Single Processor Machines: Memory Hierarchies and Processor Features

Kathy Yelick
yelick@cs.berkeley.edu
www.cs.berkeley.edu/~yelick/cs267_spr07
Motivation

• Most applications run at < 10% of the “peak” performance of a system
• Much of this performance is lost on a single processor, i.e., the code running on one processor often runs at only 10-20% of the processor peak
 • Peak is the maximum the hardware can physically execute
• Most of the single processor performance loss is in the memory system

• To understand this, we need to look under the hood of modern processors
 • For today, we will look at only a single “core” processor
 • These issues will still exist on multicore
 • Recall: all programmers will soon be performance programmers
Outline

• Idealized and actual costs in modern processors
• Parallelism within single processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
Outline

- Idealized and actual costs in modern processors
- Parallelism within single processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
Idealized Uniprocessor Model

- Processor names bytes, words, etc. in its address space
 - These represent integers, floats, pointers, arrays, etc.
- Operations include
 - Read and write into very fast memory called registers
 - Arithmetic and other logical operations on registers
- Order specified by program
 - Read returns the most recently written data
 - Compiler and architecture translate high level expressions into “obvious” lower level instructions

\[A = B + C \implies \]

\begin{align*}
\text{Read address}(B) & \text{ to } R1 \\
\text{Read address}(C) & \text{ to } R2 \\
R3 & = R1 + R2 \\
\text{Write } R3 & \text{ to Address}(A)
\end{align*}

- Hardware executes instructions in order specified by compiler

- Idealized Cost
 - Each operation has roughly the same cost (read, write, add, multiply, etc.)
Uniprocessors in the Real World

• Real processors have
 • registers and caches
 • small amounts of fast memory
 • store values of recently used or nearby data
 • different memory ops can have very different costs
 • parallelism
 • multiple “functional units” that can run in parallel
 • different orders, instruction mixes have different costs
 • pipelining
 • a form of parallelism, like an assembly line in a factory

• Why is this your problem?
 • In theory, compilers understand all of this and can optimize your program; in practice they don’t.
 • Even if they could optimize one algorithm, they won’t know about a different algorithm that might be a much better “match” to the processor
Outline

• Idealized and actual costs in modern processors
• Parallelism within single processors
 • Hidden from software (sort of)
 • Pipelining
 • SIMD units
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

- In this example:
 - Sequential execution takes 4 * 90min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.5 hours

- Bandwidth = loads/hour
 - BW = 4/6 l/h w/o pipelining
 - BW = 4/3.5 l/h w pipelining
 - BW <= 1.5 l/h w pipelining, more total loads

- Pipelining helps bandwidth but not latency (90 min)
- Bandwidth limited by slowest pipeline stage
- Potential speedup = Number pipe stages
Example: 5 Steps of MIPS Datapath

Figure 3.4, Page 134, CA:AQA 2e by Patterson and Hennessy

- Pipelining is also used within arithmetic units
 - a fp multiply may have latency 10 cycles, but throughput of 1/cycle
SIMD: Single Instruction, Multiple Data

• Scalar processing
 • traditional mode
 • one operation produces one result

• SIMD processing
 • with SSE / SSE2
 • one operation produces multiple results

\[
\begin{align*}
X &+ Y = X + Y \\
\text{XX} &+ \text{YY} = \text{XX} + \text{YY}
\end{align*}
\]

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation
SSE / SSE2 SIMD on Intel

- SSE2 data types: anything that fits into 16 bytes, e.g.,
 - 4x floats
 - 2x doubles
 - 16x bytes

- Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel

- Challenges:
 - Need to be contiguous in memory and aligned
 - Some instructions to move data around from one part of register to another
What does this mean to you?

- In addition to SIMD extensions, the processor may have other special instructions
 - Fused Multiply-Add (FMA) instructions:
 \[x = y + c \times z \]
 is so common some processor execute the multiply/add as a single instruction, at the same rate (bandwidth) as $+$ or \times alone

- In theory, the compiler understands all of this
 - When compiling, it will rearrange instructions to get a good “schedule” that maximizes pipelining, uses FMAs and SIMD
 - It works with the mix of instructions inside an inner loop or other block of code

- But in practice the compiler may need your help
 - Choose a different compiler, optimization flags, etc.
 - Rearrange your code to make things more obvious
 - Using special functions (“intrinsics”) or write in assembly 😊
Outline

