
 Programming Models for SOCs in HPC!
(A Play in 3 Acts)!

Kathy Yelick!
Lawrence Berkeley National Laboratory and UC Berkeley

Programing Models and Environments 2

Act I: !
SOCs in a Strange Land

•  DOE/SC allocates NERSC
resources for their mission

•  Over 5000 users and 700
projects run at NERSC

•  They write about 2000
publications per year

•  2 Petascale systems today
–  NERSC-7: Hopper
–  NERSC-8: Edison

- 3 -

NERSC is the Primary High Performance Computing Center for
Office of Science Use

2013	Breakdown	of	Alloca3ons	by	
Science	Area		

The	workload	is	diverse	and	
increasingly	complex	due	to	
science	workflows,	integra:on	
of	data,	and	demand	for	higher		
resolu:on	and	scale	

0.01	

0.1	

1	

10	

100	

1000	

10000	

2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	 2016	 2017	 2018	 2019	 2020	 2021	 2022	 2023	

NERSC technology leadership includes a path to Exascale

NERSC-8,	30	PF	

N6/Hopper:	First	Cray	Aries	(DARPA	HPCS)	system		

N7/Edison:	First	Intel/Cray	System	

N8/Cori:	First	Cray	KNL	System		
			+	Haswell	par::on	configured	for	data	

N5/Franklin:	First	incremental	upgrade	

NERSC-7,	2.6	PF	

NERSC-6,	2.6	PF	

NERSC-9,	300	PF	

NERSC-10		1+EF	

NERSC-5+	.4PF	

NERSC-5	.1TF	

-	5	-	

Two Steps toward Exascale at NERSC

Cori: energy-efficient architecture
on the exascale roadmap

–  Over 9,300 Knights Landing compute
nodes

–  Self-hosted, up to 72 cores, 16 GB
high bandwidth memory

–  1,600 Haswell nodes in data partition
–  Cray Aries Interconnect

Wang Hall: New computing facility
– 12.5 MW initial capacity
– Expandable to 42MW
– Energy efficient design (PUE < 1.1)

Short walk from Berkeley Campus
Dedication on Nov 12

Materials and Chemistry are a Significant Fraction of the DOE/SC
Computing Workload

•  10	codes	make	up	
50%	of	the	workload	

•  25	codes	make	up	
66%	of	the	workload	

•  Edison	(Cray	with	Intel	
IvyBridge)	will	be	
available	un:l	
2019/2020	

-	6	-	

>500	codes	

Breakdown	of	Applica3on	Hours	

Materials and Chemistry are a Significant Fraction of the DOE/SC
Computing Workload

•  10	codes	make	up	
50%	of	the	workload	

•  25	codes	make	up	
66%	of	the	workload	

•  Edison	(Cray	with	Intel	
IvyBridge)	will	be	
available	un:l	
2019/2020	

•  NERSC	Exascale	
Science	Applica:ons	
Program	(NESAP)		
– New	staff,	training	
and	partnerships	
with	Intel	for	KNL	

-	7	-	

Breakdown	of	Applica3on	Hours	

-	7	-	

NESAP	Codes	

NESAP	Proxy	Code	
or	Tier-3	Code	

Breakdown	of	Applica3on	Hours	at	NERSC	

•  Titan,	Mira	and	Edison	represent	3	dis:nct	architectures	in	SC	
–  Not	performance	portable	across	systems	

•  APEX	2016	and	CORAL	@	ANL	
–  Xeon	Phi,	no	accelerator	

•  CORAL	2017	
–  IBM	+	NVIDIA	

Performance Portability is a Goal Across DOE

8 Programing Models and Environments

Best	case	#1:		OpenMP4	absorbs	accelerator	features	
(likely),	but	code	s]ll	requires	a	big	ifdef	

Best	case	#2:	Architectures	“converge”	by	2023,	perhaps	
with	co-design	help		

Two	different	version	of	the	code	

9

Act II: !
Don’t Fear the Compiler

A Compiler is Just a Translator

•  Scientific computing relies heavily on libraries
–  LAPACK and FFTW are widely used at NERSC

•  People use languages for their libraries
•  Do we need a language? And a compiler?

–  If higher level syntax is needed for productivity
•  We need a language

–  If static analysis is needed to help with
correctness

•  We need a compiler (front-end)
–  If static optimizations are needed to get

performance
•  We need a compiler (back-end)

10

Autotuning: Write Code Generators

•  Two	unsolved	compiler	problems:		
–  dependence	analysis	and		
–  accurate	performance	models	

•  Autotuners	are	code	generators	plus	search		

Work	by	Williams,	Oliker,	Shalf,	Madduri,	Kamil,	Im,	Ethier,…		

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

RTM/wave eqn.

