
Genomic Analysis at Scale:
Mapping Irregular Computations to Advanced
Architectures

Kathy Yelick
Robert S. Pepper Distinguished Professor of EECS
Vice Chancellor for Research
UC Berkeley

Senior Faculty Scientist
Lawrence Berkeley National Laboratory

2018 ACM Turing Award for Deep Learning

Hinton’s Turing Lecture:
“So I think a lot of the credit
for deep learning really goes
to the people who collected
the big databases like Fei Fei
Li and the people who made
the computers go fast like
David Patterson and others.”

- 2 -

Yoshua Bengio Yann LeCun Geoffrey Hinton
 Photo: Facebook Photo: Google Photo: Botler AI

Other areas where big data + big machines win?

Big Data Big
Machines

Scalable
Algorithms

✓

Accelerators

- 6 -Image: http://slideplayer.com/slide/7541288/

0
20
40
60
80

100
120
140
160
180
200
220

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Sy
st

em
s

MN-Core
Matrix-2000
PEZY-SC
Kepler/Phi
AMD Vega
AMD Instinct
Xeon Phi Main
Intel Xeon Phi
Clearspeed
IBM Cell
ATI Radeon
Nvidia Turing
Nvidia Ampere
Nvidia Volta
Nvidia Pascal
Nvidia Kepler
Nvidia Fermi

Data Movement is Expensive

11Image: http://slideplayer.com/slide/7541288/

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost to move data off chip
 to a neighboring node

Cost to move data off chip
 into DRAM

Cost to move off-chip,
 but stay within the package (SMP)

Cost to move data 20 mm on chip

Typical cost of a single floating point operation

Cost to move data 1 mm on-chip

Hierarchical energy costs.

Communication Dominates: Dennard was too good

- 12 -

flop (g)

network bandwidth (b)

network latency (a)

memory latency (a2)
DRAM bandwidth (b2)

Time =
 # flops * g +

 # message * a +
 # bytes comm * b +

 # diff memory locs * a2 +
 # memory words * b2

Data from Hennessy / Patterson, Graph from Demmel

Put the GPUs in Charge

- 13 -

More
cores

More data
parallelism

Narrow
data types

More
memory
spaces

CPUs in
control

CPUs
communicate

Memory

CPUGPU

Memory

CPU GPU

Other areas where big data + big machines win?

Big Data Big
Machines

Scalable
Algorithms✓

ExaBiome: Exascale Solutions for the Microbiome

Microbial
community

Contigs

Assemble

Sequence
Reads

Sample

Bin Find Genes

?

Structure

Function

Proteins

Compare
Cluster

MetaHipMer: De Novo Metagenome Assembler

What happens to microbes after a wildfire?
(1.5Terabtyes - completed)

Michael J. Wilkins, Colorado State University, PI

Big Science Questions

JGI-NERSC-KBase FICUS projects

How do carbon and metabolism in freshwater lakes change
across 17 years?

 (26TB)

Katherine McMahon, U Wisconsin, PI

Tara Oceans

100

Showing the invisible life of the ocean
• 2009–2013 expeditions
• 35000 samples from all oceans

• 84 TB (71 TB unique) of data!
• Assembled in 94 mins
• Using 36,000 GPUs on Frontier
• Using a Berkeley-designed language

Thomas, A.M., Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol 17, 48 (2019).

The Human Microbiome

100 TB of data!

Co-Assembly vs. Multiassembly: better science

• Multiassembly (usual approach): Assemble each sample on a shared memory machine
• CoAssembly (MetaHipMer): Assemble everything at once on a supercomputer.

- 24 -

vOTUs

Genera

Families

0% 25%

Coassembly-only Both assemblies Multiassembly-only

6,754 861

988

542

8,550

21,692

252

422

3,121

50% 75% 100%

0.0 0.5 1.0 1.5 2.0

No. viruses

0.0

0.5

1.0

1.5

2.0

N
o.

cl
us
te
rs

1e4

Coassembly
Multiassemblies

0.0 0.5 1.0 1.5 2.0

No. viruses 1e4

0.0

0.2

0.4

0.6

0.8

1e4

0.0 0.5 1.0 1.5 2.0

No. viruses 1e4

0.0

0.5

1.0

1.5

2.0

2.5

1e3

1e4

vOTUs

A

C

B

Genera Families

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Mean read coverage in coassembly (log10)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

Only in coassembly
In coassembly and multiassemblies

Riley, el al, “Terabase-Scale Coassembly of a Tropical Soil Microbiome” Microbiol Spectr. 2023

More taxonomic diversity

25

Unique to
>1 TBRare biosphere

candidate phylum
FCPU426 again!