• Idealized and actual costs in modern processors
• Parallelism within single processors
• Memory hierarchies
 • Temporal and spatial locality
 • Basics of caches
 • Use of microbenchmarks to characterized performance
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
Memory Hierarchy

• Most programs have a high degree of **locality** in their accesses
 • **spatial locality**: accessing things nearby previous accesses
 • **temporal locality**: reusing an item that was previously accessed
• Memory hierarchy tries to exploit locality

<table>
<thead>
<tr>
<th>Speed</th>
<th>1ns</th>
<th>10ns</th>
<th>100ns</th>
<th>10ms</th>
<th>10sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>B</td>
<td>KB</td>
<td>MB</td>
<td>GB</td>
<td>TB</td>
</tr>
</tbody>
</table>
Processor-DRAM Gap (latency)

- Memory hierarchies are getting deeper
 - Processors get faster more quickly than memory

```
µProc       60%/yr.

“Moore’s Law”

Processor-Memory Performance Gap:
(grows 50% / year)

DRAM        7%/yr.
```
Approaches to Handling Memory Latency

• Bandwidth has improved more than latency
• Approach to address the memory latency problem
 • Eliminate memory operations by saving values in small, fast memory (cache) and reusing them
 • need temporal locality in program
 • Take advantage of better bandwidth by getting a chunk of memory and saving it in small fast memory (cache) and using whole chunk
 • need spatial locality in program
 • Take advantage of better bandwidth by allowing processor to issue multiple reads to the memory system at once
 • concurrency in the instruction stream, eg load whole array, as in vector processors; or prefetching
Cache Basics

- **Cache** is fast (expensive) memory which keeps copy of data in main memory; it is hidden from software
- **Cache hit**: in-cache memory access—cheap
- **Cache miss**: non-cached memory access—expensive
 - Need to access next, slower level of cache
- Consider a tiny cache (for illustration only)

<table>
<thead>
<tr>
<th>Address Pattern</th>
<th>Data (2 Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X000</td>
<td>101000 through 101001</td>
</tr>
<tr>
<td>X010</td>
<td>001010 through 001011</td>
</tr>
<tr>
<td>X100</td>
<td>111100 through 111101</td>
</tr>
<tr>
<td>X110</td>
<td>110110 through 110111</td>
</tr>
</tbody>
</table>

- **Cache line length**: # of bytes loaded together in one entry
 - 2 in above example
- **Associativity**
 - direct-mapped: only 1 address (line) in a given range in cache
 - *n*-way: *n* ≥ 2 lines with different addresses can be stored
Why Have Multiple Levels of Cache?

• On-chip vs. off-chip
 • On-chip caches are faster, but limited in size
• A large cache has delays
 • Hardware to check longer addresses in cache takes more time
 • Associativity, which gives a more general set of data in cache, also takes more time

• Some examples:
 • Cray T3E eliminated one cache to speed up misses
 • IBM uses a level of cache as a “victim cache” which is cheaper
• There are other levels of the memory hierarchy
 • Register, pages (TLB, virtual memory), …
 • And it isn’t always a hierarchy
Experimental Study of Memory (Membench)

• Microbenchmark for memory system performance

for array A of length L from 4KB to 8MB by 2x
for stride s from 4 Bytes (1 word) to L/2 by 2x
time the following loop
(repeat many times and average)
for i from 0 to L by s
load A[i] from memory (4 Bytes)
Membench: What to Expect

- Consider the average cost per load
 - Plot one line for each array length, time vs. stride
 - Small stride is best: if cache line holds 4 words, at most $\frac{1}{4}$ miss
 - If array is smaller than a given cache, all those accesses will hit (after the first run, which is negligible for large enough runs)
 - Picture assumes only one level of cache
 - Values have gotten more difficult to measure on modern procs
Memory Hierarchy on a Sun Ultra-2i

Sun Ultra-2i, 333 MHz

L1:
16 KB
2 cycles (6ns)

L2:
64 byte line
2 MB,
12 cycles (36 ns)

Mem:
396 ns
(132 cycles)

8 K pages,
32 TLB entries

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

1/19/2007
CS267 Lecture 2
Memory Hierarchy on a Pentium III

Katmai processor on Millennium, 550 MHz

Array size
- 4KB
- 8KB
- 16KB
- 32KB
- 64KB
- 128KB
- 256KB
- 512KB
- 1MB
- 2MB
- 4MB
- 8MB
- 16MB
- 32MB
- 64MB

L2: 512 KB
60 ns

L1: 32 byte line?

