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@ “Closing the Loop": Sensing on mobile platforms and control
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Key Technical Problems

@ 3-D Scene Analysis in Dense Urban Environments

(a) Image (b) Object (c) Motion

@ “Closing the Loop": Sensing on mobile platforms and control

© The most important mobile platform is human: Egocentric sensing, body sensor networks
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Image Segmentation via Lossy Coding Length
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Lossy Minimum Description Length

Hybrid linear models
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Lossy Minimum Description Length

Hybrid linear models

O Lossy coding length L.(V, A):
Quantize V = (v1,- -, vy) € RPXN as a sequence of binary bits up to a distortion

Efllvi — v|I%] < €.
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Lossy Minimum Description Length

Hybrid linear models

O Lossy coding length L.(V, A):
Quantize V = (v1,- -, vy) € RPXN as a sequence of binary bits up to a distortion

Efllvi — v|I%] < €.

@ Lossy MDL
A*(€) = argmin{Lc(V, A) + Chain Code(B)}.

Compression-based Image Segmentation
Optimal image segmentation gives rise to the shortest coding length to encode images.
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Quantitative Comparison
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Figure: Precision vs Recall for texture region boundaries.
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DexterNet: A Wearable Body Sensor Platform
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Yang, et al., DexterNet: An open platform for heterogeneous body sensor networks and its applications, BSN 2009.
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Wearable Action Recognition Database

I Sensarhiote 2

1800 (mobie device)

E

Semsorliote s

o Free for noncommercial users.
o 5 motion sensors, each carries an accelerometer and gyroscope sampled at 30 Hz.
o 20 test subjects (13 male & 7 female) ages 19-75.

o Data processed in Matlab. Visualization tool is included.

Berkeley
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CITRIC: Wireless Smart Camera Platform

o CITRIC platform o Available library functions

© Full support Intel IPP Library and OpenCV.
@ JPEG compression: 10 fps.

© Edge detector: 3 fps.

1.3 MegaPixel

Camera © Background Subtraction: 5 fps.
@ SIFT detector: 10 sec per frame.

13-624 MHz
Intel PXA270
Microprocessor

64 MB :
Mobile S8 0
SDRAM R %

16 MB NOR Flash  Power Management IC
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CITRIC: Wireless Smart Camera Platform

o Available library functions
© Full support Intel IPP Library and OpenCV.

@ JPEG compression: 10 fps.
© Edge detector: 3 fps.
e © Background Subtraction: 5 fps.

o CITRIC platform

@ SIFT detector: 10 sec per frame.

Microphone 4
13-624 MHz
Intel PXA270
Microprocessor

64 MB :
Mobile 8 o
SDRAM S A X

16 MB NOR Flash  Power Management IC

o Academic users:
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Demo: Topological Recovery of a Camera Network
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Motivation: Object Recognition

o Affine invariant features, SIFT.

E
HAD)
4
A

Image gradients

o SIFT Feature Matching [Lowe 1999, van Gool 2004]

(b) Recognition

Multiple-View Object Recognition
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Object Recognition in Band-Limited Sensor Networks

O Compress scalable SIFT tree [Girod et al. 2009]

Mobile Device

i

Image . Extract
Q | Features

Tree

7 C\ass\iyr
Features.

Cﬁmpresé
Histogram

Server Database
T Decom)
| press | :
Network Histogram Score - Identity

Observation: SIFT histogram is largely sparse (up to 108-dim)

R
S

Sequence of consecutive zero bins.
Sequence of nonzero bin values.
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ject Recognition in Band-Limited Sensor Networks

O Compress scalable SIFT tree [Girod et al. 2009]

Mobile Device
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Features.
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| press | :
Network Histogram Score - Identity

Observation: SIFT histogram is largely sparse (up to 108-dim)

Image . Extract
Q | Features

Cﬁmpresé
Histogram

R : Sequence of consecutive zero bins.
S . Sequence of nonzero bin values.

@ Multiple-view SIFT feature selection [Darrell et al. 2008]
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Problem Statement

Transmitter
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C:
amera 2 e \u
m {@ R \J
Recel\;/\
Object %“ " pd Object Recognition
> A System

Camera V

@ L camera sensors observe a single object in 3-D.

@ The mutual information between cameras are unknown, cross-sensor communication is
prohibited.

© On each camera, seek an encoding function for a nonnegative, sparse histogram x;
fix;eRP -y, eR?
@ On the base station, upon receiving y;, Y5, - ,Y;, simultaneously recover
X1, X2, X[,

and classify the object class in space.

