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Moore's Law + Parallelism + SS
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Moore’s Law

It's hard to think
exponentially

But it's also hard to stop




Dennard Scaling is Dead; Moore’s Law Will Follow
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Specidalization: End Game for Moore’s Law
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Accelerators in the Top500
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Data Movement is Expensive
Hierarchical energy costs.

6 pJ .
Cost to move data 1 mm on-chip
Cost of a typical floating point operation
m Cost to move data 20 mm on chip
250 pJ Cost to move off-chip,
but stay within the package (SMP)

Cost to move data off chip
iNfo DRAM

Cost to move data off chip
to a neighboring node

Image: http://slideplayer.com/slide/7541288/



Research for Climate Science

The global crisis needs cross-disciplinary teams
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Faster Computers:

01/30/1979

Michael Wehner, Prabhat, Chris Algieri, Fuyu Li, Bill Collins, Lawrence Berkeley National Laboratory; Kevin Reed,
University of Michigan; Andrew Gettelman, Julio Bacmeister, Richard Neale, National Center for Atmospherlc Research




Undersfnding Clouds

4D Stereophotogrammetry leads to new data sets, New mathematical
Rusen Okterm and David Romps models for simulation
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VertAdvUVW
VertAdvPPTP
VDiffw
VDiffPrepStep
VDiffDqgvdt
Satad
HoriDiffSmag
HoriDiffLimit
HoriDiff2
HoriAdvWW con
HoriAdvUV

Climate Domain Specific Languages

FWWPPTP

5_pOinT Asym meTry FWVDivHelp
JOCOb| neqar boundory FWUV

FWSCQCond
FWRHS
FWPrepLHS
FWLHS
FWExpIDiv

Dawn (CUDA backend)
sTELLA

Coriolis
ConvTemp_T
AdvPDBottY
AdvPDBottX

.
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Red-black 4-color

Dawn: a High Level Domain-Specific Language Compiler
Toolchain for Weather and Climate Applications



Analytics vs. Simulation Kernels:

Parficle methods
Unstructured meshes

Dense Linear Algebra
Sparse Linear Algebra
Spectral methods
Structured Meshes

Monte Carlo methods
Phil Colella

J

Genera
Graph-t
Linear a

Sorting
Hashing

ized N-Body
neory

gebra

Alignment

Basic Staftistics

NRC Report + our paper

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020




Mitigation

Energy Efficiency

Renewable Energy

Carbon Capture

Economic Drivers

Adaptation

Ex’rreme Climate Evenis

Resilient Infrastructure

Economic Impacts

Planning for Migration




Opportunities to Reduce Energy Use

Global energy consumption by sector . i .
Where are biggest impacts in

reducing energy consumptione

Electrical System

Losses Transportation

Role of computing and data:
24% 28%

» Modeling engines, manufacturing
processes, building materials

Commercial

10% » Designing urban systems, fransportation,

and the power grid

Industry
26%

» Use of reinforcement learning in
optimizing these systems

Residential
12%

Data from IEA based on 2019 data



Energy Efficiency in Industry i‘f\'

Paper industry is 4 Largest Energy Consumer in US Qs D

Chombo-Pulp: Apply adaptive embedded
boundary solver to resolve flow around pulp
fibers and in felt pore space

Adaptive mesh refinement and interface tracking



» 30% of U.S. energy use is in tfransportation

» Optimize for fravel fime, reduced fuel consumption, and improved air quality
» Smooth traffic flow is more energy efficient

» Adversarial multi-agent transfer learning used even with mixed autonomy traffic
to smooth traffic

Alex Bayen, Civil and Environmental Engineering, EECS, UC Berkeley, Director of the Institute for Transportation Studies



Control actions (A ) Environment

+ subectofconrol (P45~ 5 » Survey of 73 studies on RL in building
¢ Number of control points R:A,S > R)

. Simiaton energy systems

Real buildings A
__,5. Smart grid Q

renewable

B \
!