Array size
Memory Hierarchy on a Power3 (Seaborg)

Power3, 375 MHz

L2: 8 MB
128 B line
9 cycles

L1: 32 KB
128B line
.5-2 cycles

Mem: 396 ns
(132 cycles)
Memory Performance on Itanium 2 (CITRIS)

Itanium2, 900 MHz

L3: 2 MB
128 B line
3-20 cycles

L2: 256 KB
128 B line
.5-4 cycles

L1: 32 KB
64B line
.34-1 cycles

Mem: 11-60 cycles

Uses MAPS Benchmark: http://www.sdsc.edu/PMaC/MAPs/maps.html
Stanza Triad

- Even smaller benchmark for prefetching
- Derived from STREAM Triad
- **Stanza (L)** is the length of a unit stride run

  ```
  while i < arrayLength
      for each L element stanza
          A[i] = scalar * X[i] + Y[i]
          skip k elements
  ```

1) do L triads 2) skip k elements 3) do L triads

Source: Kamil et al, MSP05
Stanza Triad Results

- This graph (x-axis) starts at a cache line size (>=16 Bytes)
- If cache locality was the only thing that mattered, we would expect
 - Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
- Prefetching gets the next cache line (pipelining) while using the current one
 - This does not “kick in” immediately, so performance depends on L
Lessons

• Actual performance of a simple program can be a complicated function of the architecture
 • Slight changes in the architecture or program change the performance significantly
 • To write fast programs, need to consider architecture
 • True on sequential or parallel processor
 • We would like simple models to help us design efficient algorithms

• We will illustrate with a common technique for improving cache performance, called blocking or tiling
 • Idea: used divide-and-conquer to define a problem that fits in register/L1-cache/L2-cache
Outline

• Idealized and actual costs in modern processors
• Parallelism within single processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Simple cache model
 • Warm-up: Matrix-vector multiplication
 • Case study continued next time
Why Matrix Multiplication?

• An important kernel in scientific problems
 • Appears in many linear algebra algorithms
 • Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
• Optimization ideas can be used in other problems
• The best case for optimization payoffs
• The most-studied algorithm in high performance computing
Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are “1-D”
- Conventions for matrix layout
 - by column, or “column major” (Fortran default); \(A(i,j) \) at \(A+i+j*n \)
 - by row, or “row major” (C default) \(A(i,j) \) at \(A+i*n+j \)
 - recursive (later)

- Column major (for now)

Figure source: Larry Carter, UCSD
Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory
 • $m =$ number of memory elements (words) moved between fast and slow memory
 • $t_m =$ time per slow memory operation
 • $f =$ number of arithmetic operations
 • $t_f =$ time per arithmetic operation $< < t_m$
 • $q = f / m =$ average number of flops per slow memory access
• Minimum possible time $= f * t_f$ when all data in fast memory
• Actual time
 • $f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)$
• Larger q means time closer to minimum $f * t_f$
 • $q \geq t_m/t_f$ needed to get at least half of peak speed
Warm up: Matrix-vector multiplication

\{\text{implements } y = y + A^*x\}

for \(i = 1:n \)

\hspace{1cm} \text{for } j = 1:n

\hspace{4cm} y(i) = y(i) + A(i,j)\times x(j)
Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
 {read row i of A into fast memory}
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j)
 {write y(1:n) back to slow memory}

• $m = \text{number of slow memory refs} = 3n + n^2$
• $f = \text{number of arithmetic operations} = 2n^2$
• $q = f / m \approx 2$

• Matrix-vector multiplication limited by slow memory speed
Modeling Matrix-Vector Multiplication

- Compute time for nxn = 1000x1000 matrix
- Time
 - \[f \cdot t_f + m \cdot t_m = f \cdot t_f \cdot (1 + t_m/t_f \cdot 1/q) \]
 - \[= 2n^2 \cdot t_f \cdot (1 + t_m/t_f \cdot 1/2) \]
- For \(t_f \) and \(t_m \), using data from R. Vuduc’s PhD (pp 351-3)
 - For \(t_m \) use minimum-memory-latency / words-per-cache-line