Rare
biosphere!

Great Redox Experiment led by Jennifer Pett-Ridge at LLNL; with Robert Riley et al at JGI and ExaBiome

Ensuring High Quality Assemblies

“... we analyze 5,002 results by 76 program versions…
The best ranking method across metrics and all datasets was [Meta]HipMer....”

HipMer

F. Meyer et al, Critical Assessment of Metagenome Interpretation - the second round of challenges, Nature Methods ‘22

HipMer

Assembly Rate on Science Data

nodes

Largest data sets
require largest
machines

Not just data and
machine size

Over 250x on ~equal
node counts!
- better algorithms
- less software
- use of GPUs

15,000

150,000

1,500,000

15,000,000

64 12
8

25
6

51
2

1,
02

4
1,

53
6

2,
04

8
51

2
12

8
25

6
25

6
25

6
1,

02
4

1,
02

4 64 12
8

51
2

51
2

51
2

1,
02

4
51

2
51

2
51

2
51

2
1,

50
0

1,
50

0
2,

00
0

9,
00

0

2016 2017 2019 2020 21 22 23

Bytes Assembled / Sec

Genomic Analysis at Scale

Big Data Big
Machines

Scalable
Algorithms
✓

29

3) Alignment
Align reads to contigs

5) Scaffolding
Walk con1g graph (iterate)

2) Contig Generation
Walk k-mer graph

reads

k-mers

read-contig
alignments

conTg-conTg
scaffolds

contigs

1 Iterate for k+s

Extract k+s-mers

Actual pipeline is more complex, simplified for purpose of presentation

2

3

4extended
contigs

5

4) Local Assembly
Extend ends of con1gs

1) K-mer Analysis
K-mer histogram

MetaHipMer Assembly Pipeline (UPC++)

MetaHipMer Time Breakdown

arctic arcticsynth WA0 WA
N=1 (0.9GB) N=8 (11GB) N=32 (71GB) N=256 (813GB)

Weak-ish
scaling

* CPU time for alignment slower than “normal” due to SIMD Power9 issues

Simulation Vs. Data Motifs

7 Dwarfs of Simulation 7 Giants of Big Data

Particle methods Generalized N-Body

Unstructured meshes Graph-theory

Dense Linear Algebra Linear algebra

Sparse Linear Algebra Optimization

Spectral methods Integrations

Structured Meshes Alignment

Monte Carlo methods Basic Statistics

NRC Report + our paperPhil Colella

Sorting

Hashing

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020

Motifs of Genomic Data Analysis

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020

Computational patterns that dominate ExaBiome

Examples
• Hash all k-mers (k-length strings)
• Count k-mer frequency

• Identify connected components

• Find all pairwise alignments
• Average neighbors on graph

aact ctgt gtca

aact ctgt gtca aactca

A Tale of Two Programming Models
for Irregular (Genomics) ApplicationsPartitioned Global Address

Space (UPC++)
GraphBLAS and MPI

Asynchronous, fine-grained Bulk Synchronous
Distributed data Sparse matrix with semiring

operations
Logically shared, physically
distributed

Local view, distributed

MetaHipMer, KmerProf PASTIS, HipMCL, diBELLA, ELBA

- 34 -

Hashing

GCTA C GGAATAAAACCAGGAACAACAGACCCAGCAC
ATTAACAACAAAGGGTAAAAGGCATCATGGCTTCAG

GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCT
TGATGCGACGACGCACCTCGTTGTTACGCACTTCAG } reads

GCTA

...
CTAC

TACG

ACGG

CGGA

GGAA

GAAT

AATA

ATAA

TAAA

AAAA
AAAC

AACC
ACCA

CCAG } k-mers
(e.g. k=4)...

