

Act I:
SOCs in a Strange Land

Programing Models and Environments 2

NERSC is the Primary High Performance Computing Center for

Office of Science Use

2013 Breakdown of Allocations by

« DOE/SC allocates NERSC Crionms Avom
resources for their mission Nuclear Physics

* Over 5000 users and 700 -
prOjeCtS run at NERSC Accel. Physics HEP

 They write about 2000 Combustion
publications per year . T

« 2 Petascale systems today Astrophysics \
— NERSC-7: Hopper -
— NERSC-8: Edison

Geosciences

The workload is diverse and imate
increasingly complex due to
science workflows, integration
of data, and demand for higher
resolution and scale

Office of
Science

Chemistry

NERSC technology leadership includes a path to Exascale

10000

NERSC-10 1+EF

1000 et ta Al EW R — | —
IREICAL U NA SIS 'Y | | NERSC-9, 300 PF
100 - o
N8/Cori: First Cray KNL System NERSC-8, 30 PF
+ Haswell partition configured for data
10
NERSC-7, 2.6 PF N7/Edison: First Intel/Cray System
1 NERSC-5+ 4PF NERSC-6, 2.6 PF N6/Hopper: First Cray Aries (DARPA HPCS) system
NERSC-5 .1TF N5/Franklin: First incremental upgrade
0.1 -
0.01 1T 17T 17T 17T 17T 17 17T 17T 17T 17T 17T 17 17T 17T 17T 17T 17T 17T 17 17T 17T 17T T T 1T T T 1T T T T1 T T T T 1 T 1T T T 1 T 1T 17T 17T T T T°1 1T 17T 17T 17T 17T 17T 17T 17T 17T T T

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Two Steps toward Exascale at NERSC

Cori: energy-efficient architecture
on the exascale roadmap

— Over 9,300 Knights Landing compute |
nodes

— Self-hosted, up to 72 cores, 16 GB
high bandwidth memory

— 1,600 Haswell nodes in data partition
— Cray Aries Interconnect

Wang Hall: New computing facility
—12.5 MW initial capacity
— Expandable to 42MW

— Energy efficient design (PUE < 1.1)
Short walk from Berkeley Campus

Dedication on Nov 12
-5-

Materials and Chemistry are a Significant Fraction of the DOE/SC

Computing Workload

Breakdown of Application Hours

* 10 codes make up
L 50% of the workload

25 codes make up
66% of the workload

e Edison (Cray with Intel
IvyBridge) will be
available until
2019/2020

>500 codes

BerkeleyGW
Office of

U.S. DEPARTMENT OF
\\ ENERGY Science -6-

Materials and Chemistry are a Significant Fraction of the DOE/SC

Computing Workload

Breakdown of Application Hours
Breakdown of Application Hours at NERSC

e 10 codes make up

VASP 50% of the workload
25 codes make up
o 66% of the workload
£ e Edison (Cray with Intel
L MILC Ivyl}rldge) will be
i available until
mga%m_toast Gadget LAMMPS 2019/2020
€0 grow-bubbles
P2k GyRO e NERSC Exascale
nimrod NWCHEM AT S . . .
viscoelasticDriver3d C|ence Appllcatlons
gtc Gvro chroma Program (NESAP)
osirisS3D Espressc o .
o vesar codes | — INew staff, training

and partnerships
kel NESAP Proxy Code .
'E‘EF.EEXG.W or Tier-3 Code W|th Iﬂt@l fOI’ KNL

Office of

‘;7\‘{ U.S. DEPARTMENT OF
ENERGY science "7

Performance Portability is a Goal Across DOE

Titan, Mira and Edison represent 3 distinct architectures in SC

— Not performance portable across systems

APEX 2016 and CORAL @ ANL \ /
— Xeon Phi, no accelerator *)

CORAL 2017

Accelerated

- IBM + NVlDIA | \ Climate Model for Energy

Two different version of the code

Best case #1: OpenMP4 absorbs accelerator features
(likely), but code still requires a big ifdef

Best case #2: Architectures “converge” by 2023, perhaps
with co-design help

Programing Models and Environments

8

Act II:
Don’t Fear the Compiler

A Compiler is Just a Translator

« Scientific computing relies heavily on libraries
— LAPACK and FFTW are widely used at NERSC

 People use languages for their libraries
Do we need a language? And a compiler?