» Various papers control HYAC, hot
water, windows, lighting and more

Algorithm Popularity

) M;dellxzt;resritic :Staéifriri) \\Simulationenvironment Etr;er;ggye Hotwater,/ Policy Grodlen'l' 3 Of 73
| Model-
Value-Based 56 of 73
Figure 2. Reinforcement learning for building controls free
Actor-Crific 11 of 73
Model-based 3of73

Rewards(R)
* Energy
¢ Flexibility & costs
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Zhe Wang, Tianzhen Hong Energy Technologies Area, LBNL DOI: 10.1016/j.apenergy.2020.115036



Opportunities to Reduce Carbon in Production

Renewable sources still play
a modest role

Role of computing and data

» Design of solar materials, wind
turbines, hydrogen fuel cells

Petroleum
37%

Renewable

energy
1%

» Design and impact analysis of
carbon capture and sequestration

Natural gas

32% » Understanding economic drivers

Data from IEA based on 2019 data



Materials Design for Renewables + Storage
Design of Materials for Batteries, Solar Panels and More

m
gllld

Software Supercomputers Screening > 40,000 Users

» Use of Bayesian optimization

NANOPOROUS MATERIALS 530,243 for layered materials

INORGANIC COMPOUNDS 131,613 » [Bassman et al, npj

Computational Materials
2018]
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BAND STRUCTURES 76,194
MOLECULES 49,705
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Three-Layer Hetero-Structures

70

Kristin Persson, Material Science and Engineering, UC Berkeley and LBNL, Materials Project Pl



Inverse Design with ML

Designing materials, proteins, and small molecules with ML
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Search for a molecules using an
autofocusing generative model:
moves around the design space,




Importance of Energy Storage

20,000 1+

10,000

» Grid-scale storage is critical for use so00
of renewables (solar, wind, etc.)

2000

1000

» Better data collection and methods
could inform policies and
economics.

Product price (€,,s/kWh_,)
[+
3

8

g

» Need to predict adoption rates
and develop infrastructure of , 1 o
. . Cumulative installed nominal capacity (GWh_,)
various technologies.

o
(=}

® System ® Pack ¢ Module a Battery

* Pumped hydro (utility, ~2%18%) Lead-acid (multiple, 4%%6%) Lead-acid (residential, 13%5%)
4 Lithium-ion (electronic %) * Lithium-ion (EV, 21%+4%) Lithium-ion (residential, 15%+4%)

*® Lithium-ion (utility, 16% Nickel-metal hydrid %21%) * Sodium-sulfur (utility, <)

* Vanadium redox-flow (utility, 13%+3%) *® Electrolysis (utility, 17%+6%) Fuel cells (residential, 16%+2%)

Technology readiness of grid-scale energy storage
Updated from Schmidt et al. (2017).

Dan Kammen, Energy Resource Group, UC Berkeley



» Metal Organic Frameworks (MOFs) to
capture carbon in natural gas plants.

» Uses steam to regenerate the MOF for repeated use,
reducing energy required for carbon capture.

» Latest design removes >90% of CO, from flue gas
and 6X more than current (amine) technology.

» Exploring MOF design space

» Traditionally explore MOF design with expensive
Density Functional Theory (DFT)

» Accelerate exploratfion using ML (graph NNs, etc.) with
Gonzalez group (EECS)

Jeff Long College of Chemistry / UC Berkeley and LBNL



3D Protein

Persistence
Diagrams

Graphical
Representation

Graph Convolution (x6)

1D Persistence 2D Persistence
Network Network

1 v

Fully Connected Layer (x2)

Global Pooling

Sigmoid

v

Protein Function

) Graph
Convolutional
Network

Linear
Classifier

Model AUPR
— PersGNN 0.82
GNN 0.75
PersNet 0.63
— MLP (Baseline) 0.22

0.4 0.6
Recall

Nicolas Swenson, Aditi S Krishnapriyan, Aydin Buluc, Dmitriy Morozov, Katherine Yelick