Berkeley



http://www.eecs.berkeley.edu/~yang

Random Projection
[e]e]e] lele)

Key Observations

2 1
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(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.
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Key Observations
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(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.

o Multiple-view histograms share joint sparse patterns.
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Key Observations

1
‘ 5

Ii :

200 00 600 800 1000 200 400 600 El 1000

(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.
o Multiple-view histograms share joint sparse patterns.

o Classification is based on the similarity measure in £2-norm (linear kernel) or £-norm
(intersection kernel).



http://www.eecs.berkeley.edu/~yang

Random Projection
[e]e]e]e] o)

Random Projection as Encoding Function

y = Ax

Coefficients of A € RY*D are drawn from zero-mean Gaussian distribution.
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Random Projection as Encoding Function

y = Ax

Coefficients of A € RY*D are drawn from zero-mean Gaussian distribution.

Johnson-Lindenstrauss Lemma [Johnson & Lindenstrauss 1984, Frankl 1988]

For n number of point cloud in RP, given distortion threshold ¢, for any
d > O(e?log n),
a Gaussian random projection f(x) = Ax € R? preserves pairwise ¢2-distance

(1= 9llxi = xi[13 < NI (xi) = FE)IZ < (1 + €)llxi —x1l13.
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.

Berkeley
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.

@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

© Problem IllI: Difficult (if not possible) to incorporate multiple-view information.

Berkeley
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

© Problem IllI: Difficult (if not possible) to incorporate multiple-view information.

Compressive sensing provides principled solutions to the above problems. )
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Compressive Sensing

o Noise-free case: Assume X is sufficiently k-sparse and mild condition on A,
(P1): min||x|]1 subject to y = Ax

recovers the exact solution.
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Compressive Sensing

o Noise-free case: Assume X is sufficiently k-sparse and mild condition on A,
(P1): min||x|]1 subject to y = Ax

recovers the exact solution.

o k-Neighborliness

o Define cross polytope C and quotient polytope P such that P = AC.
o x is k-sparse < x lie in a unique (k — 1)-face of C.
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Compressive Sensing

o Noise-free case: Assume X is sufficiently k-sparse and mild condition on A,
(P1): min||x|]1 subject to y = Ax

recovers the exact solution.

o k-Neighborliness

o Define cross polytope C and quotient polytope P such that P = AC.
o x is k-sparse < x lie in a unique (k — 1)-face of C.
o Necessary and Sufficient:

@ I the (k — 1)-face where x lies maps to a face of P, then £1/£0 holds for this specific x.
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Matching Pursuit [Mallat & Zhang, 1993]
O Initialization:
o y = [A; —A]X, where X >0

o k « 0; % — 0; r° — y; Sparse support
=0
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Matching Pursuit [Mallat & Zhang, 1993]

Q Initialization:
o y = [A; —A]X, where X >0

o k « 0; % — 0; r° — y; Sparse support
=0

Q@ k—k+1:
e i=arg maxj-gz{ajTrkfl}
o Update: Z =T U {i}; x; = a] v}

=7 xa;
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Matching Pursuit [Mallat & Zhang, 1993]

Q Initialization:
o y = [A; —A]X, where X >0

o k « 0; % — 0; r° — y; Sparse support
=0

Q@ k—k+1:
e i=arg maxj-gz{ajTrkfl}
o Update: Z =T U {i}; x; = a] v}

=7 xa;

Q If: ||r¥|2 > ¢, go to STEP 2;
Else: output X

Fail to search sparse solution on the
boundary of the quotient polytope. J
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Fast /1-Min Routines

@ Homotopy Methods:

o Polytope Faces Pursuit (PFP) [Plumbley 2006]
o Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani 2004]

@ Gradient Projection Methods

o Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright 2007]

o Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky 2007]
© Iterative Thresholding Methods

o Soft Thresholding [Donoho 1995]

e Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo 2008]
Q Proximal Gradient Methods [Nesterov 1983, Nesterov 2007]

o FISTA [Beck-Teboulle 2009]
o Nesterov's Method (NESTA) [Becker-Bobin-Candés 2009]

MATLAB Toolboxes

o SparseLab: http://sparselab.stanford.edu/
@ ¢! Homotopy: http://users.ece.gatech.edu/~sasif/homotopy/index.html
o SpaRSA: http://www.lx.it.pt/~mtf/SpaRSA/

eecs.berkeley.edu/~yang Multiple-View Object Recognition
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Distributed Object Recognition in Smart Camera Networks

QOutlines:

@ How to enforce nonnegativity in decoding SIFT histograms?