— If higher level syntax is needed for productivity
* We need a language
— If static analysis is needed to help with
correctness
* We need a compiler (front-end)
— If static optimizations are needed to get
performance

* We need a compiler (back-end)
10

Autotuning: Write Code Generators

 Two unsolved compiler problems:
— dependence analysis and

— accurate performance models

e Autotuners are code generators plus search

1024
512
256

Peak compute

© 128

Q
O 64

Uy g Vg Wy Uy 1 2 4 8 16 32
Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,... "

What we have and what we need

NERSC survey: what motifs do they use? What code generators do we have?
i | | |
Structured
ructure | Dense Linear Algebra Atlas
Sparse LA SRR Spectral Algorithms FFTW,
i Spiral
Spectral [
i Sparse Linear Algebra OSKiI
Particles M ;
| [Structured Grids TBD]
I '
Monte Carlo _ Unstructured Grids
Dense LA [N Particle Methods
Adaptive H Monte Carlo
Unstructured |

0% 10% 20% 30% 40% 50%

Stencils are both the most important motifs and a gap in our tools

Programing Models and Environments 12

Approaches to Autotuning

Approximate

How do we produce all of these (correct) versions? e
categorization!

* Using scripts (Python, perl, ML, C,..)
 Compiling annotated general-purpose language (X-Tune,...)

» Use preprocessor to generator code (Raja, Kokkos,TiDA)
 Compile a domain-specific language (D-TEC, Halide)
 Domain-specific compiler for domain-specific language (SEJITS)

Several Projects and Pls: Sam Williams, Mary Hall, Dan Quinlan, Armando Fox, Saman Amarsinghe,
Armando Solar-Lezama, Jack Dongarra,

Approach #1: Compiler-Directed Autotuning

 Two hard compiler problems
* Analyzing the code to determine legal transformations
« Selecting the best (or close) optimized version

« Approach #1: General-purpose compilers (+ annotations)
« Use communication-avoiding optimizations to reduce memory bandwidth
* Apply CHILL compiler technology with general polyhedral optimizations
« Use autotuning to select optimized version

5.0x

Smooth B All Optimizations 45x | OCHILL
5000 O+Fusion & Wavefront 4.0x | BManualTuning
. .] HE Baseline
4500 @ +Fusion & Partial Sums 3.5x
kel

= 3500 - , 9 25x -
) M Baseline g
%3000 T (7] 20X n
&5 2500 ORoofline Memory Bound Lo -
= 2000 -

1.0x -
0.5x
0.0x -

1500 -
1000 -
500 -

Hopper Edison Hopper Edison
7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

MGSolve smooth() on 643

Edison Hopper
Results on Geometric Multigrid (miniGMG Smoother) 14

Approach #2: DSLs with General Purpose Compiler

* Generation of Complex Code for 10 Levels
of Memory Hierarchy with SW managed
cache

— 4th order stencil computation from
CNS Co-Design Proxy-App

— Same DSL code can generate to
2,3,4, ... levels too

— Code size of autogenerated code |

10

DSL Code
Auto Generated Code 446 500 553 819

Use of Rose/PolyOpt to apply DSLs to large applications and collaboration on AMR
15

Approach #3: Domain-Specific (but not too specific)

Developed for Image Processing Halide performance
. » Autogenerated schedule for CPU
FAN

g+
m E « Hand created schedule for GPU
Adobe Enfiance .