Parallelism in Graph Nevural Nets

» GNN models are huge; sampling has large number of edges

» Treat as sparse linear algebra problem

o
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Tripathy, Yelick, Buluc, Reducing Communication
in Graph Neural Network Training, SC’20

| Vertices
Amazon 9.4M

| Edges

232K
8.7M

Labels




Communication-Avoiding Matrix Multiply

«X
~y i k- 2D algorithm: never chop k dim

« 3D: Assume + is associative;
chop k, which is = replication

| }Z of C matrix

| TIIatrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j
fork



Effect of penetration on unit revenues & value factors
Unit Revenues Value factors
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» Cannibalization effect: Increasing market penetration of solar and wind reduces
their own unit revenues and value factors (VF).

» Wind market penetration reduces solar VF, but solar penefration increases wind VF.

David Zilbberman, Department of Agricultural and Resource Economics, UC Berkeley



» Community data sets
» Models to reduce uncertainty
» Predict scaling potential

Carbon Input Scenario Input

» Over 57 million acres of grassiand in Management

California mostly used for ranching Land Cover _

. . : Change : Wildfire
» Organic addition can sequester 9 metric i T Climate
cosystem :

tons of CO, per acre per year Carbon Flux Mortality
» May save 28 million tons of CO,e annually \

using just 5% of California’s rangelands 1SS e

Whendee Silver / CNR UC Berkeley



First-Time Science Analysis with MetaHipMer

-;Jﬁﬂ- il S : 3
What happens to microbes after a wildfire? How do microbes affect disease and growth of

— = a— switchgrass for biofuels (4TB
1-5TB) What are the microbial dynamics of . !

soil carbon cycling? (3.3 TB)

1N12C Counts 15\ at%

Combine genomics with isotop tracing methods for improved
functional understanding (8TB)

What at the seasonal fluctuations in a
wetland mangrove? (1.6 TB)

JGI-NERSC-KBase FICUS projects




KmerProf comparing metagenomes

reads .
1) K-mer Analysis
- K-mer histogram
k-mers
) 2) Distance metrics
-mer
counts or Count-based: Jaccard Index

abundancel Abundance: Bray-Curtis

Migun Shakya LANL and Steve Hofmeyr LBNL



Distributed Hashing / Histogramming

Repeat while more to read and/or exchange

¥ load & parse —
block :
Input read Eﬂgg'gg Local k-mer _| Hash table

partition metadata set parfition

Done bulk-synchronously in MPI (all2allv)
Or asynchronously with remote put/get/RPC

block :
Input read Eggg'gg Local k-mer _| Hash table

parfition metadata Altoal set parfition

Marquita Ellis (alignment), Steve Hofmeyr (k-mer counting), et al



K-mer counting now in UPC++

® MPI with bloom filter

® UPC++ with bloom
filter

UPC++ without

Runtime (s)

« New version in UPC++ avoids barriers
« And it’'s simpler!

Steve Hofmeyr, Rob Egan, Evangelos Gerganas, leads on MetaHipMer software



K-mer Counting

kmer counter M exchange (incl. MPI call)

B parse & process kmers
4000

3000
2000
1000

0

kmer counter M exchange ¥

M parse & process kme

64 nodes (2688 CPU cores) 40 64 notes (384 GPUs)

30
20
10

0

H. sapien 54x H. sapien 54x

K-mer counter on Summit. (Note scales -- red k-mer exchange time is roughly equal.)