<table>
<thead>
<tr>
<th>Clock</th>
<th>Peak Mflop/s</th>
<th>Mem Lat (Min,Max)</th>
<th>Linesize Bytes</th>
<th>(t_m/t_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra 2i</td>
<td>333</td>
<td>667</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>900</td>
<td>1800</td>
<td>28</td>
<td>200</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>500</td>
<td>500</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>800</td>
<td>800</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Power3</td>
<td>375</td>
<td>1500</td>
<td>35</td>
<td>139</td>
</tr>
<tr>
<td>Power4</td>
<td>1300</td>
<td>5200</td>
<td>60</td>
<td>10000</td>
</tr>
<tr>
<td>Itanium1</td>
<td>800</td>
<td>3200</td>
<td>36</td>
<td>85</td>
</tr>
<tr>
<td>Itanium2</td>
<td>900</td>
<td>3600</td>
<td>11</td>
<td>60</td>
</tr>
</tbody>
</table>

machine balance (q must be at least this for \(\frac{1}{2} \) peak speed)
Simplifying Assumptions

• What simplifying assumptions did we make in this analysis?
 • Ignored parallelism in processor between memory and arithmetic within the processor
 • Sometimes drop arithmetic term in this type of analysis
 • Assumed fast memory was large enough to hold three vectors
 • Reasonable if we are talking about any level of cache
 • Not if we are talking about registers (~32 words)
 • Assumed the cost of a fast memory access is 0
 • Reasonable if we are talking about registers
 • Not necessarily if we are talking about cache (1-2 cycles for L1)
 • Memory latency is constant
• Could simplify even further by ignoring memory operations in X and Y vectors
 • Mflop rate/element = \(\frac{2}{2^* t_f + t_m} \)
Validating the Model

- How well does the model predict actual performance?
 - Actual DGEMV: Most highly optimized code for the platform
- Model sufficient to compare across machines
- But under-predicting on most recent ones due to latency estimate
Summary

• Details of machine are important for performance
 • Processor and memory system (not just parallelism)
 • Before you parallelize, make sure you’re getting good serial performance
 • What to expect? Use understanding of hardware limits

• There is parallelism hidden within processors
 • Pipelining, SIMD, etc

• Locality is at least as important as computation
 • Temporal: re-use of data recently used
 • Spatial: using data nearby that recently used

• Machines have memory hierarchies
 • 100s of cycles to read from DRAM (main memory)
 • Caches are fast (small) memory that optimize average case

• Can rearrange code/data to improve locality
Extra Slides

Will be Covered in Lecture 3
Naïve Matrix Multiply

\{implements \(C = C + A \ast B \)\}

for \(i = 1 \) to \(n \)
 for \(j = 1 \) to \(n \)
 for \(k = 1 \) to \(n \)
 \(C(i,j) = C(i,j) + A(i,k) \ast B(k,j) \)

Algorithm has \(2 \ast n^3 = O(n^3) \) Flops and operates on \(3 \ast n^2 \) words of memory

\(q \) potentially as large as \(2 \ast n^3 / 3 \ast n^2 = O(n) \)
Naïve Matrix Multiply

\{
implements \mathbf{C} = \mathbf{C} + \mathbf{A}\mathbf{B} \}\n
for \(i = 1 \) to \(n \)
 \{read row \(i \) of \(\mathbf{A} \) into fast memory\}
 for \(j = 1 \) to \(n \)
 \{read \(\mathbf{C}(i,j) \) into fast memory\}
 \{read column \(j \) of \(\mathbf{B} \) into fast memory\}
 for \(k = 1 \) to \(n \)
 \[C(i,j) = C(i,j) + A(i,k) \times B(k,j) \]
 \{write \(\mathbf{C}(i,j) \) back to slow memory\}
Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

\[m = n^3 \] to read each column of \(B \) \(n \) times

\[+ n^2 \] to read each row of \(A \) once

\[+ 2n^2 \] to read and write each element of \(C \) once

\[= n^3 + 3n^2 \]

So \(q = \frac{f}{m} = \frac{2n^3}{n^3 + 3n^2} \)

\(~= 2\) for large \(n \), no improvement over matrix-vector multiply

\[
\begin{array}{ccc}
C(i,j) & = & C(i,j) \\
\text{(red)} & + & A(i,:) \\
\text{(red)} & \ast & B(:,j)
\end{array}
\]
Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Naïve Matrix Multiply on RS/6000

\[T = N^{4.7} \]

Performance looks like \(O(N^{4.7}) \)

\(O(N^3) \) performance would have constant cycles/flop

Size 2000 took 5 days

12000 would take 1095 years

Slide source: Larry Carter, UCSD
Naïve Matrix Multiply on RS/6000

![Graph showing performance metrics against problem size](image)