No change to the algorithm
— 10+ FTEs developing Halide
— 50+ FTEs use it; > 20 kLOC

HPGMG (Multigrid on Halide) -8
1.6 173
14 - 273
g 12 B — 43
Eo ol L 813
g - 1673
sos | |
0 w3213
c2*Lambda (4,3,k)* (28 (4,360 A% n(1,3.K)); Lﬁ 1 | |
0.6 6413
e Halide Schedule either 04 = “128"3
— Auto-generated by autotuning with opentuner 0.2 H 25673
— Or hand created by an optimization expert 0 - ‘

Original Halide CPU

16

Approach #4: Small Compiler for Small Language

* SEJITS: Selected Embedded Just-In-Time Specialiation:
— General optimization framework (Ctree)

— Currently implemented part of HPGMG benchmark in stencil DSL

* Within 50% of hand-optimized code
e ~1000 lines of DSL-specific code; 1 undergrad over <2 months

1W """"""""""""""""""""""""""""""""" Y S
Speedup of Kernel Fusion For Stencils HPGMG Time (Smgle Core)
° M 2 Fused Kernels 1d ,,,
W3 Fused Kemels 2months effort, 1400 lines of
° domain-specific code generation
4
E 17m S
g 3
2 | | | | | .
1 | B
0 256 512 1024 2048 4096

Size of input

Python SEJITS HPGMG

17

Act lll:
Overhead Gan’t be Tolerated

Programing Models and Environments 18

Modified LogGP Model

* LogGP: no overlap Observed: overheads can
overlap: L can be negative

Osend
- Osend
L
Orecv
orecv
EEL: end to end latency (instead of transport latency L)
g: minimum time between small message sends

G: additional gap per byte for larger messages

Communication and Manycore: the problem is the “+”

(core) (core) (core) (core) (core) (core) (core) (core) <COI’E> (core) (core) <COI’6> (core) (core) <COI’9> <COI’€>

Node 1

Node 0 | | Node 1 Node 0
Process 0 Process 1

’\’Q»%_ MSGs, /‘/‘A/J
— Thread 0 Thread 1 Thread 2 Thread 3
e | \‘\]ﬁj |
A

Ideal hybrid programming Default hybrid programming
« MPI + X today:
e Communicate on one lightweight core
e Reverse offload to heavyweight core
* MPI stack may not run well on lightweight cores
* Issues preventing efficient interoperability:

— Addressability: can’t name remote threads?
— Separability: How to manage communication resources for independent paths

e More feasible for 1-sided than 2-sided
Kha/ggl Ibrahim, ICS 2014

Interconnect ‘

3
3
- %
\ °
=
2 Interconnect
&
. \
<

Avoid Latency and Implicit Synchronization

two-sided message host
. CPU
message id data payload ———
ded network
one-sided put message e

address data payload —>

memory

Two-sided message passing (e.g., send/receive in MPI)
requires matching a send with a receive to identify
memory address to put data

— Couples data transfer with synchronization, which is sometimes what you
want

Using global address space decouples synchronization
— Pay for what you need!

21

18000 -

16000 -

14000 -

Bandwidths on Cray XE6 (Hopper)

=4=Berkeley UPC
=@=Cray UPC

=#=Cray MPI

\

— 12000
(72}
S~
)
12
2 10000
N 10
e
'-E 8
8000
3 /‘ ~+=UPC/MPI
c 6 -
©
@ 6000 ‘
2
4000 o+—FT"T"T"T""T"""T"T""T""T"T—T—"TTT"T
T, TN VR R T T TSP
T et g Q@g$Q 00;\\(7
%
2000
0 L T T T T T T T T T 1
32 128 512 2048 8192 32768 131072 524288 2097152
Msg. size

22

Lightweight Communication for Lightweight Cores

« DMA (Put/Get)
— Blocking and non-blocking (completion signaled on initiator)
— Single word or Bulk
— Strided (multi-dimensional), Index (sparse matrix)
* Signaling Store
— All of the above, but with completion on receiver
— What type of “signal”?
» Set a bit (index into fixed set of bits ®)
* Set a bit (second address sent ®)
* Increment a counter (index into fixed set of counters ®)
* Increment a counter (second address for counter ®)

* Universal primitives: compare-and-swap (2"9 address + value), fetch-and-
add handy but not sufficient for multi/reader-writers ©

 Remote atomic (see above) — should allow for remote enqueue
* Remote invocation

— Requires resources to run: use dedicated set of threads?