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

SpMV
SpMV

7pt Stencil

27pt Stencil
DGEMM

DGEMM

GTC/chargei

GTC/pushi

GTC/chargei

GTC/pushi

Algorithmic	intensity:	Flops/Word	 Algorithmic	intensity:	Flops/Word	

Peak	compute	

11

What we have and what we need

12 Programing Models and Environments

0%	 10%	 20%	 30%	 40%	 50%	

Adap]ve	

Dense	LA	

Monte	Carlo	

Par]cles	

Spectral	

Sparse	LA	

Structured	 Dense	Linear	Algebra	 Atlas	

Spectral	Algorithms	 FFTW,	
Spiral	

Sparse	Linear	Algebra	 OSKI	

Structured	Grids	 TBD	

Unstructured	Grids	

Par]cle	Methods	

Monte	Carlo	

NERSC	survey:	what	mo]fs	do	they	use?	 What	code	generators	do	we	have?	

Unstructured	

Stencils	are	both	the	most	important	mo]fs	and	a	gap	in	our	tools	

Approaches to Autotuning

How	do	we	produce	all	of	these	(correct)	versions?	
•  Using	scripts	(Python,	perl,	ML,	C,..)	
•  Compiling	annotated	general-purpose	language	(X-Tune,…)	
•  Use	preprocessor	to	generator	code	(Raja,	Kokkos,TiDA)		
•  Compile	a	domain-specific	language	(D-TEC,	Halide)	
•  Domain-specific	compiler	for	domain-specific	language	(SEJITS)	

13

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Multiply

specialized
to n,m

BLAS
Library

Atlas
Autotuner:
code generator
+search

Several	Projects	and	PIs:	Sam	Williams,	Mary	Hall,	Dan	Quinlan,	Armando	Fox,	Saman	Amarsinghe,	
Armando	Solar-Lezama,	Jack	Dongarra,		

	

Approximate	
categoriza:on!	

Approach #1: Compiler-Directed Autotuning

14

•  Two hard compiler problems
•  Analyzing the code to determine legal transformations
•  Selecting the best (or close) optimized version

•  Approach #1: General-purpose compilers (+ annotations)
•  Use communication-avoiding optimizations to reduce memory bandwidth
•  Apply CHiLL compiler technology with general polyhedral optimizations
•  Use autotuning to select optimized version	

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
St

en
ci

ls
/s

Smooth All Optimizations
+Fusion & Wavefront
+Fusion & Partial Sums
+Fusion
Baseline
Roofline Memory Bound

Results	on	Geometric	Mul]grid	(miniGMG	Smoother)	

0

200

400

600

800

1000

1200

1400

1600

1800

Manual Tuning CUDA-CHiLL

Nvidia K20c

M
St

en
ci

ls
/s

ec

+Manual Optimizations
Thread Block Decompostion

Very	preliminary	
results	on	GPUs	

•  Genera:on	of	Complex	Code	for	10	Levels		
of	Memory	Hierarchy	with	SW	managed	
cache	
–  4th	order	stencil	computa]on	from		
CNS	Co-Design	Proxy-App		

–  Same	DSL	code	can	generate	to		
2,	3,	4,	…	levels	too	

–  Code	size	of	autogenerated	code	

 Approach #2: DSLs with General Purpose Compiler

Memory	Hierarchy	 2	
Level	

3	
Level	

4	
Level	

…	 10	
level	

DSL	Code		 20	

	Auto	Generated	Code		 446	 500	 553	 819	

15

Use	of	Rose/PolyOpt	to	apply	DSLs	to	large	applica:ons	and	collabora:on	on	AMR	

Developed	for	Image	Processing	

–  10+	FTEs	developing	Halide	
–  50+	FTEs	use	it;	>	20	kLOC		

HPGMG	(Mul:grid	on	Halide)	
•  Halide	Algorithm	by	domain	expert	

	
	
	

•  Halide	Schedule	either	
–  Auto-generated	by	autotuning	with	opentuner	
–  Or	hand	created	by	an	op]miza]on	expert	

 Approach #3: Domain-Specific (but not too specific) !
 Languages used by other markets

Halide performance
•  Autogenerated schedule for CPU
•  Hand created schedule for GPU
•  No change to the algorithm

Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev");
Var i("i"),j("j"),k("k");
Ax_n(i,j,k) = a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(
 beta_i(i,j,k) *(valid(i-1,j,k)*(x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
 + beta_j(i,j,k) *(valid(i,j-1,k)*(x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
 + beta_k(i,j,k) *(valid(i,j,k-1)*(x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
 + beta_i(i+1,j,k)*(valid(i+1,j,k)*(x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
 + beta_j(i,j+1,k)*(valid(i,j+1,k)*(x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
 + beta_k(i,j,k+1)*(valid(i,j,k+1)*(x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));
lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
 beta_i(i,j,k) *(valid(i-1,j,k) - 2.0f)
 + beta_j(i,j,k) *(valid(i,j-1,k) - 2.0f)
 + beta_k(i,j,k) *(valid(i,j,k-1) - 2.0f)
 + beta_i(i+1,j,k)*(valid(i+1,j,k) - 2.0f)
 + beta_j(i,j+1,k)*(valid(i,j+1,k) - 2.0f)
 + beta_k(i,j,k+1)*(valid(i,j,k+1) - 2.0f)));
chebyshev(i,j,k) = x_n(i,j,k) + c1*(x_n(i,j,k)-x_nm1(i,j,k))+
 c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k));

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

Original	 Halide	CPU	Halide	GPU	

Ex
ec
u:

on
	T
im

e	

1^3	

2^3	

4^3	

8^3	

16^3	

32^3	

64^3	

128^3	

256^3	

16

g+	

Approach #4: Small Compiler for Small Language

•  SEJITS:	Selected	Embedded	Just-In-Time	Specialia:on:	

–  General	op]miza]on	framework	(Ctree)	
–  Currently	implemented	part	of	HPGMG	benchmark	in	stencil	DSL	

•  Within	50%	of	hand-op]mized	code		
•  ~1000	lines	of	DSL-specific	code;	1	undergrad	over	<2	months	

17

6

0

1

2

3

4

5

Size of input

Sp
ee

du
p

256 512 1024 2048 4096

3 Fused Kernels3 Fused Kernels
4 Fused Kernels

2 Fused Kernels

Speedup of Kernel Fusion For Stencils

Python vs. SEJITS vs.
HPGMG

1s

10
s

1m
 40

s16
m 40

s2h
 46

m 40
s

1d
 3h

 46
m 40

s

1w
 4d

 13
h 4

6m
 40

s

Python SEJITS HPGMG

4s6s

3d
Size Python SEJITS HPGMG

256^3 3 days 6
seconds

4
seconds

Single-Threaded run on Intel E5-2667 (log scale)
23

1w	

1d	

3h	

17m	

2m	

10s	

1s	

HPGMG	Time	(single	core)	
	

2months	effort,	1400	lines	of		
domain-specific	code	generaKon	

Programing Models and Environments 18

Act III: !
Overhead Can’t be Tolerated

Modified LogGP Model

•  LogGP:	no	overlap	 •  Observed: overheads can
overlap: L can be negative

P0	

P1	

osend	

L	

orecv	

P0	

P1	

osend	

orecv	

EEL:	 	end	to	end	latency	(instead	of	transport	latency	L)	
g:		 	minimum]me	between	small	message	sends	
G:		 	addi]onal	gap	per	byte	for	larger	messages		

Communication and Manycore: the problem is the “+”

•  MPI	+	X	today:	
•  Communicate	on	one	lightweight	core	
•  Reverse	offload	to	heavyweight	core	

•  MPI	stack	may	not	run	well	on	lightweight	cores	
•  Issues	preven:ng	efficient	interoperability:		

–  Addressability:	can’t	name	remote	threads?	
–  Separability:	How	to	manage	communica]on	resources	for	independent	paths	

•  More	feasible	for	1-sided	than	2-sided	

20

How to program - Shared Memory - Multithreading

Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

In
te

rc
on

ne
ct

MSGs

Node 0 Node 1

⌅ Funnel: Master (or single) thread communicates on behave of
all (or a group of) threads.

⌅ Extra synchronization, less injection parallelism, but ...

⌅ More e�cient, why?

8 / 34

How to program - Hybrid Ideal Case!

In
te

rc
on

ne
ct

MSGsMSGs
Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

Node 0 Node 1

⌅ Pros:
I Expose architectural sharing (one name space) - Memory

e�cient

⌅ Could we achieve optimal performance? Could we
communicate in a parallel region?

I Less application synchronization, but rarely used!

