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Act I: !
SOCs in a Strange Land




•  DOE/SC allocates NERSC 
resources for their mission 

•  Over 5000 users and 700 
projects run at NERSC 

•  They write about 2000 
publications per year 

•  2 Petascale systems today 
–  NERSC-7: Hopper  
–  NERSC-8: Edison  
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NERSC is the Primary High Performance Computing Center for 
Office of Science Use


2013	Breakdown	of	Alloca3ons	by	
Science	Area		

The	workload	is	diverse	and	
increasingly	complex	due	to	
science	workflows,	integra:on	
of	data,	and	demand	for	higher		
resolu:on	and	scale	



0.01	

0.1	

1	

10	

100	

1000	

10000	

2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	 2016	 2017	 2018	 2019	 2020	 2021	 2022	 2023	

NERSC technology leadership includes a path to Exascale


NERSC-8,	30	PF	

N6/Hopper:	First	Cray	Aries	(DARPA	HPCS)	system		

N7/Edison:	First	Intel/Cray	System	

N8/Cori:	First	Cray	KNL	System		
			+	Haswell	par::on	configured	for	data	

N5/Franklin:	First	incremental	upgrade	

NERSC-7,	2.6	PF	

NERSC-6,	2.6	PF	

NERSC-9,	300	PF	

NERSC-10		1+EF	

NERSC-5+	.4PF	

NERSC-5	.1TF	
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Two Steps toward Exascale at NERSC


Cori: energy-efficient architecture 
on the exascale roadmap 

–  Over 9,300 Knights Landing compute 
nodes 

–  Self-hosted, up to 72 cores, 16 GB 
high bandwidth memory 

–  1,600 Haswell nodes in data partition 
–  Cray Aries Interconnect 

Wang Hall: New computing facility 
– 12.5 MW initial capacity 
– Expandable to 42MW 
– Energy efficient design (PUE < 1.1) 

Short walk from Berkeley Campus 
Dedication on Nov 12 



Materials and Chemistry are a Significant Fraction of the DOE/SC 
Computing Workload


•  10	codes	make	up	
50%	of	the	workload	

•  25	codes	make	up	
66%	of	the	workload	

•  Edison	(Cray	with	Intel	
IvyBridge)	will	be	
available	un:l	
2019/2020	
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>500	codes	

Breakdown	of	Applica3on	Hours	



Materials and Chemistry are a Significant Fraction of the DOE/SC 
Computing Workload


•  10	codes	make	up	
50%	of	the	workload	

•  25	codes	make	up	
66%	of	the	workload	

•  Edison	(Cray	with	Intel	
IvyBridge)	will	be	
available	un:l	
2019/2020	

•  NERSC	Exascale	
Science	Applica:ons	
Program	(NESAP)		
– New	staff,	training	
and	partnerships	
with	Intel	for	KNL	
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Breakdown	of	Applica3on	Hours	
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NESAP	Codes	

NESAP	Proxy	Code	
or	Tier-3	Code	

Breakdown	of	Applica3on	Hours	at	NERSC	



•  Titan,	Mira	and	Edison	represent	3	dis:nct	architectures	in	SC	
–  Not	performance	portable	across	systems	

•  APEX	2016	and	CORAL	@	ANL	
–  Xeon	Phi,	no	accelerator	

•  CORAL	2017	
–  IBM	+	NVIDIA	

Performance Portability is a Goal Across DOE
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Best	case	#1:		OpenMP4	absorbs	accelerator	features	
(likely),	but	code	s]ll	requires	a	big	ifdef	

Best	case	#2:	Architectures	“converge”	by	2023,	perhaps	
with	co-design	help		

Two	different	version	of	the	code	
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Act II: !
Don’t Fear the Compiler 




A Compiler is Just a Translator


•  Scientific computing relies heavily on libraries  
–  LAPACK and FFTW are widely used at NERSC 

•  People use languages for their libraries 
•  Do we need a language?  And a compiler? 