DEGAS Overview 23

Technology Transfer Paths

* Languages
— Adoption into popular programming models
* One-sided into MPI (again)
e Locality control into OpenMP
— Adoption by a compiler community (Chemistry DSL)
 Compilers
— Leverage mainstream compilers (LLVM)
— Leverage another existing “domain-specific” language
— Small compilers for small languages
* Next phase
— Focus on application partnerships
— Partnerships with library and frame work deveopers
— Collaborate with vendors on hardware desires and constraints

Programing Models and Environments 24

Office of
Science

£

) ENERGY

EER - U.S. DEPARTMENT OF

N>

/

Sources of Unnecessary Synchronization

Loop Parallelism Abstraction

1$OMP PARALLEL DO
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
1$OMP END PARALLEL DO

Ny Bulk
= % Synchronous

Less :
- Synchronous

“Simple” OpenMP parallelism implicitly %\
synchronized between loops -«

LAPACK: removing barriers ~2x faster (PLASMA)

Libraries Accelerator Offload

!Sacc data copyin(cix,cil,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,cil0,cill, &
!Sacc& cil2,cil3,cilé4, r,b,uxyz,cell, rho,grad, index_max, index, &
!Sacc& ciy,ciz,wet,np,streaming sbufl, &

. o, . !Saccé streaming sbufl,streaming sbuf2, streaming sbuf4, streaming sbuf5, &
Analysls /o ba rrlers Speedup !Saccé streaming_sbuf7s,streaming_sbuf8s, streaming_sbuf9n, streaming sbuflls, &
!$accs streaming_sbuflln,streaming_sbufl2n,streaming_sbufl3s,streaming_sbufldn, &
!Sacc& streaming sbuf7e,streaming_sbuf8w,streaming sbuf9e,streaming sbuflle, &
0 (, !Saccé streaming sbufllw,streaming sbufl2e,streaming sbufl3w,streaming sbuflédw, &
Auto 42 A) 13 /o !Sacc& streaming_rbufl, streaming_rbuf2, streaming_rbuf4,streaming_rbuf5, &
!$acce streaming_ rbuf7n,streaming_rbuf8n,streaming rbuf9s,streaming rbuflOn, &
!Saccé streaming rbuflls, streaming_rbufl2s,streaming rbufl3n, streaming rbufliés, &
. 0 o !Sacc& streaming_rbuf7w,streaming_rbuf8e, streaming_rbuf9w,streaming_ rbufllw, &
G u Id ed 63 A) 14/0 !Saccé streaming rbuflle,streaming rbufl2w,streaming rbufl3e,streaming rbuflie, &
!Saccs send_e,send w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)
NWChem: most of barriers are unnecessary (Corvette) The transfer between host and GPU can be slow and

cumbersome, and may (if not careful) get synchronized

Programing Models and Environments 26

Random Access to Large Memory

Meraculous Assembly Plpelme

Perl to PGAS: Distributed Hash Tables

* Remote Atomics

* Dynamic Aggregation

* Software Caching (sometimes)

* Clever algorithms and data structures
(bloom filters, locality-aware hashing)

- : - UPC++ Hash Table with “tunable”
Human: 44 hours to 20 secs runtime optimizations

7 ’ ”
Wheat: “doesn’t run” to 32 secs 16384
[]
All metagenomes 8192 A""‘
100 . -
90 o © * Soil 4096
- 80 M Marine
270 - Groundwater % 2048
§ 60 - ® Bioreactor S
g 20 © 8 1024
8 40 = 7
(1]
£ 30 512 .
3= 20] * L _rger,lo‘llg#er—wheat
S T — L3 ideal-wheat
10 *MM‘; o5g |- ===m== merAligner-human
0 ideal-human
0 10 20 30 ==#-= BWAmem-human
128 | ==@== Bowtie2-human
Gbp sequenced L L .

480 960 1920 35;40 76ISO 152360
Grand Challenge: Metagenomes Number of Cores

Productivity: Enabling a New Class of Applications?