7 / 34

Ideal	hybrid	programming																					Default	hybrid	programming	

Khaled	Ibrahim,	ICS	2014	

Avoid Latency and Implicit Synchronization

•  Two-sided	message	passing	(e.g.,	send/receive	in	MPI)	
requires	matching	a	send	with	a	receive	to	iden:fy	
memory	address	to	put	data	
–  Couples	data	transfer	with	synchroniza]on,	which	is	some]mes	what	you	

want	

•  Using	global	address	space	decouples	synchroniza:on	
–  Pay	for	what	you	need!			

address	

message	id	

data	payload	

data	payload	

one-sided	put	message	

two-sided	message	

network	
	interface	

memory	

host	
CPU	

21

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

8	 32	 128	 512	 2048	 8192	 32768	 131072	 524288	 2097152	

Ba
nd

w
id
th
	(M

B/
s)
	

Msg.	size	

Berkeley	UPC	

Cray	UPC	

Cray	MPI	

Bandwidths on Cray XE6 (Hopper)

22

0	

2	

4	

6	

8	

10	

12	

UPC/MPI	

•  DMA	(Put/Get)	
–  Blocking	and	non-blocking	(comple]on	signaled	on	ini]ator)	
–  Single	word	or	Bulk	
–  Strided	(mul]-dimensional),	Index	(sparse	matrix)	

•  Signaling	Store	
–  All	of	the	above,	but	with	comple]on	on	receiver	
–  What	type	of	“signal”?	

•  Set	a	bit	(index	into	fixed	set	of	bits	L)	
•  Set	a	bit	(second	address	sent	K)	
•  Increment	a	counter	(index	into	fixed	set	of	counters	L)	
•  Increment	a	counter	(second	address	for	counter	K)	
•  Universal	primi]ves:	compare-and-swap	(2nd	address	+	value),	fetch-and-
add	handy	but	not	sufficient	for	mul]/reader-writers	J	

•  Remote	atomic	(see	above)	–	should	allow	for	remote	enqueue	
•  Remote	invoca:on	

–  Requires	resources	to	run:	use	dedicated	set	of	threads?	

Lightweight Communication for Lightweight Cores

23 DEGAS Overview

•  Languages	
–  Adop]on	into	popular	programming	models	

•  One-sided	into	MPI	(again)	
•  Locality	control	into	OpenMP	

–  Adop]on	by	a	compiler	community	(Chemistry	DSL)	
•  Compilers	

–  Leverage	mainstream	compilers	(LLVM)	
–  Leverage	another	exis]ng	“domain-specific”	language	
–  Small	compilers	for	small	languages	

•  Next	phase	
–  Focus	on	applica]on	partnerships	
–  Partnerships	with	library	and	frame	work	deveopers	
–  Collaborate	with	vendors	on	hardware	desires	and	constraints	

Technology Transfer Paths

24 Programing Models and Environments

Thank you!

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Libraries	

Abstrac:on	Loop	Parallelism	

Accelerator	Offload	

Sources of Unnecessary Synchronization

26 Programing Models and Environments

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Bulk	
Synchronous	

Less	
Synchronous	

!$OMP PARALLEL DO
 DO I=2,N
 B(I) = (A(I) + A(I-1)) / 2.0
 ENDDO
!$OMP END PARALLEL DO

Analysis	 %	barriers	 Speedup	

Auto	 42%	 13%	

Guided	 63%	 14%	

NWChem:	most	of	barriers	are	unnecessary	(Corveve)	

LAPACK:	removing	barriers	~2x	faster	(PLASMA)	

“Simple”	OpenMP	parallelism	implicitly	
synchronized	between	loops	

The	transfer	between	host	and	GPU	can	be	slow	and	
cumbersome,	and	may	(if	not	careful)	get	synchronized	

Cray Inc. SNL Workshop Apr 9-11

!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,&
!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,&
!$acc& ciy,ciz,wet,np,streaming_sbuf1, &
!$acc& streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,&
!$acc& streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,&
!$acc& streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,&
!$acc& streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,&
!$acc& streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, &
!$acc& streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,&
!$acc& streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,&
!$acc& streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,&
!$acc& streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,&
!$acc& streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, &
!$acc& send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s)
 do ii=1,ntimes
 o o o
 call set_boundary_macro_press2
 call set_boundary_micro_press
 call collisiona
 call collisionb
 call recolor

84

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

merAligner-wheat
ideal-wheat
merAligner-human
ideal-human
BWAmem-human
Bowtie2-human

Random Access to Large Memory

Meraculous Assembly Pipeline

Perl	to	PGAS:	Distributed	Hash	Tables	
•  Remote	Atomics	
•  Dynamic	Aggrega]on		
•  Sowware	Caching		(some]mes)	
•  Clever	algorithms	and	data	structures	

(bloom	filters,	locality-aware	hashing)	
à	UPC++	Hash	Table	with	“tunable”	
run:me	op:miza:ons	

Evangelos	Georganas,	Aydin	Buluc	(MANTISSA),	Lenny	Oliker,	Jarrod	Chapman	(JGI),	Dan	Rokhsar	(JGI)		

Human:	44	hours	to	20	secs	
Wheat:	“doesn’t	run”	to	32	secs	

Grand	Challenge:	Metagenomes	

Produc:vity:	Enabling	a	New	Class	of	Applica:ons?	