–  If higher level syntax is needed for productivity 
•  We need a language 

–  If static analysis is needed to help with 
correctness 

•  We need a compiler (front-end) 
–  If static optimizations are needed to get 

performance 
•  We need a compiler (back-end) 
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Autotuning: Write Code Generators


•  Two	unsolved	compiler	problems:		
–  dependence	analysis	and		
–  accurate	performance	models	

•  Autotuners	are	code	generators	plus	search		

Work	by	Williams,	Oliker,	Shalf,	Madduri,	Kamil,	Im,	Ethier,…		
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Peak	compute	
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What we have and what we need
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0%	 10%	 20%	 30%	 40%	 50%	

Adap]ve	

Dense	LA	

Monte	Carlo	

Par]cles	

Spectral	

Sparse	LA	

Structured	 Dense	Linear	Algebra	 Atlas	

Spectral	Algorithms	 FFTW,	
Spiral	

Sparse	Linear	Algebra	 OSKI	

Structured	Grids	 TBD	

Unstructured	Grids	

Par]cle	Methods	

Monte	Carlo	

NERSC	survey:	what	mo]fs	do	they	use?	 What	code	generators	do	we	have?	

Unstructured	

Stencils	are	both	the	most	important	mo]fs	and	a	gap	in	our	tools	



Approaches to Autotuning


How	do	we	produce	all	of	these	(correct)	versions?	
•  Using	scripts	(Python,	perl,	ML,	C,..)	
•  Compiling	annotated	general-purpose	language	(X-Tune,…)	
•  Use	preprocessor	to	generator	code	(Raja,	Kokkos,TiDA)		
•  Compile	a	domain-specific	language	(D-TEC,	Halide)	
•  Domain-specific	compiler	for	domain-specific	language	(SEJITS)	
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Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Multiply 

specialized 
to n,m 

BLAS 
Library 

Atlas 
Autotuner: 
code generator 
+search 

Several	Projects	and	PIs:	Sam	Williams,	Mary	Hall,	Dan	Quinlan,	Armando	Fox,	Saman	Amarsinghe,	
Armando	Solar-Lezama,	Jack	Dongarra,		

	

Approximate	
categoriza:on!	



  

Approach #1: Compiler-Directed Autotuning
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•  Two hard compiler problems 
•  Analyzing the code to determine legal transformations 
•  Selecting the best (or close) optimized version 

•  Approach #1: General-purpose compilers (+ annotations) 
•  Use communication-avoiding optimizations to reduce memory bandwidth 
•  Apply CHiLL compiler technology with general polyhedral optimizations 
•  Use autotuning to select optimized version	
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•  Genera:on	of	Complex	Code	for	10	Levels		
of	Memory	Hierarchy	with	SW	managed	
cache	
–  4th	order	stencil	computa]on	from		
CNS	Co-Design	Proxy-App		

–  Same	DSL	code	can	generate	to		
2,	3,	4,	…	levels	too	

–  Code	size	of	autogenerated	code	

 Approach #2: DSLs with General Purpose Compiler 


Memory	Hierarchy	 2	
Level	

3	
Level	

4	
Level	

…	 10	
level	

DSL	Code		 20	

	Auto	Generated	Code		 446	 500	 553	 819	
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Use	of	Rose/PolyOpt	to	apply	DSLs	to	large	applica:ons	and	collabora:on	on	AMR	



Developed	for	Image	Processing	

–  10+	FTEs	developing	Halide	
–  50+	FTEs	use	it;	>	20	kLOC		

HPGMG	(Mul:grid	on	Halide)	
•  Halide	Algorithm	by	domain	expert	

	
	
	

•  Halide	Schedule	either	
–  Auto-generated	by	autotuning	with	opentuner	
–  Or	hand	created	by	an	op]miza]on	expert	

  Approach #3: Domain-Specific (but not too specific)    !
    Languages used by other markets


Halide performance 
•  Autogenerated schedule for CPU 
•  Hand created schedule for GPU 
•  No change to the algorithm 

 

Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev");
Var i("i"),j("j"),k("k");
Ax_n(i,j,k) =  a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(
    beta_i(i,j,k)  *(valid(i-1,j,k)*(x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
  + beta_j(i,j,k)  *(valid(i,j-1,k)*(x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
  + beta_k(i,j,k)  *(valid(i,j,k-1)*(x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
  + beta_i(i+1,j,k)*(valid(i+1,j,k)*(x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
  + beta_j(i,j+1,k)*(valid(i,j+1,k)*(x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
  + beta_k(i,j,k+1)*(valid(i,j,k+1)*(x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));
lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
    beta_i(i,j,k)  *(valid(i-1,j,k) - 2.0f)
  + beta_j(i,j,k)  *(valid(i,j-1,k) - 2.0f)
  + beta_k(i,j,k)  *(valid(i,j,k-1) - 2.0f)
  + beta_i(i+1,j,k)*(valid(i+1,j,k) - 2.0f)
  + beta_j(i,j+1,k)*(valid(i,j+1,k) - 2.0f)
  + beta_k(i,j,k+1)*(valid(i,j,k+1) - 2.0f)));
chebyshev(i,j,k) = x_n(i,j,k) + c1*(x_n(i,j,k)-x_nm1(i,j,k))+ 
                   c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k));
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Approach #4: Small Compiler for Small Language