Counting K-mers to Remove Errors

Distributed Hash Tables of K-Mers
Make hash table of k-mers

1-sided communication to insert / lookup

- 36 -

Keys are fixed-length strings:

Values depend on application:
• A count to remove singletons

Close to k-times memory blowup
• Use Bloom filter to reduce space
• Asynchronous insert with UPC++

AAC TGA CCG
 ACC GAT CGT
 CCT ATT GTC

K-mer counting: All the Wires All the Time

Bulk-synchronous MPI vs Asynchronous 1-sided UPC++ (w/ and w/out Bloom Filter)

MPI with bloom filter
UPC++ with bloom
filter
UPC++ without

Steve Hofmeyr, Rob Egan, Evangelos Gerganas, leads on MetaHipMer software

K-mer Counting: Finding Data Parallelism

64 nodes (2688 CPU cores) 64 notes (384 GPUs)

• K-mer counter on Summit. (Note scales -- red k-mer exchange time is roughly equal.)
• Reduce CPU/GPU communication by parsing as well as processing on GPU

Israt Nisa, P. Pandey, M. Ellis, L. Oliker, A. Buluç, K. Yelick. Distributed-Memory k-mer Counting on GPUs. IPDPS ‘21 (to appear)

Over 100x speedup!!

K-mer Counting: Reducing Communication

Speedup on 64 Summit nodes
● 6 GPUs / node
● baseline: 42 cores / node

Reduce communication with “Supermers”
● Multiple contiguous k-mers (k=7, minimizer=4)
● map to the same process ID with minimizer-based hashing
● Saves volume (bandwidth) and number of messages

(latency)

Read: ACTGGACTGCTGCGAGTGA
 ACTGGACT
 CTGGACTG
 TGGACTGC
 GGACTGCT
 GACTGCTG
 ACTGCTGC
 CTGCTGCG
 TGCTGCGA
 GCTGCGAG
 CTGCGAGT
 TGCGAGTG
 GCGAGTGA

Supermer:
ACTGGACTGCTGC

Supermer:
CTGCTGCGAGT

Supermer:
TGCGAGTGA

Minimizer: ACTG

Minimizer: CTGC

Minimizer: AGTG

Israt Nisa, P. Pandey, M. Ellis, L. Oliker, A. Buluç, K. Yelick. Distributed-Memory k-mer Counting on GPUs. IPDPS ‘21 (to appear)

Universal Filter for GPUs

• Our GPU Quotient Filter (GPU) is fully featured:
• Deletions and Counts
• Individual element operations (Point) and aggregate (Bulk)

Filter Insert Query Delete Count

Point Bulk Point Bulk Point Bulk Point Bulk

GQF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TCF ✓ ✓ ✓ ✓ ✓ ✓

BF ✓ ✓ ✓ ✓

SQF ✓ ✓ ✓

RSQF ✓ ✓

Led by Prashant Pandey with Hunter McCoy at U. Utah

GQF Performance on Multi-GPUs

• Saves ½ of peak memory usage in MetaHipMer relative to no filter
• Saves ½ of communication in K-mer counting phase relative to bloom filter

PPOPP ’23, February 25–March 01, 2023, Montreal, Canada Hunter McCoy, Steven Hofmeyr, Katherine Yelick, and Prashant Pandey

TCF GQF Bloom Blocked Bloom

22 24 26 28 30
0

2

4

6

Filter Size
Th

ro
ug

hp
ut

(B
/s
)

(a) Cori Point Inserts.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Point Positive Queries.

22 24 26 28 30
0
2
4
6
8
10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Point RandomQueries.

22 24 26 28 30
0

5

10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Point Inserts.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Point Positive Queries.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Point RandomQueries.

Figure 3. Point API aggregate throughput comparison between various �lters.

TCF GQF SQF RSQF

22 24 26 28 30
0

1

2

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Bulk Inserts.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Bulk Positive Queries.

22 24 26 28 30
0

2

4

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Bulk RandomQueries.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Bulk Inserts.

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Bulk Positive Queries.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Bulk RandomQueries.

Figure 4. Bulk API aggregate throughput comparison between various �lters with one batch.

and point modes for insert, query, delete, and count opera-
tions. We compare the GQF and TCF only against the SQF
for delete operations. The GQF is compared against no other
�lter for counting as no other �lter supports counting.
We also evaluate the memory reduction in MetaHipMer

when using the TCF to �lter singleton :-mers.

Microbenchmarks setup. Our evaluation setup includes
all the micro benchmarks employed by �lter data structure
papers [4, 9, 21, 22, 24, 25, 46, 48] in the past.

Wemeasure performance on raw inserts and lookups as fol-
lows. We generate 64-bit input items from the hashed output
of a cuRand XORWOWgenerator. Items are inserted into an

empty �lter until it reaches its maximum recommended load
factor (e.g., 90%). For successful lookups, we query items that
are already inserted. For random lookups,wegenerate a di�er-
ent set of 64-bit hashes than the set used for insertion. This is
done by using the hashed outputs of an XORWOWgenerator
set with a di�erent seed. We report aggregate throughput of
the operations to insert or query a set of items.

