major 
employment disruptions, 
migration, economics Economics 

and 
Policies

Managed 
Environment

Green 
Energy 

Materials

Smart 
Grid

ML-based data analysis, decision-making, control and design for a sustainable climate future for all



Communication Dominates: Dennard was too good

- 60 -flop (g)

network bandwidth (b)

network latency (a)

memory latency (a2)
DRAM  bandwidth (b2)

Time =
# flops * g +

# message *  a +
# bytes comm  * b +

# diff memory locs * a2  +
#  memory words * b2

Data from Hennessy / Patterson, Graph from Demmel



Put Accelerators in Charge of Communication

- 61 -

CPU CPU GPU

GPU

CPU

Architecture and software are not yet structured for accelerated-initiated 
communication (Summit with NVLink between Power9 CPUs and NVIDIA GPUs)

Taylor Groves et al

CPU



Partnering with Policymakers

u Strong partners in California state government on climate 
u Innovative governance models: e.g., Water Data Consortium
u A data driven policy approach

u Open Data Portal: https://data.ca.gov
u Other state entities: Air Resources Board, Environmental Health Hazard Assessment, 

California Natural Resources Agency 
u Governor’s Senior Advisor on Climate (UCB Alum)