Over 100x speedup (including communication); results expected to be data- and
machine-dependent

Israt Nisa, et al



Mitigation
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Economic Drivers

Adaptation

Ex’rreme Climate Evenis

Resilient Infrastructure

Economic Impacts

Planning for Migration




Integrated models of climate and the
environment combine features learned
from data and known physical laws



Data-driven models produce new insights into
carbon cycling

Normalized Bias

Relative increase in biomass (%)

0 10 20—35 Time after drought onset (d)
» ML methods bridge the scales to quantify the effect » ML methods measure influence of soil moisture
of CO, on vegetation and ecosystem function on photosynthesis.
» E.g., Increase in biomass by 2100 shown based on » Show previous models of photosynthesis activity
increase in CO, levels based on satellite data are ~15% too high

Trevor Keenan, Dept. of Environmental Science, Policy and Management / UC Berkeley and EESA / LBNL



Big Data, Big Model, and Big Iron

Predicted Exireme Weather Ground Truth Extreme Weather

Predicted Extreme Weather Patterns 2107-07-07 Ground Truth Extreme Weather Patterns 2107-07-07
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Deep learning results are smoother than heuristic labels
Achieved over 1 EF peak on OLCF Summit: Gordon Bell Prize in 2018

Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur
Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston



Data Analytics via Supervised Learning

Classification
+ Localization

Instance

Object Detection i
Segmentation

Classification

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

Slide source Prabhat



Uses of machine learning to robustly identify extreme events without
heuristics or thresholds for specific data sets

New statistical models to Detect atmospheric rivers and Implementing a new jet stream
characterize extreme weather  quantifying uncertainty using ML detector in TECA (Toolkit for Extreme
and Bayesian statistics Climate Analysis)

NH/SH Jet Stream Spines step=26
(@) Change in 10-year return value (mm)

,ﬂ-f\

O
|
m
-~
m
-

posterior AR flag (probability)

150 200 250 300 350

Risser et al. 2020 I seg on
Paciorek et al. in prep O’Brien et al. 2020

Loring, O'Brien & Elbashandy

Bill Collins, LBNL and Earth and Planetary Science, UC Berkeley, Cascade Project Pl
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Highly instrumented farm = 4D virtual farm model = Sparse precipitation data - ecosystem model
» Iterative random forests used for spatial interpolation needed for high resolution models

» Multi-model data (left) from a farm in Arkansas (satellite, multispectral UAV, fertilizer,
water, temperature, etc.)

» Sensors data for regional precipitation (right) uses Sequential Imputation Algorithm
for fime-series data Improves quality by including stations with incomplete data

James Ben Brown, Statistics, UC Berkeley and Biosciences, LBNL



Peak vegetation standard deviation early summer drought sensitivity

» Use of Random Forest ML to determine role of water in ecosystem productivity
» Find early summer water is crifical to ecosystem productivity throughout

» Specific impact dependent on vegetation type (grassland, deciduous, evergreen)

Haruko Wainwright, Nuclear Engineering, UC Berkeley and LBNL
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Oroville Dam-—Feme:y 27 2017
e Image credit: KCRA via AP



Physical models

» First principles, lumped or distributed

Complex models with feedback, conservation laws, etc. Observational data from USGS stream flow sensors

« Information theory for causal inference and delineation of critical time and spatial scales
« Sparse regression to “discover’” governing equations from data
« Formulate empirical forecasts constrained by physics

Laurel Larsen, Geography and Civil and Environmental Engineering, UC Berkeley



Watershed decision support

A = &
~ lowering  Reduction  Seawater  Degraded Land Surface Water
- GWlevels of Storage Intrusion  Quality  Subsidence Depletion

”

Conservative
G.W.
pumping

M 2018 Snow Water Equivalent (SWE)
mm Median SWE (‘81-"10)
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- High fidelity physics models + observations are

g . : computationally expensive
Decision constrained by regulations, . : ) ..
climate predictions, agriculture and ~ * Using DL-based surrogates for in-the-field decisions

urban demands, etc. - LSTM-RNN for long term groundwater predictions

Reference: California Water Commission =

Julianne Mueller, Computational Research Division, LBNL



Measuring Climate Change Impacts

Sector Estimates Adaptation Global
Addressed Coverage

Agriculture
Forestry
Species loss
Sea-level rise
Energy “Quantifying Economic
Human amenity Damages from Climate