One challenge that we face in designing our experiments is
that the �lters do not all support the same false-positive rate.
For example, theGQF supports 8, 16, 32, and 64 bit remainders
in order to keep the slots in the table machine-word aligned.
This helps simplify the GPU implementation by avoiding

PPOPP ’23, February 25–March 01, 2023, Montreal, Canada Hunter McCoy, Steven Hofmeyr, Katherine Yelick, and Prashant Pandey

TCF GQF Bloom Blocked Bloom

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Point Inserts.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Point Positive Queries.

22 24 26 28 30
0
2
4
6
8
10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Point RandomQueries.

22 24 26 28 30
0

5

10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Point Inserts.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Point Positive Queries.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Point RandomQueries.

Figure 3. Point API aggregate throughput comparison between various �lters.

TCF GQF SQF RSQF

22 24 26 28 30
0

1

2

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Bulk Inserts.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Bulk Positive Queries.

22 24 26 28 30
0

2

4

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Bulk RandomQueries.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Bulk Inserts.

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Bulk Positive Queries.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Bulk RandomQueries.

Figure 4. Bulk API aggregate throughput comparison between various �lters with one batch.

and point modes for insert, query, delete, and count opera-
tions. We compare the GQF and TCF only against the SQF
for delete operations. The GQF is compared against no other
�lter for counting as no other �lter supports counting.
We also evaluate the memory reduction in MetaHipMer

when using the TCF to �lter singleton :-mers.

Microbenchmarks setup. Our evaluation setup includes
all the micro benchmarks employed by �lter data structure
papers [4, 9, 21, 22, 24, 25, 46, 48] in the past.

Wemeasure performance on raw inserts and lookups as fol-
lows. We generate 64-bit input items from the hashed output
of a cuRand XORWOWgenerator. Items are inserted into an

empty �lter until it reaches its maximum recommended load
factor (e.g., 90%). For successful lookups, we query items that
are already inserted. For random lookups,wegenerate a di�er-
ent set of 64-bit hashes than the set used for insertion. This is
done by using the hashed outputs of an XORWOWgenerator
set with a di�erent seed. We report aggregate throughput of
the operations to insert or query a set of items.

One challenge that we face in designing our experiments is
that the �lters do not all support the same false-positive rate.
For example, theGQF supports 8, 16, 32, and 64 bit remainders
in order to keep the slots in the table machine-word aligned.
This helps simplify the GPU implementation by avoiding

PPOPP ’23, February 25–March 01, 2023, Montreal, Canada Hunter McCoy, Steven Hofmeyr, Katherine Yelick, and Prashant Pandey

TCF GQF Bloom Blocked Bloom

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Point Inserts.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Point Positive Queries.

22 24 26 28 30
0
2
4
6
8
10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Point RandomQueries.

22 24 26 28 30
0

5

10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Point Inserts.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Point Positive Queries.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Point RandomQueries.

Figure 3. Point API aggregate throughput comparison between various �lters.

TCF GQF SQF RSQF

22 24 26 28 30
0

1

2

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Bulk Inserts.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Bulk Positive Queries.

22 24 26 28 30
0

2

4

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Bulk RandomQueries.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Bulk Inserts.

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Bulk Positive Queries.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Bulk RandomQueries.

Figure 4. Bulk API aggregate throughput comparison between various �lters with one batch.

and point modes for insert, query, delete, and count opera-
tions. We compare the GQF and TCF only against the SQF
for delete operations. The GQF is compared against no other
�lter for counting as no other �lter supports counting.
We also evaluate the memory reduction in MetaHipMer

when using the TCF to �lter singleton :-mers.

Microbenchmarks setup. Our evaluation setup includes
all the micro benchmarks employed by �lter data structure
papers [4, 9, 21, 22, 24, 25, 46, 48] in the past.

Wemeasure performance on raw inserts and lookups as fol-
lows. We generate 64-bit input items from the hashed output
of a cuRand XORWOWgenerator. Items are inserted into an

empty �lter until it reaches its maximum recommended load
factor (e.g., 90%). For successful lookups, we query items that
are already inserted. For random lookups,wegenerate a di�er-
ent set of 64-bit hashes than the set used for insertion. This is
done by using the hashed outputs of an XORWOWgenerator
set with a di�erent seed. We report aggregate throughput of
the operations to insert or query a set of items.