- Page miss every iteration
- TLB miss every iteration
- Cache miss every 16 iterations
- Page miss every 512 iterations

log Problem Size vs. log cycles/flop
Consider A, B, C to be N-by-N matrices of b-by-b subblocks where $b = n / N$ is called the block size.

for $i = 1$ to N
 for $j = 1$ to N
 {read block $C(i,j)$ into fast memory}
 for $k = 1$ to N
 {read block $A(i,k)$ into fast memory}
 {read block $B(k,j)$ into fast memory}
 $C(i,j) = C(i,j) + A(i,k) \times B(k,j)$ \{do a matrix multiply on blocks\}
 {write block $C(i,j)$ back to slow memory}
Blocked (Tiled) Matrix Multiply

Recall:

- m is amount memory traffic between slow and fast memory
- matrix has $n \times n$ elements, and $N \times N$ blocks each of size $b \times b$
- f is number of floating point operations, $2n^3$ for this problem
- $q = f / m$ is our measure of algorithm efficiency in the memory system

So:

$$m = N^2 n^2 \text{ read each block of } B \ N^3 \text{ times } (N^3 \times b^2 = N^3 \times (n/N)^2 = N^2 n^2)$$
$$+ N^2 n^2 \text{ read each block of } A \ N^3 \text{ times }$$
$$+ 2n^2 \text{ read and write each block of } C \text{ once }$$
$$= (2N + 2) \times n^2$$

So computational intensity $q = f / m = 2n^3 / ((2N + 2) \times n^2)$
$$\sim n / N = b \text{ for large } n$$

So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply ($q=2$)
Using Analysis to Understand Machines

The blocked algorithm has computational intensity \(q \approx b \)
- The larger the block size, the more efficient our algorithm will be
- Limit: All three blocks from A, B, C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- Assume your fast memory has size \(M_{fast} \)
 \[
 3b^2 \leq M_{fast}, \text{ so } q \approx b \leq \sqrt{M_{fast}/3}
 \]

• To build a machine to run matrix multiply at \(1/2 \) peak arithmetic speed of the machine, we need a fast memory of size
 \[
 M_{fast} \geq 3b^2 \approx 3q^2 = 3(t_m/t_f)^2
 \]
 - This size is reasonable for L1 cache, but not for register sets
 - Note: analysis assumes it is possible to schedule the instructions perfectly

<table>
<thead>
<tr>
<th></th>
<th>(t_m/t_f)</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>24.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>14</td>
<td>4.7</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>6.25</td>
<td>0.9</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>10</td>
<td>2.4</td>
</tr>
<tr>
<td>Power3</td>
<td>8.75</td>
<td>1.8</td>
</tr>
<tr>
<td>Power4</td>
<td>15</td>
<td>5.4</td>
</tr>
<tr>
<td>Itanium1</td>
<td>36</td>
<td>31.1</td>
</tr>
<tr>
<td>Itanium2</td>
<td>5.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Limits to Optimizing Matrix Multiply

- The blocked algorithm changes the order in which values are accumulated into each $C[i,j]$ by applying associativity
 - Get slightly different answers from naïve code, because of roundoff - OK
- The previous analysis showed that the blocked algorithm has computational intensity:
 $$q \approx b \leq \sqrt{\frac{M_{\text{fast}}}{3}}$$
- There is a lower bound result that says we cannot do any better than this (using only associativity)
- Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to $q = O(\sqrt{M_{\text{fast}}})$
- What if more levels of memory hierarchy?
 - Apply blocking recursively, once per level
Basic Linear Algebra Subroutines (BLAS)

• Industry standard interface (evolving)
 • www.netlib.org/blas, www.netlib.org/blas/blast--forum

• Vendors, others supply optimized implementations

• History
 • **BLAS1 (1970s):**
 • vector operations: dot product, saxpy \((y=\alpha x+y)\), etc
 • \(m=2n, f=2n, q \sim 1 \text{ or less}\)
 • **BLAS2 (mid 1980s)**
 • matrix-vector operations: matrix vector multiply, etc
 • \(m=n^2, f=2n^2, q\sim 2, \text{ less overhead}\)
 • somewhat faster than BLAS1
 • **BLAS3 (late 1980s)**
 • matrix-matrix operations: matrix matrix multiply, etc
 • \(m \leq 3n^2, f=O(n^3), \text{ so } q=f/m \text{ can possibly be as large as } n, \text{ so BLAS3 is potentially much faster than BLAS2}\)

• Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)
 • See www.netlib.org/{lapack,scalapack}
 • More later in course
BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)
Strassen’s Matrix Multiply

- The traditional algorithm (with or without tiling) has $O(n^3)$ flops
- Strassen discovered an algorithm with asymptotically lower flops
 - $O(n^{2.81})$
- Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
 - Strassen does it with 7 multiplies and 18 adds

Let $M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

Let $p_1 = (a_{12} - a_{22}) \times (b_{21} + b_{22})$ \hspace{1cm} $p_5 = a_{11} \times (b_{12} - b_{22})$
$p_2 = (a_{11} + a_{22}) \times (b_{11} + b_{22})$ \hspace{1cm} $p_6 = a_{22} \times (b_{21} - b_{11})$
$p_3 = (a_{11} - a_{21}) \times (b_{11} + b_{12})$ \hspace{1cm} $p_7 = (a_{21} + a_{22}) \times b_{11}$
$p_4 = (a_{11} + a_{12}) \times b_{22}$

Then $m_{11} = p_1 + p_2 - p_4 + p_6$

$m_{12} = p_4 + p_5$
$m_{21} = p_6 + p_7$
$m_{22} = p_2 - p_3 + p_5 - p_7$

Extends to nxn by divide&conquer
Strassen (continued)

T(n) = Cost of multiplying nxn matrices
 = 7*T(n/2) + 18*(n/2)^2
 = O(n \log_2 7)
 = O(n 2.81)

• Asymptotically faster
 • Several times faster for large n in practice
 • Cross-over depends on machine
 • Available in several libraries
 • “Tuning Strassen's Matrix Multiplication for Memory Efficiency”, M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing '98
• Caveats
 • Needs more memory than standard algorithm
 • Can be less accurate because of roundoff error
Other Fast Matrix Multiplication Algorithms

• Current world’s record is $O(n^{2.376...})$ (Coppersmith & Winograd)
• Why does Hong/Kung theorem not apply?
• Possibility of $O(n^{2+\varepsilon})$ algorithm! (Cohn, Umans, Kleinberg, 2003)
• Fast methods (besides Strassen) may need unrealistically large n
Recursive Data Layouts

• Blocking seems to require knowing cache sizes – portable?
• A related (recent) idea is to use a recursive structure for the matrix
• There are several possible recursive decompositions depending on the order of the sub-blocks
• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”

Advantages:
• the recursive layout works well for any cache size

Disadvantages:
• The index calculations to find $A[i,j]$ are expensive
• Implementations switch to column-major for small sizes
Extra Slides
Search Over Block Sizes

• Performance models are useful for high level algorithms
 • Helps in developing a blocked algorithm
 • Models have not proven very useful for block size selection
 • too complicated to be useful
 – See work by Sid Chatterjee for detailed model
 • too simple to be accurate
 – Multiple multidimensional arrays, virtual memory, etc.
 • Speed depends on matrix dimensions, details of code, compiler, processor

• Some systems use search over “design space” of possible implementations
 • Atlas – incorporated into Matlab
 • BeBOP – http://www.cs.berkeley.edu/~richie/bebop
What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. (Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)
ATLAS (DGEMM n = 500)

• ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

Source: Jack Dongarra
Tiling Alone Might Not Be Enough

- Naïve and a “naïvely tiled” code on Itanium 2
 - Searched all block sizes to find best, b=56
 - Starting point for next homework

![Graph: MFlop/s vs. Matrix dimension]

- Red line: 3 loops
- Blue line: blocked, b=56
Optimizing in Practice

• Tiling for registers
 • loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache and TLB

• Exploiting fine-grained parallelism in processor
 • superscalar; pipelining

• Complicated compiler interactions

• Hard to do by hand (but you’ll try)

• Automatic optimization an active research area
 • BeBOP: bebop.cs.berkeley.edu/
 • PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac
 in particular tr-98-035.ps.gz
 • ATLAS: www.netlib.org/atlas
Removing False Dependencies

• Using local variables, reorder operations to remove false dependencies

\[
\begin{align*}
a[i] &= b[i] + c; \\
a[i+1] &= b[i+1] \times d; \\
\end{align*}
\]

false read-after-write hazard between \(a[i]\) and \(b[i+1]\)

\[
\begin{align*}
\text{float } f1 &= b[i]; \\
\text{float } f2 &= b[i+1]; \\
\end{align*}
\]

\[
\begin{align*}
a[i] &= f1 + c; \\
a[i+1] &= f2 \times d; \\
\end{align*}
\]

With some compilers, you can declare \(a\) and \(b\) unaliased.