•  SEJITS:	Selected	Embedded	Just-In-Time	Specialia:on:	

–  General	op]miza]on	framework	(Ctree)	
–  Currently	implemented	part	of	HPGMG	benchmark	in	stencil	DSL	

•  Within	50%	of	hand-op]mized	code		
•  ~1000	lines	of	DSL-specific	code;	1	undergrad	over	<2	months	
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Act III: !
Overhead Can’t be Tolerated




Modified LogGP Model


•  LogGP:	no	overlap	 •  Observed: overheads can 
overlap:  L can be negative 

P0	

P1	

osend	

L	

orecv	

P0	

P1	

osend	

orecv	

EEL:	 	end	to	end	latency	(instead	of	transport	latency	L)	
g:		 	minimum	]me	between	small	message	sends	
G:		 	addi]onal	gap	per	byte	for	larger	messages		



Communication and Manycore: the problem is the “+”


•  MPI	+	X	today:	
•  Communicate	on	one	lightweight	core	
•  Reverse	offload	to	heavyweight	core	

•  MPI	stack	may	not	run	well	on	lightweight	cores	
•  Issues	preven:ng	efficient	interoperability:		

–  Addressability:	can’t	name	remote	threads?	
–  Separability:	How	to	manage	communica]on	resources	for	independent	paths	

•  More	feasible	for	1-sided	than	2-sided	
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How to program - Shared Memory - Multithreading

Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

In
te

rc
on

ne
ct

MSGs

Node 0 Node 1

⌅ Funnel: Master (or single) thread communicates on behave of
all (or a group of) threads.

⌅ Extra synchronization, less injection parallelism, but ...

⌅ More e�cient, why?

8 / 34

How to program - Hybrid Ideal Case!

In
te

rc
on

ne
ct

MSGsMSGs
Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

Node 0 Node 1

⌅ Pros:
I Expose architectural sharing (one name space) - Memory

e�cient

⌅ Could we achieve optimal performance? Could we
communicate in a parallel region?

I Less application synchronization, but rarely used!

7 / 34

Ideal	hybrid	programming																					Default	hybrid	programming	

Khaled	Ibrahim,	ICS	2014	



Avoid Latency and Implicit Synchronization


•  Two-sided	message	passing	(e.g.,	send/receive	in	MPI)	
requires	matching	a	send	with	a	receive	to	iden:fy	
memory	address	to	put	data	
–  Couples	data	transfer	with	synchroniza]on,	which	is	some]mes	what	you	

want	

•  Using	global	address	space	decouples	synchroniza:on	
–  Pay	for	what	you	need!			

address	

message	id	

data	payload	

data	payload	

one-sided	put	message	

two-sided	message	

network	
	interface	

memory	

host	
CPU	
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•  DMA	(Put/Get)	
–  Blocking	and	non-blocking	(comple]on	signaled	on	ini]ator)	
–  Single	word	or	Bulk	
–  Strided	(mul]-dimensional),	Index	(sparse	matrix)	

•  Signaling	Store	
–  All	of	the	above,	but	with	comple]on	on	receiver	
–  What	type	of	“signal”?	

•  Set	a	bit	(index	into	fixed	set	of	bits	L)	
•  Set	a	bit	(second	address	sent	K)	
•  Increment	a	counter	(index	into	fixed	set	of	counters	L)	
•  Increment	a	counter	(second	address	for	counter	K)	
•  Universal	primi]ves:	compare-and-swap	(2nd	address	+	value),	fetch-and-
add	handy	but	not	sufficient	for	mul]/reader-writers	J	

•  Remote	atomic	(see	above)	–	should	allow	for	remote	enqueue	
•  Remote	invoca:on	

–  Requires	resources	to	run:	use	dedicated	set	of	threads?	