One challenge that we face in designing our experiments is
that the �lters do not all support the same false-positive rate.
For example, theGQF supports 8, 16, 32, and 64 bit remainders
in order to keep the slots in the table machine-word aligned.
This helps simplify the GPU implementation by avoiding

inserts positive queries random queries

McCoy, et al. “High-Performance Filters for GPUs” PPoPP '23

 Graphs

K-Mer Hash Tables Viewed as a Graph
Make hash table of k-mers

- 43 -

Keys are fixed-length strings

Values
• Remove branches
• Find connected component “contigs”

Graph walk with poor locality
• Asynchronous lookup with UPC++

AAC TGA CCG
 ACC GAT CGT
 CCT ATT GTC

1-sided communication to insert / lookup

GAT ATC TCT CTG TGA

AAC

ACC

CCG

AAT

ATG

TGC

P0

P1

P2

Avoiding Communication in Graph Walk

Layout for spatial locality: if we
have an “oracle” that approximate
final genome

Traversal is up to 2.8x faster!
Up to 76% reduction of off-
node communication !

Caching for temporal locality
(reuse): if few large items, so
lookups will repeat

Georganas PhD Thesis and SC18 paper

Next step in this assembler is a DFS on the k-mer graph (edges are k-1 overlaps)

Local Assembly on Summit

• Speedup of 7x on 64
Summit nodes.

• Lower as expected as
machine scales (strong
scaling)

Muuz Awan et al, “Accelerating Large Scale de Novo Metagenome Assembly Using GPUs” SC’21

Asynchronous Parallelism on GPUs

• Warp-size or Thread-group (CTA)-size workers
• Locking vs Compare-And-Swap (CAS) implementations
• Avoid level-by-level synchronization
• Use persistent threads as an option

0 5 10
#threads #104

0.02

0.03

0.04

0.05

0.06

tim
e

(m
s)

concurrent push

0 5 10
#threads #104

0

0.05

0.1

0.15

0.2

tim
e

(m
s)

concurrent pop

0 5 10
#threads #104

0

0.05

0.1

0.15

0.2

tim
e

(m
s)

concurrent pop and push
our queue(warp)
our queue(cta)
Broker queue
CAS queue(warp)
CAS queue(cta)

Fig. 1. Runtime performance of our queue with warp- and CTA-sized workers
against the broker queue [21] and our implementation of a CAS-based queue.

Fig. 2. Bandwidth efficiency (fraction of message size occupied by payload)
vs. requested bytes on PCIe Gen 3 and NVLink. The minimum payload size
on NVLink is a 32-byte sector. A NVLink package can contain up to 4 sectors.

particular communication technology (primarily, in our case,
InfiniBand). We next note design issues for each of our
communication technologies:

a) Choosing communication size on NVLink: For
NVLink-connected single-node GPUs, remote memory ac-
cesses essentially look like GPU loads and stores. With
them, remote GPU memory access latency can be hidden by
other instructions in a kernel, taking advantage of dynamic
instruction scheduling. Any adjacent remote memory accesses
within a warp (a group of 32 neighboring threads) will first be
aggregated before issue (“coalescing”). Unlike other commu-
nication technologies such as PCIe or InfiniBand with a wide
range of payload sizes, NVLink packages are more restricted
in payload size (only up to 128 bytes). Figure 2 shows that
even modest payload sizes achieve relatively good bandwidth
efficiency over NVLink. Coupling this bandwidth efficiency
with a relatively low latency and high throughput (even a
32 byte payload has more than 50% efficiency), NVLink is
a good solution for the kind of small random accesses we
expect to target.

b) Choosing communication size on InfiniBand: Infini-
band presents a more significant challenge. IB messages
pass through the NIC and are not able to take advantage
of instruction-level parallelism (ILP) in the way NVLink
messages do. IB bandwidth is lower, and messages have
longer latencies. IB supports a smaller number of operations
than NVLink (e.g., lacking atomicMin). IB does have one
advantage: because IB memory requests are offloaded to the
NIC, IB requests require only one or a few threads to initiate
data transfer, in contrast to the many threads involved in an
NVLink request. In summary, more severe latency and band-
width constraints mean that if we follow the same strategy as
NVLink communications with small messages, we are likely

to make poor use of IB and gate our overall performance.
c) Communication Aggregator: We implement a com-

munication aggregator that runs transparently alongside ap-
plication code to aggregate individual requests into larger
messages. By achieving larger message sizes, we are able to
improve bandwidth utilization. Figure 3 shows the workflow
for our communication aggregator, which bundles messages
together locally until either a maximum message size or a
maximum wait time is reached. Once one of these user-
configurable parameters is exceeded, the runtime will send
the bundled messages over the wire. Our aggregator allows
us to achieve higher IB bandwidth utilization, through larger
messages sizes, at the cost of higher message latency.