@ How to enforce joint sparsity across multiple camera views?

Berkeley
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Enforcing Nonnegativity

o Polytope Pursuit Algorithms (MP, PFP, LARS):
@ Algebraically: Do not add antipodal vertexes

y= [A:i

@ Geometrically: Pursuit on positive faces

o Interior-Point Algorithms (Lasso, Homotopy, SpaRSA):
Remove any sparse support that have negative coefficients.

Berkeley
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Sparse Innovation Model

o Definition (SIM):

X1 = X-+z,

X, = X4z

X is called the joint sparse component, and z; is called an innovation.

http://www.eecs.berkeley.edu/~
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Sparse Innovation Model

[ele] J

o Definition (SIM):

X1

XL

= X4z,

= i-f—ZL.

X is called the joint sparse component, and z; is called an innovation.

e Joint recovery of SIM

y1

A

AL AL O - 0 zx1
AL O 0 A .
A'x' € RIL,

@ New histogram vector is nonnegative and sparse.

@ Joint sparsity % is automatically determined by £'-min: No prior training, no assumption about fixing
camera positions.

© Worst case scenario (X = 0) has the same computational condition as solving individual projections.
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Experiment |: Simulation

o Comparison between matching pursuit, polytope faces pursuit, and sparse innovation
model:

Table: Simulation of solving 1000-D sparse histograms with d = 200, kK = 60, and L = 3.

Sparsity | (60,0) (40,20)  (30,30)
O 56.14  56.14 56.14
e 1.76 1.76 1.76
fZan 3.48 3.48 3.48
Coep 0.05 0.05 0.05
zgw 1.85 1.65 1.95
I 0.02 0.02 0.02

Berkeley
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Experiment Il: COIL-100 object database

o Database: 100 objects, each provides 72 images captured with 5 degree difference.

8|~|®

=

o Dense sampling of overlapping 8 x 8 grids. Standard SIFT descriptor.
o 4-level hierarchical k-means (k = 10): Leaf-node histogram is 1000-D.
o Classifier via intersection-kernel SVM: 10 random training images per class.

o Setup:

eecs.berkeley.edu/~yang Multiple-View Object Recognition
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COIL 100 Multiview Dataset ( ntrain=10)

e
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I

/ / —6— raw data = 989 dim

—&— random projection
sparse recovery (c=1) ||

50
=—#— sparse recovery (c=2)
—6— sparse recovery (c=3)
T T

45
0 100 200 300 400 500 600
number of projection dimensions
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

Berkeley
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

Berkeley
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

@ /¢'-minimization exploits two properties of SIFT histograms:

o Sparsity.
o Nonnegativity.

Berkeley
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

@ /¢'-minimization exploits two properties of SIFT histograms:
o Sparsity.
o Nonnegativity.

@ Sparse innovation model exploits joint sparsity of multiple-view histograms.

Berkeley
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Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

@ /¢'-minimization exploits two properties of SIFT histograms:
o Sparsity.
o Nonnegativity.

@ Sparse innovation model exploits joint sparsity of multiple-view histograms.

@ Complete system implemented on Berkeley CITRIC sensors.

References
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http://www.eecs.berkeley.edu/


http://www.eecs.berkeley.edu/~yang

Berkeley Multiple-view Wireless Database

(b) Bowles

Berkeley

ject Recognition


http://www.eecs.berkeley.edu/~yang

Conclusion
o

Sensing and Perception in Resource-Constrained Distributed Networks

Centralized Perception Distributed Perception

&
T N TR
R P
3.0

Up:  powerful processors Down:  mobile processors

Up:  unlimited memory Down: limited onboard memory

Up: unlimited bandwidth Down:  band-limited communications
Down: single modality Up:  distributed, multi-modality
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Conclusion
o

Sensing and Perception in Resource-Constrained Distributed Networks

Centralized Perception

£

Distributed Perception

ey
\%k%\é—fﬂ

Up:  powerful processors Down:  mobile processors

Up:  unlimited memory Down: limited onboard memory

Up: unlimited bandwidth Down:  band-limited communications
Down: single modality Up:  distributed, multi-modality

Whether the total network is greater than the sum of its parts?
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Conclusion
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Sensing = Perception = Action

© Perception on Smart-Phone Architecture @ Active Sensing
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Sensing = Perception = Action

© Perception on Smart-Phone Architecture @ Active Sensing
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