• Done via “restrict pointers,” compiler flag, or pragma)
Exploit Multiple Registers

- Reduce demands on memory bandwidth by pre-loading into local variables

```c
while( ... ) {
    *res++ = filter[0]*signal[0] 
    + filter[1]*signal[1] 
    + filter[2]*signal[2];
    signal++;
}
```

also:
```c
register float f0 = ...;
```

Example is a convolution
Minimize Pointer Updates

• Replace pointer updates for strided memory addressing with constant array offsets

\[
\begin{align*}
 f0 &= *r8; \quad r8 += 4; \\
 f1 &= *r8; \quad r8 += 4; \\
 f2 &= *r8; \quad r8 += 4; \\
 &\quad\\
 f0 &= r8[0]; \\
 f1 &= r8[4]; \\
 f2 &= r8[8]; \\
 r8 &= r8 + 12;
\end{align*}
\]

Pointer vs. array expression costs may differ.
• Some compilers do a better job at analyzing one than the other
Loop Unrolling

• Expose instruction-level parallelism

```c
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
    signal += 3;
    s0 = signal[0];
    res[0] = f0*s1 + f1*s2 + f2*s0;
    s1 = signal[1];
    res[1] = f0*s2 + f1*s0 + f2*s1;
    s2 = signal[2];
    res[2] = f0*s0 + f1*s1 + f2*s2;
    res += 3;
} while( ... );
```
Exposé Independent Operations

• Hide instruction latency
 • Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 • Balance the instruction mix (what functional units are available?)

```
  f1 = f5 * f9;
  f2 = f6 + f10;
  f3 = f7 * f11;
  f4 = f8 + f12;
```
Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality

Original matrix (numbers are addresses)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Reorganized into 2x2 blocks

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
Locality in Other Algorithms

• The performance of any algorithm is limited by q
• In matrix multiply, we increase q by changing computation order
 • increased temporal locality

• For other algorithms and data structures, even hand-transformations are still an open problem
 • sparse matrices (reordering, blocking)
 • Weekly research meetings
 • Bebop.cs.berkeley.edu
 • About to release OSKI – tuning for sparse-matrix-vector multiply
 • trees (B-Trees are for the disk level of the hierarchy)
 • linked lists (some work done here)
Summary

• Performance programming on uniprocessors requires
 • understanding of memory system
 • understanding of fine-grained parallelism in processor

• Simple performance models can aid in understanding
 • Two ratios are key to efficiency (relative to peak)
 1. computational intensity of the algorithm:
 • \(q = \frac{f}{m} = \# \text{ floating point operations} / \# \text{ slow memory references} \)
 2. machine balance in the memory system:
 • \(\frac{t_m}{t_f} = \text{ time for slow memory reference} / \text{ time for floating point operation} \)

• Want \(q > \frac{t_m}{t_f} \) to get half machine peak

• Blocking (tiling) is a basic approach to increase \(q \)
 • Techniques apply generally, but the details (e.g., block size) are architecture dependent
 • Similar techniques are possible on other data structures and algorithms

• Now it’s your turn: Homework 1
 • Work in teams of 2 or 3 (assigned this time)
Reading for Today

- Sourcebook Chapter 3, (note that chapters 2 and 3 cover the material of lecture 2 and lecture 3, but not in the same order).
- Web pages for reference:
 - BeBOP Homepage
 - ATLAS Homepage
 - BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) implementations of the BLAS, with documentation.
 - LAPACK (Linear Algebra PACKage), a standard linear algebra library optimized to use the BLAS effectively on uniprocessors and shared memory machines (software, documentation and reports)
 - ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for distributed memory machines (software, documentation and reports)
- Tuning Strassen's Matrix Multiplication for Memory Efficiency Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck in Proceedings of Supercomputing '98, November 1998 postscript
Questions You Should Be Able to Answer

1. What is the key to understand algorithm efficiency in our simple memory model?
2. What is the key to understand machine efficiency in our simple memory model?
3. What is tiling?
4. Why does block matrix multiply reduce the number of memory references?
5. What are the BLAS?
6. Why does loop unrolling improve uniprocessor performance?