Our aggregator is transparent to the programmer2, who
implements their application by writing tasks. Inside tasks,
users can use a combination of local memory operations, new
task launches, and PGAS-style one-sided memory operations,
to implement their applications. Our aggregator is critical for
performance, as it allows us to decouple the code that gen-
erates new messages from the code that actually sends them
out over the network. Users can then impelment their tasks
using the task granularity most natural for their application,
and these can be sent out over the network in batches.

An ideal batch size will generate messages that are large
enough to saturate the network bandwidth while maintaining a
relatively low latency. In order to determine the optimal batch
size, we perform two experiments. (1) Measure the latency
cost at different message sizes (Figure 4, left). (2) Measure
the bandwidth achieved at different message sizes (Figure 4,
right). In these experiments, each send is performed as a
blocking send operation followed by a system memory fence
(necessary to ensure completion of the send) and a remote
counter update. When initiating communication on the GPU
in our IB system, the optimal message size balances between
minimizing latency and maximizing bandwidth. Figure 4
shows this tradeoff on our system; we choose a 1 MiB message
size, with near-minimal latency and high bandwidth. This
message size is consistent with previous studies of optimal
message size for GPU-initiated communication on IB net-
works [24]. While larger message sizes always achieve higher
bandwidth during the time the data is being sent, smaller
messages are preferred when there are not enough tasks to
fill the buffer. In such a case, without another mechanism for
triggering a message, the queue batching might wait forever.
If the application takes long to fill the buffer, communication
latency would increase, which hampers increased throughput
because longer latency hinders the generation of new tasks.
We expect to see this problem particularly if the application is
limited by available parallelism. To address this problem, we
enable a second mechanism for triggering a message send: a
maximum wait time. We implement this using a WAIT TIME
counter, which counts each query to the queue to see if it is
full. After WAIT TIME visits, the data is sent out, whether it

2This is not entirely true; our applications are currently implemented using
separate push-to-network-via-aggregator and push-directly-to-network calls,
but we believe integrating these would be straightforward.

Yuxin Chen, B. Brock, S. Porumbescu, A. Buluc, K. Yelick, John Owns, ICPP ‘22

Related work:
Broker queue by
Kerble et al

- 48 -

Alignment

GPU Optimizations

GPU
optimizations
are complex
(hash tables,
graphs, etc.)

- 53 -

Generalized N-Body

ELBA: Long Read Assembler; Different Approach

Long reads (PacBio, etc.)
• Longer alignments
• More compute-intensive
• More GPU friendly

Only align pairs of reads that
have a common k-mer

- 54 -
1.

09
E

06

5.
21

E
05 1.

89
E

05

5.
58

E
04

1.
43

E
04

3.
58

E
03

89
7

29
2

11
6

58

27 20 22 20

5

13

4

5

3

4 3

6

4

2

1 2

3

0

un
iq

ue
 k

-m
er

s
 fo

r
ea

ch
 m

ul
tip

lic
ity

 (
%

)

0

5

10

15

20

25

30

35

40

45

50

55

60

k-mers multiplicity in the reads (m)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Set Alignment is a Sparse All-to-All
Run expensive alignment on all pairs with a common k-mer

Bulk-Synchronous vs 1-sided Asynchronous

- 56 -

0

20

40

60

80

100

120

140

160

180
BS

P
As

yn
c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

8
512

16
1,024

32
2,048

64
4,096

128
8,192

256
16,384

512
32,768

Ru
nt

im
e (

s)
Strong Scaling Comparison with CCS Human Data on Cori KNL

Communication
Synchronization
Computation

Node Count
Core Count

Asynchronous communication

• Hides latency and uses less
memory in general

• Uses “All the wires, all the time”

• But uses linear communication,
not log-p complexity collectives

Marquita, Ellis, Giulia Guidi, et al. “DiBELLA….” ICPP ‘19

Avoid Communication, Maximize Parallelism

Compute on all pairs of particles or strings, or…

Obvious solution

16 particles on 8 processors
Pass all particles around (p steps)

c = 4 copies of particles
 8 particles on each

Better solution

Decreases
• #messages by factor c2
• #volume sent by factor c

Michael Driscoll et al, “A Communication-Optimal N-Body Algorithm for Direct Interactions” IPDPS ‘13