Morbidity and mortality Change’.’ Journal of.
Migration Economic Perspectives,
Fall 2018

Crime and conflict
Productivity

Water consumption

Pollution

Storms

Maximilian Auffhammer , International Sustainable Development, UC Berkeley
https://pubs.aeaweb.org/doi/pdf/10.1257/jep.32.4.33



Inequality and the Social Cost of Carbon -

Inequity impacts
» SCC increases ~2-3x when inequality

over time is disentangled from
m 5 iInequality between regions

» Based on two known models

: — e Social Cost of Carbon (p=0.015, =1.5, y=0.7, US normalization)
Assess the economic impact of RIS e
climatic change on agriculture, _
health, energy use, etc. o sf[— regional inequalit
» Basis for “zero-emission credits” (NY, IL) > o — f‘zui::gulzﬁtc;uahty
» Electric utilities planning (CO, MN, WA
» Policy analysis (Mexico and Canada) 000204 0608101214 000204 0608 10 12 14

« o

David Anthoff, Energy & Resources Group, UC Berkeley



Understand economic impacts of climate

» Help decision makers understand the
economic impacts of climate change

» Productivity and income are negatively
impacted by heat
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» Poorest 60% of people in the world will
bear the brunt of economics impacts

Global distribution of temperature observations

I.-__
Global distribution of GDP

10 15 20 25

annual average temperature (C)

Lights as an indication of wealth with and without warming

Sol Hsiang, Goldman School of Public Policy, UC Berkeley



Predictions Labels Predictions Labels Predictions

ot U7

lights

R2=0.85 /

0 7.4
4

Nighttime

2 3
log(1 + nanoWatts/cm2/sr)
~ .

0

40000 60000 80000 100000 120000 5
$ per household log($/sqft)

» Remotely estimating socioeconomic and environmental conditions

» A single sharable encoding of satellite imagery
» Generalizes across prediction tasks (e.g. forest cover, house price, road length)
» Accuracy competitive with deep neural networks

» Orders of magnitude lower computational cost

» Others need only fit a linear regression to their own ground truth data in order to
achieve state- of-the-art SIML performance.

Esther Rolf, Jonathan Proctor, Tamma Carleton, lan Bolliger, Vaishaal Shankaf, Miyabi Ishihara, Benjamin Recht,
Solomon Hsiang. arXiv preprint, 2020.



0 50 100 150 200 250 300 350

=== predicted pareto_curve
—— 'true’ (label-based) pareto_curve

* — performance of predictions on 'true’ pareto_curve
B 4 Aﬁ\‘\

» Understand impacts and ’rorgehng m|‘roloons and other aid
» Real-fime measure of poverty based on cell phone data and satellite imagery

» Changing labor markets, migration, conflict and violence
» Welfare-aware ML: a framework for multi-objective optimization with noisy data,

balancing social welfare maximization with traditional loss minimization

. ML paper by Esther Rolf, Max Simchowitz, Sarah Dea, Lydia T. Liu,
Josh Blumenstock, School of Information, UC Berkeley Daniel Bjorkegren, Moritz Hardt, Joshua Blumenstock ArXiv 2020




Need for an Integrated ML Climate Platform

Behavioral
changes

Technical
solutions

Economics
constraints

~

Physical
laws

B s s — —

Geopolitical
factors




Three ingredients for machine learning

Data

Algorithms

Machines




Interactive Data Science for Earth

JJJJJJJJJJ

O Runs in browser

LOpTOps 10 NN

\ 3 Dataover;aMagnetic Dipole
J u pyte r -+ | Supercomputers .
v Tex _I_ o e observed anomaly over a buried susceptible sphere that is
Code | | . T o
Output
Jupyter meetstheEarth = HiS R
» Large-Scale Hydrologic Modeling

» CMIPé6 climate data analysis: The World Climate
Research Program’s Coupled Model
Intercomparison Project