Lightweight Communication for Lightweight Cores
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•  Languages	
–  Adop]on	into	popular	programming	models	

•  One-sided	into	MPI	(again)	
•  Locality	control	into	OpenMP	

–  Adop]on	by	a	compiler	community	(Chemistry	DSL)	
•  Compilers	

–  Leverage	mainstream	compilers	(LLVM)	
–  Leverage	another	exis]ng	“domain-specific”	language	
–  Small	compilers	for	small	languages	

•  Next	phase	
–  Focus	on	applica]on	partnerships	
–  Partnerships	with	library	and	frame	work	deveopers	
–  Collaborate	with	vendors	on	hardware	desires	and	constraints	

Technology Transfer Paths
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Thank you!




Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 
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Libraries	

Abstrac:on	Loop	Parallelism	

Accelerator	Offload	

Sources of Unnecessary Synchronization
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Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 
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Bulk	
Synchronous	

Less	
Synchronous	

!$OMP PARALLEL DO  
   DO I=2,N 
     B(I) = (A(I) + A(I-1)) / 2.0 
   ENDDO 
!$OMP END PARALLEL DO 

Analysis	 %	barriers	 Speedup	

Auto	 42%	 13%	

Guided	 63%	 14%	

NWChem:	most	of	barriers	are	unnecessary	(Corveve)	

LAPACK:	removing	barriers	~2x	faster	(PLASMA)	

“Simple”	OpenMP	parallelism	implicitly	
synchronized	between	loops	

The	transfer	between	host	and	GPU	can	be	slow	and	
cumbersome,	and	may	(if	not	careful)	get	synchronized	

Cray Inc. SNL Workshop Apr 9-11 

!$acc data copyin(cix,ci1,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,ci10,ci11,& 
!$acc& ci12,ci13,ci14,r,b,uxyz,cell,rho,grad,index_max,index,& 
!$acc& ciy,ciz,wet,np,streaming_sbuf1, & 
!$acc&    streaming_sbuf1,streaming_sbuf2,streaming_sbuf4,streaming_sbuf5,& 
!$acc&    streaming_sbuf7s,streaming_sbuf8s,streaming_sbuf9n,streaming_sbuf10s,& 
!$acc&    streaming_sbuf11n,streaming_sbuf12n,streaming_sbuf13s,streaming_sbuf14n,& 
!$acc&    streaming_sbuf7e,streaming_sbuf8w,streaming_sbuf9e,streaming_sbuf10e,& 
!$acc&    streaming_sbuf11w,streaming_sbuf12e,streaming_sbuf13w,streaming_sbuf14w, & 
!$acc&    streaming_rbuf1,streaming_rbuf2,streaming_rbuf4,streaming_rbuf5,& 
!$acc&    streaming_rbuf7n,streaming_rbuf8n,streaming_rbuf9s,streaming_rbuf10n,& 
!$acc&    streaming_rbuf11s,streaming_rbuf12s,streaming_rbuf13n,streaming_rbuf14s,& 
!$acc&    streaming_rbuf7w,streaming_rbuf8e,streaming_rbuf9w,streaming_rbuf10w,& 
!$acc&    streaming_rbuf11e,streaming_rbuf12w,streaming_rbuf13e,streaming_rbuf14e, & 
!$acc&    send_e,send_w,send_n,send_s,recv_e,recv_w,recv_n,recv_s) 
  do ii=1,ntimes 
         o o o  
      call set_boundary_macro_press2 
      call set_boundary_micro_press 
      call collisiona 
      call collisionb 
      call recolor 
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Perl	to	PGAS:	Distributed	Hash	Tables	
•  Remote	Atomics	
•  Dynamic	Aggrega]on		
•  Sowware	Caching		(some]mes)	
•  Clever	algorithms	and	data	structures	

(bloom	filters,	locality-aware	hashing)	
à	UPC++	Hash	Table	with	“tunable”	
run:me	op:miza:ons	

Evangelos	Georganas,	Aydin	Buluc	(MANTISSA),	Lenny	Oliker,	Jarrod	Chapman	(JGI),	Dan	Rokhsar	(JGI)		

Human:	44	hours	to	20	secs	
Wheat:	“doesn’t	run”	to	32	secs	

Grand	Challenge:	Metagenomes	

Produc:vity:	Enabling	a	New	Class	of	Applica:ons?	