1D vs 2D Algorithm on DNA “overlap”diBELLA 1D vs 2D
Low

er is Better

G. Guidi, O. Selvitopi†, M. Ellis, L. Oliker, Y, A. Buluc (IPDPS ‘21)

Sparse and
 Dense Matrices

 (machine learning)

Protein Clustering with Sparse Matrices

Iteration 1 Iteration 2 Iteration 3

Image source: http://micans.org/mcl/

Initial network

• Similarity Matrix: “Many-to-many” protein alignment

• Expansion: Square matrix, pruning small entries, dense columns
• Inflation: element-wise powers

Input: Adjacency matrix A (sparse)

Oguz Selvitopi; Md Taufique Hussain; Ariful Azad; Aydın Buluç

PASTIS + HipMCL

Learning protein funding using GNNs

PersGNN by Swensen, Krishnapriyan, Buluc, Morozov, Yelick

Exploit structure and sequence to understand the function
 of protein-coding genes

• ATH l -1 sparse-dense matmul (SpMM)
• (ATH l -1) Wl dense-dense matmul (DGEMM)

• SpMM is the bottleneck, not DGEMM!

Bottleneck in GNN Training

<latexit sha1_base64="2wsCJm37Fh5bbN0OlBMLntFcl2o=">AAACeHicdVFNTxsxEPVuaaHpB6E9chmR0sKh0W4ANb3RcuEIEiGocYi8zmywsNcr20ubrvY39L/11h/SS094Q4JS1I5k6+m9N5rxc5JLYV0U/QrCRyuPn6yuPW08e/7i5Xpz49W51YXh2ONaanORMItSZNhzwkm8yA0ylUjsJ9dHtd6/QWOFzs7cNMehYpNMpIIz56lR8wdVzF0lafmlupTwlkpMHTNGf4WF8Km6LKlK9LeSWm5E7qz4jkBtCmdVtTAde5OE9xDfM/2aqYDSxpLnwQQrJortLG+wO2q2onY0K4jacbfb2TvwwN+dj/sQz6UWmdfJqPmTjjUvFGaOS2btII5yNyyZcYJLrBq0sJgzfs0mOPAwYwrtsJwFV8G2Z8aQauNP5mDGLneUTFk7VYl31kvah1pN/ksbFC7tDkuR5YXDjN8NSgsJTkP9CzAWBrmTUw+YD9XvCvyKGcad/6uGD2HxUvg/OO+044N2dLrfOvw8j2ONbJItskNi8oEckmNyQnqEk9/BZvAm2A7+hBC+C3fvrGEw73lN/qqwcwsHzMIl</latexit>

Z
l A

T
H

l�1
W

l

H
l �(Zl)

<latexit sha1_base64="2wsCJm37Fh5bbN0OlBMLntFcl2o=">AAACeHicdVFNTxsxEPVuaaHpB6E9chmR0sKh0W4ANb3RcuEIEiGocYi8zmywsNcr20ubrvY39L/11h/SS094Q4JS1I5k6+m9N5rxc5JLYV0U/QrCRyuPn6yuPW08e/7i5Xpz49W51YXh2ONaanORMItSZNhzwkm8yA0ylUjsJ9dHtd6/QWOFzs7cNMehYpNMpIIz56lR8wdVzF0lafmlupTwlkpMHTNGf4WF8Km6LKlK9LeSWm5E7qz4jkBtCmdVtTAde5OE9xDfM/2aqYDSxpLnwQQrJortLG+wO2q2onY0K4jacbfb2TvwwN+dj/sQz6UWmdfJqPmTjjUvFGaOS2btII5yNyyZcYJLrBq0sJgzfs0mOPAwYwrtsJwFV8G2Z8aQauNP5mDGLneUTFk7VYl31kvah1pN/ksbFC7tDkuR5YXDjN8NSgsJTkP9CzAWBrmTUw+YD9XvCvyKGcad/6uGD2HxUvg/OO+044N2dLrfOvw8j2ONbJItskNi8oEckmNyQnqEk9/BZvAm2A7+hBC+C3fvrGEw73lN/qqwcwsHzMIl</latexit>

Z
l A

T
H

l�1
W

l

H
l �(Zl)