» Geophysical inversions Part of the EarthCulbe NSF program

Fernando Pérez, Joseph Homman, Laurel Larsen, Kevin Paul, Lindsey Heagy, Christopher Holdgraf, Yuvi Panda


https://www.wcrp-climate.org/wgcm-cmip

Al CHiP l.al‘ldscape More on https://basicmi.github.io/Al-Chip/

— Tech Giants/Systems — — |IC Vender/Fabless — — IP/Design Service — — Startup in China Startup Worldwide
Google (lntel) arm Cambricon @ VVAV='  Graphcore'
B . \ VAN DA i T 4 L
B Microsof — SYNOPSYs @ thinc
—_—— BITMAIN
aws I=xS Qa I/‘ o
==3S7E Z imagination . . €y KALRAY ¥ -
«D nVIDIAe I“leum us‘n“ J LIGKTELL m”“ﬁgl'"l‘mgg

=X

QUALCOMW cadence & Esperanto ? Tens
" T AMD1 A Rsfenisd brainchip

\") .0%%
e, BaibEE £ XILINX.

- _ PEZY Computing GREEN

S Qo  Tachyum”.
TEARKN S EES Tachyum:

€L R Emer
Alibaba Group : NextVPU
e @ FARADAY (E fl ‘
< 0N : ( nriame gyrfalcon an
FUiTSU NoKkia | @BROADCOM D tecmoony G
. VAT S ST
SING IRLiH 7&: o =
TOSHIBA yr = AR A X
— B Compiler Benchmarks
fer) R O -
Hewlett Pack @ Rackch GLOW NVIDIA TensorRT
Enterprise fﬁarwap% MLP(erf AI - Benchmark Al Matrix. /\\\/\

» - nGraph Compiler stack (Beta) eploidML




Is deep Iearnlng the only appllcahon’?




Integrated Facilities for Science

Computing and Data
Facilities

Interconnected facilities

Experimental where data is acquired, Embedded
it stored, analyzed and served s

» Edge Computing
forScience
User Community



Profound Impacts of Climate Change
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P /' __ “We are the first generation to feel the effect
of climate change and the last generation who
can do something about it.”

Barack Obama, Former US President
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Specialization, Yes

More cores

~

Accelerators, No!

—D
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More .
More data Narrow data memory CPUs in CPUs
arallelism types control communicate
P YP spaces
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Vision for the Future and Role of Data Science

ML-based data analysis, decision-making, control and design for a sustainable climate future for all

* Data-driven decision making
encourages mitigation and
smooths adaptation

* Data-informed policies
encourage carbon farming /
ranching

* Data informs governments
worldwide to anticipate major
employment disruptions,

e Reduces wildfire risk, ocean
impacts, and ensures fair
water access with ML-

migration, economics Economics optimized interventions
and Managed
- Environment
Policies
Energy
Materials

* ML controls factories to

* ML-designed materials used in
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renewables, grid storage

* Manages the renewal-

. . * ML-designed materials
dominated grid

capture carbon before
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Communication Dominates: Dennard was too good

Hardware Speed Trends
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Put Accelerators in Charge of Communication

Architecture and software are not yet structured for accelerated-initiated
communication (Summit with NVLink between Power? CPUs and NVIDIA GPUs)
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Partnering with Policymakers

Welcome to

CALIFORNIA OPEN DATA

California believes in the power of unlocking government data: We invite all to search and explore
our open data portal and engage with our data to create inhovative solutions. We believe the
California open data portal will bring government closer to citizens and start a new shared
conversation for growth and progress in our great state.

» Strong partners in California state government on climate
» Innovative governance models: e.g., Water Data Consortium
» A data driven policy approach

» Open Data Portal: hitps://data.ca.gov

» Ofher state entities: Air Resources Board, Environmental Health Hazard Assessment,
California Natural Resources Agency

» Governor'’s Senior Advisor on Climate (UCB Alum)