<latexit sha1_base64="2wsCJm37Fh5bbN0OlBMLntFcl2o=">AAACeHicdVFNTxsxEPVuaaHpB6E9chmR0sKh0W4ANb3RcuEIEiGocYi8zmywsNcr20ubrvY39L/11h/SS094Q4JS1I5k6+m9N5rxc5JLYV0U/QrCRyuPn6yuPW08e/7i5Xpz49W51YXh2ONaanORMItSZNhzwkm8yA0ylUjsJ9dHtd6/QWOFzs7cNMehYpNMpIIz56lR8wdVzF0lafmlupTwlkpMHTNGf4WF8Km6LKlK9LeSWm5E7qz4jkBtCmdVtTAde5OE9xDfM/2aqYDSxpLnwQQrJortLG+wO2q2onY0K4jacbfb2TvwwN+dj/sQz6UWmdfJqPmTjjUvFGaOS2btII5yNyyZcYJLrBq0sJgzfs0mOPAwYwrtsJwFV8G2Z8aQauNP5mDGLneUTFk7VYl31kvah1pN/ksbFC7tDkuR5YXDjN8NSgsJTkP9CzAWBrmTUw+YD9XvCvyKGcad/6uGD2HxUvg/OO+044N2dLrfOvw8j2ONbJItskNi8oEckmNyQnqEk9/BZvAm2A7+hBC+C3fvrGEw73lN/qqwcwsHzMIl</latexit>

Z
l A

T
H

l�1
W

l

H
l �(Zl)

<latexit sha1_base64="2wsCJm37Fh5bbN0OlBMLntFcl2o=">AAACeHicdVFNTxsxEPVuaaHpB6E9chmR0sKh0W4ANb3RcuEIEiGocYi8zmywsNcr20ubrvY39L/11h/SS094Q4JS1I5k6+m9N5rxc5JLYV0U/QrCRyuPn6yuPW08e/7i5Xpz49W51YXh2ONaanORMItSZNhzwkm8yA0ylUjsJ9dHtd6/QWOFzs7cNMehYpNMpIIz56lR8wdVzF0lafmlupTwlkpMHTNGf4WF8Km6LKlK9LeSWm5E7qz4jkBtCmdVtTAde5OE9xDfM/2aqYDSxpLnwQQrJortLG+wO2q2onY0K4jacbfb2TvwwN+dj/sQz6UWmdfJqPmTjjUvFGaOS2btII5yNyyZcYJLrBq0sJgzfs0mOPAwYwrtsJwFV8G2Z8aQauNP5mDGLneUTFk7VYl31kvah1pN/ksbFC7tDkuR5YXDjN8NSgsJTkP9CzAWBrmTUw+YD9XvCvyKGcad/6uGD2HxUvg/OO+044N2dLrfOvw8j2ONbJItskNi8oEckmNyQnqEk9/BZvAm2A7+hBC+C3fvrGEw73lN/qqwcwsHzMIl</latexit>

Z
l A

T
H

l�1
W

l

H
l �(Zl)

Wl

 AT H l-1Zl

Communication-Avoiding Matrix Multiply

x
z

z

y

x
y • 2D algorithm: never chop k

dim
• 3D: Assume + is associative;

chop k, which is à replication
of C matrix

k

j

i Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
 for j
 for k

B[k,j] …A[i,k] … C[i,j] …

0

0.5

1

1.5

2

2.5

1 2 4 2D 1 2 4 2D 1 2 4 2D

36 64 100

Protein

sparse bcast
dense bcast
reduce
compute

Avoiding Communication in GNNs

1D 2D 3D1.5D

Tripathy, Yelick, Buluc, Reducing Communication in Graph Neural Network Training, SC’20

1.5D c =

Take-Aways Messages
• Applications

– More data, more compute à more insights
– ~7 motifs of data analytics

• Programming models
– Use of PGAS for irregular, fine-grained problems
– Can still map GPUs

• Algorithms
– Use memory to reduce data (volume)
– Use all the wires all the time

• Hardware
– Integrate communication on accelerators

The ExaBiome Team

Muaaz Awan Ariful Azad Nick Battacharya Aydin Buluc Patrick Chain Brandon Cook Alex Copeland Alicia Clum Rob Egan

Marquita Ellis E. Georganas E. Goltsman Giulia Guidi Steve Hofmeyr Taufique Hussain Richard Lettich Nikos Kyrpides J. Madson

Hunter McCoy Russell Neches Israt Nisa Lenny Oliker P. Pandey Robert Riley Dan Rokhsar Gabriel Raulet Oguz Selvitopi

Migun Shakya Nick Swenson Andrew Tritt Kathy Yelick Brett Youtsey

- 68 -

